JPS6131891A - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JPS6131891A
JPS6131891A JP15353884A JP15353884A JPS6131891A JP S6131891 A JPS6131891 A JP S6131891A JP 15353884 A JP15353884 A JP 15353884A JP 15353884 A JP15353884 A JP 15353884A JP S6131891 A JPS6131891 A JP S6131891A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
plating
copper
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15353884A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP15353884A priority Critical patent/JPS6131891A/en
Publication of JPS6131891A publication Critical patent/JPS6131891A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To permit to form the wall surface of the heat transfer tube having a high efficiency easily by a method wherein a recessed and protruded metal plating layer is formed on the wall surface of heat transfer tube by plating liquid added with oxyethylene series surface-active agent and chloride ion as an additive agent. CONSTITUTION:The protruded and recessed copper plating layer 5 is formed on the inner wall surface 4 of heat transfer tube 2 for a heat exchanger 1, consisting of the heat transfer tube 2 of copper pipe and heat radiating fins 3 formed by aluminum thin pieces. In this case, the plating liquid added with oxyethylene series surface-active agent and chloride ion of low concentration as the adding agent, is employed. For example, the plating liquid of acid copper sulfate consisting of 100g/l of CuSO4. 5H2O, 0.50g/l of H2SO4, 0.02g/l of polyoxyethyleneprophleneglycol and 0.2mm.mol of hydrochloric acid is employed. When the concentration of chlorine ion becomes 1mm.mol or more, copper is separated out with an uniform thickness as a whole, therefore, the concentration of chlorine ion should be kept lower than 1mm.mol.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱交換器やヒートパイプに利用される、特に液
媒体を流動させる伝熱管に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to heat exchanger tubes used in heat exchangers and heat pipes, in particular to flow a liquid medium.

従来例の構成とその問題点 熱交換部材に多孔質層を形成し、表面積の増大、沸騰伝
熱の促進効果をはかることは一般に知られているが、伝
熱管内に多孔質層を形成することは焼結、溶射法では困
難であるから通常はメッキ法を利用する。しかしこの様
な表面積を増大し沸騰伝熱の促進効果をはかるだめに行
うメッキ層は平滑メッキと違った条件で加工し、適度な
ポーラス性と突起を有するメッキ層に仕上げる必要があ
る。
Conventional structure and its problems It is generally known that a porous layer is formed in a heat exchange member to increase the surface area and promote boiling heat transfer, but it is generally known that a porous layer is formed in a heat exchanger tube to increase the surface area and promote boiling heat transfer. This is difficult to do with sintering or thermal spraying, so plating is usually used. However, such a plating layer, which is intended to increase the surface area and promote boiling heat transfer, must be processed under conditions different from those for smooth plating, and it is necessary to finish the plating layer with appropriate porousness and protrusions.

この様なメッキ層を形成する方法としては、通常の平滑
メッキを得るために必要な錯塩や、にかわ状物質、光沢
剤、結晶微粒子化のための添加剤などはメッキ液中に配
合しないか、極く微量としたメッキ液を使用し、メッキ
条件としては一般的に高温で高電流密度で行ない、メッ
キ液は高速の流動攪拌を行うことにより行われる。
The method for forming such a plating layer is to avoid adding complex salts, glue-like substances, brighteners, additives for making crystal fine particles, etc. to the plating solution, which are necessary to obtain normal smooth plating. A very small amount of plating solution is used, the plating conditions are generally high temperature and high current density, and the plating solution is stirred at high speed.

しかしながら、この様な条件で伝熱管内壁面等にメッキ
液を導入しても仲々内部まで均一にメッキすることがで
きず、錯塩の少ない不安定なメッキ液条件となってしる
ため短時間にて分離を起こし、量産性に向かないばかり
か、伝熱管パイプ壁面とメッキ層との密着も不充分であ
り、液媒体の流動時および振動や衝撃にてメッキ層が剥
離してしまうなどの欠陥があった。
However, even if the plating solution is introduced onto the inner wall surface of the heat transfer tube under these conditions, it will not be possible to uniformly plate the inside of the tube, resulting in unstable plating solution conditions with less complex salts. Not only does this cause separation, making it unsuitable for mass production, but the adhesion between the heat exchanger pipe wall and the plating layer is also insufficient, resulting in defects such as the plating layer peeling off when the liquid medium flows or due to vibration or impact. was there.

発明の目的 本発明はメッキ液中にオキシエチレン係等の界面活性剤
と適度な濃度の塩化物イオンを介在させることにより、
伝熱管内壁面等に条こん、ざらつきを形成させることで
、安定な量産可能なメッキ条件で、均一にかつ密着性の
優れたメッキ物をもたせ、表面積の増大した、沸騰伝熱
の促進効果がはかれる伝熱壁面を形成することを目的と
する。
Purpose of the Invention The present invention provides a plating solution by intervening a surfactant such as oxyethylene and an appropriate concentration of chloride ions in the plating solution.
By forming striations and roughness on the inner wall surface of the heat transfer tube, it is possible to have a plated product uniformly and with excellent adhesion under stable plating conditions that can be mass-produced, increasing the surface area and promoting boiling heat transfer. The purpose is to form a heat transfer wall surface that can be measured.

発明の構成 この目的を達成するために、本発明はメッキ液中にオキ
シエチレン系界面活性剤と適度な濃度の塩化物イオンを
介在させ、伝熱管側をカソードとし電気メッキを施すこ
とにより、伝熱管内壁面に、条こん、またはざらつきの
ある金属析出層を形成させたものである。すなわち錯塩
の少ない不安定なメッキ液や過度な条件でのメッキ工法
を必要としないのでメッキ液の分解も少なく、メッキ層
と伝熱管壁面との密着も良好となり、前記条こん、また
はばらつきをもつ金属析出層が、表面積の増大と沸騰伝
熱の促進効果をはかることができるものである。
Structure of the Invention In order to achieve this object, the present invention interposes an oxyethylene surfactant and an appropriate concentration of chloride ions in the plating solution, and performs electroplating using the heat transfer tube side as a cathode. A metal deposit layer with striations or roughness is formed on the inner wall surface of the heat tube. In other words, there is no need for an unstable plating solution with less complex salts or a plating method under excessive conditions, so there is less decomposition of the plating solution, and the adhesion between the plating layer and the wall surface of the heat transfer tube is good, which eliminates the above-mentioned streaks or variations. The metal deposit layer can increase the surface area and promote boiling heat transfer.

実施例の説明 以下本発明の一実施例について第1図から第4図を参考
に説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

1は銅パイプの伝熱管2とアルミニウムの薄片加工した
放熱フィン3とからなる熱交換器である。
Reference numeral 1 denotes a heat exchanger consisting of a heat exchanger tube 2 made of a copper pipe and a radiation fin 3 made of thin aluminum.

この伝熱管2の内壁面4には凸凹の銅メッキ層5が形成
されている。まだ、この伝熱管2の両端ea、ebはか
しめ加工と溶接により完全にシールされ、内部にはフロ
ンガスが封入さ扛ている。
An uneven copper plating layer 5 is formed on the inner wall surface 4 of the heat exchanger tube 2. Both ends ea and eb of this heat transfer tube 2 are still completely sealed by caulking and welding, and fluorocarbon gas is sealed inside.

7はヒーター8によシ温調可能なメッキ浴であり、メッ
キ液9が入れられである。このメッキ液9としては1o
oy/i Cu5O4−sH20。
7 is a plating bath whose temperature can be controlled by a heater 8, into which a plating solution 9 is placed. This plating solution 9 is 1o
oy/i Cu5O4-sH20.

s o y/ e H2S O4+ O−02y/ l
  ポリオキシエチレンプロピレングリコール、および
0.2ミリモルの塩酸を加えた酸性硫酸銅メッキ液を使
用する。また1oは両端6a、ebを封止する前の銅パ
イプであシ、連結管11と循環ポンプ12とを組み合わ
せることにより、メッキ液9を銅パイプ1oの内部に循
環させる様にしている。尚、すでに放熱フィン3は銅パ
イプ1oを拡管することにより銅パイプ10の外周に固
定されている。さらに連結管11には、直流電源13に
直結されている正の電荷をもつアノード側電極14と負
の電荷をもっカソード側電極16とが固定されておシ、
銅パイプ10と連結管11とを結合させた時、銅パイプ
9とカソード側電極15とが接触する様になっている。
s o y/e H2S O4+ O-02y/ l
An acidic copper sulfate plating solution containing polyoxyethylene propylene glycol and 0.2 mmol of hydrochloric acid is used. Further, 1o is a copper pipe before both ends 6a and eb are sealed, and by combining a connecting pipe 11 and a circulation pump 12, the plating solution 9 is circulated inside the copper pipe 1o. Note that the radiation fins 3 have already been fixed to the outer periphery of the copper pipe 10 by expanding the copper pipe 1o. Furthermore, an anode side electrode 14 with a positive charge and a cathode side electrode 16 with a negative charge, which are directly connected to the DC power supply 13, are fixed to the connecting pipe 11.
When the copper pipe 10 and the connecting pipe 11 are connected, the copper pipe 9 and the cathode side electrode 15 are brought into contact with each other.

またアノード側電極14には銅パイプ10との接触を防
止するためにポリエステル繊維等でできた不導体のネッ
ト16をかぶせている。
Further, the anode side electrode 14 is covered with a non-conductive net 16 made of polyester fiber or the like to prevent contact with the copper pipe 10.

次にかかる構成での熱交換器の製造方法について説明す
る。
Next, a method for manufacturing a heat exchanger with such a configuration will be described.

まず、銅バイブ1oと放熱フィン3とを定位置にて仮嵌
合しておき、銅パイプ10を所定の拡管機で拡管し、銅
パイプ10と放熱フィン3とを圧着させておく。次に、
この銅パイプ10と連結管11と循環ポンプ12とを組
み合わせ、メッキ浴7中のメッキ液9を銅パイプ10の
内部に循環させる。この時、メッキ液9としては1oo
y/1CuS04.5H20,6oy/1H2So4.
o、o2y/lポリオキシエチレンプロピレングリコー
ル、およヒ0.2ミリモルの塩酸を加えた酸性硫酸鋼メ
ッキ液を使用する。そこで、直流電源13でアノード側
電極14に正の電荷を、カソード側電極15に負の電荷
をかける。すなわち、カソード側電極15と銅パイプ1
oとが接触しているので、銅パイプ10が負の電荷をも
つことになる。そのため、メッキ液9中の陽イオンであ
る銅イオンが銅パイプ1゜の内壁に析出することになる
。通常のメッキ液であれば、銅パイプ1o内壁面全体に
均一な厚みで銅が析出するが、メッキ液9内にはオキシ
エチレン系の界面活性層であるポリオキシエチレンプロ
ピレングリコールと、0.2ミリ%)W)塩酸にょシ生
じのメッキ浴温度は約3o″Cで、電流密度は約s、s
A/dm2、通電時間約30分間にて約60 II m
の凸凹の高さの差のあるメッキ層6が形成する。
First, the copper vibrator 1o and the heat radiation fin 3 are temporarily fitted in a fixed position, and the copper pipe 10 is expanded using a predetermined tube expander, and the copper pipe 10 and the heat radiation fin 3 are crimped together. next,
The copper pipe 10, the connecting pipe 11, and the circulation pump 12 are combined to circulate the plating solution 9 in the plating bath 7 inside the copper pipe 10. At this time, the plating solution 9 is 1oo
y/1CuS04.5H20,6oy/1H2So4.
An acidic sulfuric acid steel plating solution containing o, o2y/l polyoxyethylene propylene glycol and 0.2 mmol of hydrochloric acid is used. Therefore, the DC power supply 13 applies a positive charge to the anode side electrode 14 and a negative charge to the cathode side electrode 15. That is, the cathode side electrode 15 and the copper pipe 1
Since the copper pipe 10 is in contact with the copper pipe 10, the copper pipe 10 has a negative charge. Therefore, copper ions, which are cations in the plating solution 9, are deposited on the inner wall of the copper pipe 1°. If it is a normal plating solution, copper will be deposited with a uniform thickness on the entire inner wall surface of the copper pipe 1o, but the plating solution 9 contains polyoxyethylene propylene glycol, which is an oxyethylene-based surface active layer, and 0.2 mm%) W) Hydrochloric acid plating bath temperature was about 3 o'C, current density was about s, s
A/dm2, approximately 60 II m when the current is applied for approximately 30 minutes
A plating layer 6 having uneven heights is formed.

次に、銅パイプ10内壁を湯洗により洗浄し、乾燥した
のち、フロンガスを内部に封入し、両端6a、6bをか
しめ、溶接することにより、伝熱管2と放熱フィン3と
をもつ熱交換器1が完成する0 この様にして得られた熱交換器1は伝熱管2の内壁面4
の凸凹のメッキ層6が、表面積を増大させる効果と共に
、沸騰伝熱の促進効果をはかるだけではなく、内壁面4
でフロンガスが液化した時、液体層が、メッキ層6の凸
部にて粒滴となシ、内壁面4よシ離れるため、厚い断熱
層である液体層が形成されないので、凝縮時の伝熱も促
進されることになる。すなわち、フロン液化ガスを封入
し、気化、凝縮を繰返す、ヒートパイプの様な熱交換器
1の伝熱効率を著しく良くしたものが得られる。
Next, the inner wall of the copper pipe 10 is washed with hot water and dried, after which a fluorocarbon gas is sealed inside, and both ends 6a and 6b are caulked and welded to form a heat exchanger having a heat exchanger tube 2 and a heat radiation fin 3. 1 is completed 0 The heat exchanger 1 obtained in this way has the inner wall surface 4 of the heat exchanger tube 2.
The uneven plating layer 6 not only has the effect of increasing the surface area and promoting boiling heat transfer, but also has the effect of increasing the surface area of the inner wall surface 4.
When the fluorocarbon gas liquefies, the liquid layer becomes droplets on the convex part of the plating layer 6 and separates from the inner wall surface 4, so a thick insulating liquid layer is not formed, so heat transfer during condensation is prevented. will also be promoted. That is, a heat pipe-like heat exchanger 1 in which liquefied fluorocarbon gas is sealed and repeats vaporization and condensation can be obtained, with significantly improved heat transfer efficiency.

尚、本発明の実施例では凸凹のメッキ層を形成させる手
段として、酸性硫酸銅メッキ液を使用したが、熱伝導性
の面で銅が有利であるものの他の金属メッキ液でも可能
であシ銅メッキに限定するものではない。また界面活性
剤としてポリオキシエチレンプロピレングリコールを使
用したが、ポリオキシエチレンノニルフェニルエーテル
、ポリエチレングリコール等のオキシエチレン系界面活
性剤をすべて含むものである。さらに塩酸についてもN
aClの様な塩化物でも可能であり、メッキ液中で塩素
イオンとして遊離する塩化物イオンをすべて含むもので
ある。ただし塩素イオン濃度が1ミリモル以上になると
全体に均一な厚みで銅が析出するため、塩素イオン濃度
は低濃度である1ミリモル以下にしておく必要がある。
In the embodiments of the present invention, an acidic copper sulfate plating solution was used as a means for forming an uneven plating layer, but although copper is advantageous in terms of thermal conductivity, it is possible to use other metal plating solutions. It is not limited to copper plating. Although polyoxyethylene propylene glycol was used as a surfactant, it includes all oxyethylene surfactants such as polyoxyethylene nonylphenyl ether and polyethylene glycol. Furthermore, regarding hydrochloric acid, N
It is also possible to use chloride such as aCl, which contains all chloride ions released as chloride ions in the plating solution. However, if the chlorine ion concentration is 1 mmol or more, copper will precipitate with a uniform thickness over the entire surface, so the chlorine ion concentration must be kept at a low concentration of 1 mmol or less.

発明の効果 以上の説明からも明らかな様に、本発明は、銅等の伝熱
管壁面にオキシエチレン系界面活性剤と、低濃度の塩化
物イオンを添加剤として加えたメッキ液により凸凹の金
属メッキ層を形成したもので、量産可能な安定なメッキ
条件で、塩素イオン濃度の管理によシ凸凹の形状を安定
にし、かつ密着性の優れた凸凹のメッキ層を形成させ、
表面積を増大し、沸騰伝熱の促進効果がはかられ、さら
に凝縮における伝熱効率を促進させる効果をもあり、容
易に高効率の伝熱管壁面を形成することができる0
Effects of the Invention As is clear from the above explanation, the present invention has the advantage of applying an oxyethylene surfactant and a low concentration of chloride ions to the wall surface of a heat transfer tube using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives. This product has a plated layer formed on it, under stable plating conditions that can be mass-produced, by controlling the chlorine ion concentration, the uneven shape is stabilized, and an uneven plated layer with excellent adhesion is formed.
It increases the surface area, has the effect of promoting boiling heat transfer, and also has the effect of promoting heat transfer efficiency in condensation, making it possible to easily form a highly efficient heat transfer tube wall surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す熱交換器の斜視図、第
2図は同熱交換器の縦断面図、第3図は同熱交換器のA
−A/横用面図、第4図は同メッキ装置の概略図である
。 1・・・・・・熱交換器、2・・・・・・伝熱管、3・
・印・放熱フィン、5・・・・・・凸凹のメッキ層、9
・・・・・・メッキ液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図
Fig. 1 is a perspective view of a heat exchanger showing an embodiment of the present invention, Fig. 2 is a vertical sectional view of the heat exchanger, and Fig. 3 is an A of the heat exchanger.
-A/Horizontal view, FIG. 4 is a schematic diagram of the same plating apparatus. 1... Heat exchanger, 2... Heat exchanger tube, 3.
・Mark・Radiating fin, 5... Uneven plating layer, 9
・・・・・・Plating liquid. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3

Claims (1)

【特許請求の範囲】[Claims]  伝熱管壁面にオキシエチレン系界面活性剤と、低濃度
の塩化物イオンを添加剤として加えたメッキ液により凸
凹の金属メッキ層を形成してなる伝熱管。
A heat exchanger tube with an uneven metal plating layer formed on the wall surface of the tube using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives.
JP15353884A 1984-07-24 1984-07-24 Heat transfer tube Pending JPS6131891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15353884A JPS6131891A (en) 1984-07-24 1984-07-24 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15353884A JPS6131891A (en) 1984-07-24 1984-07-24 Heat transfer tube

Publications (1)

Publication Number Publication Date
JPS6131891A true JPS6131891A (en) 1986-02-14

Family

ID=15564703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15353884A Pending JPS6131891A (en) 1984-07-24 1984-07-24 Heat transfer tube

Country Status (1)

Country Link
JP (1) JPS6131891A (en)

Similar Documents

Publication Publication Date Title
US11274376B2 (en) Device for manufacturing hybrid metal foams
CN106906495B (en) Pb-ag alloy composite anode plate of aluminium base and preparation method thereof
JPS6131891A (en) Heat transfer tube
JPS5948876B2 (en) Heat sink surface treatment method
JP2667146B2 (en) Heat exchanger manufacturing method
JPS61194193A (en) Plating method for inside wall of heat transmission pipe
JP2645425B2 (en) Heat transfer tube wall manufacturing method
JPS6210296A (en) Production of heat-transfer pipe
US3007993A (en) Electrodes and cells containing them
JPS6260890A (en) Device for plating inner wall of heat-transfer pipe
JPS61270393A (en) Plating method for inside wall of heat transmission pipe
JPS61190087A (en) Manufacture of heat transfer pipe
JPS61291990A (en) Heat exchanger tube
JPS61270394A (en) Production of heat transmission pipe
JPS61217594A (en) Formation of porous layer by plating
JPS61190088A (en) Manufacture of heat transfer pipe
US4248674A (en) Anodizing method and apparatus
JPS62180093A (en) Production of heat transmission member
JPS6293394A (en) Method for plating inner wall of heat exchanger tube
JPS6289891A (en) Production of heat exchanger
JPS62185897A (en) Production of heat transfer member
JPS6293039A (en) Plating method for heat transfer pipe
JPH0633500B2 (en) Heat transfer tube manufacturing method
JPS6289892A (en) Production of heat exchanger
JPH0816276B2 (en) Method for manufacturing heat transfer member