JPS61291990A - Heat exchanger tube - Google Patents

Heat exchanger tube

Info

Publication number
JPS61291990A
JPS61291990A JP60133470A JP13347085A JPS61291990A JP S61291990 A JPS61291990 A JP S61291990A JP 60133470 A JP60133470 A JP 60133470A JP 13347085 A JP13347085 A JP 13347085A JP S61291990 A JPS61291990 A JP S61291990A
Authority
JP
Japan
Prior art keywords
plating
heat exchanger
tube
uneven
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60133470A
Other languages
Japanese (ja)
Inventor
Hiroto Nakama
啓人 中間
Masatoshi Inatani
正敏 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP60133470A priority Critical patent/JPS61291990A/en
Publication of JPS61291990A publication Critical patent/JPS61291990A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a heat exchanger tube having a boiling heat transfer accelerating effect by forming an uneven metallic layer on the surface of the inner wall of a group tube by plating with a plating soln. contg. an oxyethylene surfactant and low concn. chloride ions so as to increase the surface area. CONSTITUTION:An uneven metallic layer 5 of copper or the like having superior adhesion is uniformly formed on the surface 4 of the inner wall of a group tube having heat radiating fins 3 for a heat exchanger 1 by plating with a plating soln. contg. an oxyethylene surfactant such as polyoxyethylene oleyl ether and low concn. chloride ions as additives. The surface area is increased and a heat exchanger tube having a boiling heat transfer accelerating effect is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱交換器やヒートバイブに利用される、特に
液媒体を流動させる伝熱管に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger tube used in a heat exchanger or a heat vibrator, particularly for flowing a liquid medium.

従来の技術 熱交換部材に多孔質層を形成して表面積の増大や沸騰伝
熱の促進効果を計ることは一般に知られているが、伝熱
管内に多孔質層を形成することは焼結法や容射法では困
難であるから、通常はメッキ法を利用する。しかし、こ
の様な表面積を増大し沸騰伝熱の促進効果を計るために
行うメッキ法は、平滑メッキと異った条件で加工し、適
度なポーラス性と突起を有するメッキ層に仕上げる必要
がある。
Conventional technology It is generally known to increase the surface area and promote boiling heat transfer by forming a porous layer in a heat exchange member, but it is not possible to form a porous layer in a heat exchanger tube using the sintering method. Since it is difficult to do so using the irradiation method or the radiation method, a plating method is usually used. However, the plating method used to increase the surface area and measure the effect of promoting boiling heat transfer requires processing under conditions different from those for smooth plating, and it is necessary to finish the plating layer with appropriate porousness and protrusions. .

この様なメッキ層を形成する方法としては、通常の平滑
メッキを得るために必要な錯塩や、にかわ状物質、光沢
剤、結晶微粒子化のための添加剤等はメッキ液中に配合
しないか、極く微量としたメッキ液を使用し、メッキ条
件としては一般的に高温で高伝流密度で行ない、メッキ
液は高速の流動撹拌を行うことにより形成される。
The method for forming such a plating layer is to avoid adding complex salts, glue-like substances, brighteners, additives for making crystal fine particles, etc. to the plating solution, which are necessary to obtain normal smooth plating. A very small amount of plating solution is used, the plating conditions are generally high temperature and high current density, and the plating solution is formed by high-speed fluid stirring.

発明が解決しようとする問題点 しかしながら、この様な条件で伝熱管内壁面等にメッキ
液を導入しても、高温、高電流で行うとメッキ液が不安
定な状態であるためメッキ液入口及び電極間間隔が小さ
い所に極部的に金属が析出するなど、なかなか内部まで
均一に多孔質状のメッキをすることができず、又錯塩の
少ない不安定なメッキ液条件となっているため短時間に
分解を起こし、量産性に向かないばかりか、伝熱管バイ
ブ壁面とメッキ層との密着も不充分であり、液媒体の流
動時及びt!初や衝撃にてメッキ層が剥離してしまう等
の問題点があった。
Problems to be Solved by the Invention However, even if the plating solution is introduced into the inner wall surface of the heat transfer tube under these conditions, the plating solution will be unstable if carried out at high temperature and high current. It is difficult to achieve uniform porous plating to the inside, as metal precipitates locally in areas where the spacing between electrodes is small, and the plating solution conditions are unstable due to the lack of complex salts, resulting in a short period of time. Not only does it decompose over time, making it unsuitable for mass production, but the adhesion between the wall surface of the heat exchanger tube vibrator and the plating layer is also insufficient, and when the liquid medium flows, There were problems such as the plating layer peeling off due to shock or shock.

本発明は、上記問題点を鑑み、均一にかつ密着性の優れ
た凸凹状のメッキ層を形成し表面積の増大した、沸騰伝
熱の促進効果が計れる伝熱壁面をもつ伝熱管を提供する
ものである。
In view of the above-mentioned problems, the present invention provides a heat transfer tube having a heat transfer wall surface that forms a uniform and highly adhesive uneven plating layer, increases the surface area, and is effective in promoting boiling heat transfer. It is.

問題点を解決するための手段 上記問題点を解決するために、本発明の伝熱管は、メッ
キ液中に、オキシエチレン系界面活性剤であるポリオキ
シエチレンオレイルエーテルと、適度な濃度の塩化物イ
オンを添加剤として加えたメッキ液を用い、伝熱管側を
カソードとし電気メッキを施すことにより、グループ管
内壁面に凸凹のメッキ層を形成させたものである。
Means for Solving the Problems In order to solve the above problems, the heat exchanger tube of the present invention contains polyoxyethylene oleyl ether, which is an oxyethylene surfactant, and an appropriate concentration of chloride in the plating solution. An uneven plating layer is formed on the inner wall surface of the group tubes by electroplating using a plating solution containing ions as an additive and using the heat transfer tube side as a cathode.

作用 本発明は上記した構成によって、メッキ液中のオキシエ
チレン系界面活性剤であるポリオキシエチレンオレイル
エーテルの分子につかまえられて錯体化している金属イ
オンが、低濃度の塩化物イオンの存在下で、塩化物イオ
ンと不安定に結合し凸凹のメッキ層を形成するのに働く
。すなわち錯塩の少ない不安定なメッキ液や過度な条件
でのメッキ工法を必要としないのでメッキ液の分解も少
なく、メッキ層と伝熱管壁面との密着も良好となり、又
グループ管内に凸凹のメッキ層を形成するので通常の平
滑管に比較し表面積が大幅に増大し、沸騰伝熱の促進効
果をはかることができるものである。
Effect The present invention has the above-described structure, so that the metal ions that are captured and complexed by the molecules of polyoxyethylene oleyl ether, which is an oxyethylene surfactant in the plating solution, are removed in the presence of a low concentration of chloride ions. , works to form an uneven plating layer by unstably combining with chloride ions. In other words, there is no need for an unstable plating solution with few complex salts or a plating method under excessive conditions, so there is less decomposition of the plating solution, and the adhesion between the plating layer and the wall surface of the heat transfer tube is good. , the surface area is significantly increased compared to ordinary smooth tubes, and the effect of promoting boiling heat transfer can be measured.

実施例 以下、本発明の一実施例について、第1図から第4図を
参考にしながら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4.

1は熱交換器で、内面に溝が形成された銅バイブのグル
ープ管2とアルミニウムの薄片加工した放熱フィン3と
からなる。このグループ管2の内壁面4には凸凹の銅か
らなる金属メッキ層5が形成されている。又、このグル
ープ管2の両端6a。
Reference numeral 1 denotes a heat exchanger, which consists of a group tube 2 made of a copper vibrator with grooves formed on its inner surface and a heat dissipation fin 3 made of thin aluminum. An uneven metal plating layer 5 made of copper is formed on the inner wall surface 4 of the group tube 2. Also, both ends 6a of this group tube 2.

6bはかしめ加工と溶接により完全にシールされ、内部
にフロンガスが封入されている。7はヒーター8により
温調可能なメッキ層であり、メッキ液9が入れられであ
る、このメッキ液9としては、0.61QQ/Q  C
u 3o 4 ・5H20,0,5moQ/ j2 H
2So  4  、  0.33  x 10−’ m
oQ/ρ  1−tcp及び19u/ρポリオキシエチ
レンオレイルエーテルが含まれている。また10は両端
6a 、5bを封止する前のグループ管であり、連結管
11と循環ポンプ12を組み合わせることにより、メッ
キ液9をグループ管10の内部に循環させるようにして
いる。
6b is completely sealed by caulking and welding, and fluorocarbon gas is sealed inside. 7 is a plating layer whose temperature can be controlled by a heater 8, into which a plating solution 9 is placed.
u 3o 4 ・5H20,0,5moQ/ j2 H
2So4, 0.33 x 10-' m
oQ/ρ 1-tcp and 19u/ρ polyoxyethylene oleyl ether. Reference numeral 10 denotes a group tube before both ends 6a and 5b are sealed, and by combining a connecting tube 11 and a circulation pump 12, the plating solution 9 is circulated inside the group tube 10.

尚、すでに放熱フィン3は、グループ管10を拡管機(
図示せず)により拡管することにより、このグループ管
10の外周に固定されている。さらに連結管11には、
直流電源13に直結されているチタン棒に白金メッキを
行なった対極14と、この対極14と逆の電荷を与えら
れる接続端子15とが固定されている。グループ管10
と連結管11とを接続端子15で結合させた時、接続端
子15とグループ管1Gとの接触を防止するために、ポ
リプロピレンでできた不電導体のスペーサー16がグル
ープ管10に挿入されている。又17はメッキ′I&9
に空気を吹き込むエアーポンプである。
Incidentally, the heat dissipation fins 3 have already been installed using a tube expander (
It is fixed to the outer periphery of this group tube 10 by expanding the tube with a tube (not shown). Furthermore, in the connecting pipe 11,
A counter electrode 14, which is a titanium rod plated with platinum and is directly connected to a DC power supply 13, and a connecting terminal 15 to which a charge opposite to that of the counter electrode 14 is applied are fixed. group tube 10
A non-conductor spacer 16 made of polypropylene is inserted into the group tube 10 in order to prevent contact between the connection terminal 15 and the group tube 1G when the connecting tube 11 and the connecting tube 11 are connected using the connecting terminal 15. . Also, 17 is plated 'I & 9
It is an air pump that blows air into.

次にかかる構成での熱交換器の製造方法について説明す
る。
Next, a method for manufacturing a heat exchanger with such a configuration will be described.

まず、グループ管10と放熱フィン3とを定位置にて仮
嵌合しておき、グループ管10を所定の拡管機(図示せ
ず)で拡管し、グループ管10と放熱フィン3とを圧着
させておく。次に、このグループ管10と連結管11と
循環ポンプ12とを組み合わせ、循環ポンプ12の作動
によりメッキ槽7中のメッキ液9をグループ管10の内
部に循環させる。この時、メッキ液9とt、4+、t 
O,6mo4/j2  CU 3o 4 −5H20,
0,510ρ/ρ H2804、0,33xlo−3n
oρ/ρ HCρ、19u/Qポリオキシエチレンオレ
イルエーテルを含む酸性硫酸銅メッキ液を使用する。そ
こで、直流電源13によりチタン棒に白金メッキを施し
た対極14に正の電荷をかけてアノード側とし、一方の
接続端子15には負の電荷をかけてツノソード側とする
。この時の電流値は約200mA / cdとし、約2
0分間通電する。又、メッキ液9の1度はメッキ槽7の
ヒーター8により加熱され、約50℃とした。
First, the group tube 10 and the radiation fin 3 are temporarily fitted in a fixed position, and the group tube 10 is expanded using a predetermined tube expander (not shown), and the group tube 10 and the radiation fin 3 are crimped together. I'll keep it. Next, the group pipe 10, the connecting pipe 11, and the circulation pump 12 are combined, and the plating solution 9 in the plating bath 7 is circulated inside the group pipe 10 by the operation of the circulation pump 12. At this time, plating solution 9 and t, 4+, t
O,6mo4/j2 CU 3o 4 -5H20,
0,510ρ/ρ H2804, 0,33xlo-3n
oρ/ρ HCρ, 19u/Q An acidic copper sulfate plating solution containing polyoxyethylene oleyl ether is used. Therefore, the DC power supply 13 applies a positive charge to the counter electrode 14, which is a titanium rod plated with platinum, to make it the anode side, and a negative charge is applied to one of the connection terminals 15, making it the horn sword side. The current value at this time is approximately 200mA/cd, approximately 2
Turn on electricity for 0 minutes. Further, the plating solution 9 was heated by the heater 8 of the plating tank 7 to about 50°C.

ここで、通常のメッキ液であれば、カソード側であるグ
ループ管10の内壁面全体に均一な厚みで銅が析出する
が、メッキ液9には、オキシエチレン系の界面活性剤で
あるポリオキシエチレンオレイルエーテルと低濃度の塩
酸により生じる塩素イオンとを有するために、全体に均
一な厚みの銅の金属メッキ層とはならず、凸凹の金属メ
ッキ層5が形成されることになる。この理由としては、
界面活性剤であるポリオキシエチレンオレイルエーテル
の分子につかまえられ錯体化している銅イオンが、低濃
度の塩素イオンの存在下で塩素イオンと不安定に結合す
るためである。
Here, if a normal plating solution is used, copper will be deposited in a uniform thickness on the entire inner wall surface of the group tube 10 on the cathode side, but the plating solution 9 contains polyoxyethylene, which is an oxyethylene surfactant. Since it contains ethylene oleyl ether and chlorine ions generated by a low concentration of hydrochloric acid, the copper metal plating layer 5 does not have a uniform thickness over the entire surface, but an uneven metal plating layer 5 is formed. The reason for this is
This is because copper ions, which are captured and complexed by the molecules of polyoxyethylene oleyl ether, which is a surfactant, combine unstablely with chlorine ions in the presence of a low concentration of chlorine ions.

次に、グループ管10の内壁を湯洗により洗浄し、乾燥
した後フロンガスを内部に封入し、両端6a。
Next, the inner wall of the group tube 10 is washed with hot water, and after drying, Freon gas is sealed inside, and both ends 6a are sealed.

6bをかしめ溶接することにより、伝熱管2と放熱フィ
ン3とを持つ熱交換器1が完成する。
By caulking and welding 6b, the heat exchanger 1 having the heat transfer tubes 2 and the radiation fins 3 is completed.

この様にして得られた熱交換器1は、メッキ液中の界面
活性剤であるポリオキシエチレンオレイルエーテル及び
塩ms度を規定しているために、グループ管10の凸凹
の内壁面4にさらに樹枝状の凸凹の金属メッキ層5が密
に形成されており、グループ管10の凸凹と金属メッキ
層5の凸凹の相乗効果により、表面積を増大させるばか
りでなく、樹枝状の金属メッキが密に形成されているた
め、凸凹の金属メッキ層5は、沸騰伝熱の沸騰核となり
、通常の針状の凸凹メッキに比較して沸騰伝熱の促進効
果を計ることができる。又、内壁面4でフロンガスが液
化した時、液体層が凸凹の金属メッキ層5の凸部にて粒
滴となり、内壁面4から平滑面よりも早く離れるために
、厚い断熱層である液体層が形成されないので、凝縮時
の伝熱も促進されることになる。すなわち、フロン液化
ガスを封入し、蒸発、凝縮をくり返すヒートパイプの様
な熱交換器1の伝熱効率を著しく良くしたものが得られ
る。
In the heat exchanger 1 obtained in this manner, since polyoxyethylene oleyl ether, which is a surfactant in the plating solution, and the salt content are specified, the uneven inner wall surface 4 of the group tube 10 is further coated. The metal plating layer 5 with dendritic irregularities is formed densely, and the synergistic effect of the irregularities of the group tube 10 and the irregularities of the metal plating layer 5 not only increases the surface area but also makes the dendritic metal plating dense. Because of this, the uneven metal plating layer 5 serves as a boiling nucleus for boiling heat transfer, and can be more effective in promoting boiling heat transfer than ordinary needle-like uneven plating. Furthermore, when the fluorocarbon gas liquefies on the inner wall surface 4, the liquid layer turns into droplets on the convex portions of the uneven metal plating layer 5, and separates from the inner wall surface 4 faster than a smooth surface, resulting in a liquid layer that is a thick heat insulating layer. Since no is formed, heat transfer during condensation is also promoted. That is, it is possible to obtain a heat exchanger 1, which is a heat pipe-like heat pipe in which liquefied fluorocarbon gas is sealed and repeats evaporation and condensation, with significantly improved heat transfer efficiency.

又、前記方法にて形成された樹枝状の金属メッキが密に
形成された伝熱管2の内壁面4の凸凹の金属メッキ層5
は、錯塩の少ない不安定なメッキ液や過度な条件でのメ
ッキ工法を必要としないので、メッキ液9の分解も少な
く、その硬度及び密看性はたいへん良好であり、常に安
定した凸凹の金属メッキ層5が形成される。
Furthermore, the uneven metal plating layer 5 on the inner wall surface 4 of the heat exchanger tube 2 has a dense dendritic metal plating formed by the method described above.
Since this method does not require an unstable plating solution with few complex salts or a plating method under excessive conditions, there is little decomposition of the plating solution 9, its hardness and tightness are very good, and it can always be used to stabilize uneven metals. A plating layer 5 is formed.

尚、本発明の実施例では凸凹の金属メッキ層5を形成さ
せる手段として、酸性硫酸銅メッキ液を使用したが、熱
伝導性の面で銅が有利であるものの他の金属メッキ液で
も可能であり、銅メッキに限定するものではない。さら
に塩酸についてもNa(4の様な塩化物でも可能であり
、メッキ液中で塩素イオンとして遊離する塩化物イオン
をすべて含むものである。但し塩素イオン濃度が1ミリ
モル/ρにり大ぎいと凸凹の金属メッキ層5は形成され
るが、メッキの密度が疎になるため、塩素イオン濃度は
1ミリモル/Ω以下にしておく必要がある。
In the embodiment of the present invention, an acidic copper sulfate plating solution was used as a means for forming the uneven metal plating layer 5, but although copper is advantageous in terms of thermal conductivity, other metal plating solutions may also be used. Yes, but not limited to copper plating. Furthermore, regarding hydrochloric acid, it is possible to use chloride such as Na (4), which contains all the chloride ions that are released as chloride ions in the plating solution. However, if the chloride ion concentration is greater than 1 mmol/ρ, unevenness may occur. Although the metal plating layer 5 is formed, since the density of the plating becomes sparse, the chlorine ion concentration must be kept at 1 mmol/Ω or less.

又、界面活性剤としてポリオキシエチレンオレイルエー
テルを使用したが、ポリエチレングリコールやポリオド
ジエチレンノリルフェニルエーテル等のオキシエチレン
系界面活性剤をすべて含むものである。
Although polyoxyethylene oleyl ether was used as a surfactant, all oxyethylene surfactants such as polyethylene glycol and polyododiethylene noryl phenyl ether are included.

発明の効果 以上のように本発明は、グループ管壁面に、オキシエチ
レン系界面活性剤と低濃度の塩化物イオンとを添加剤と
し加えたメッキ液により、凸凹の金属メッキ層を形成し
てなる伝熱管であるから、以下の効果が1qられるもの
である。
Effects of the Invention As described above, the present invention forms an uneven metal plating layer on the wall surface of the group tube using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives. Since it is a heat exchanger tube, the following effects can be obtained by 1q.

(a)グループ管の内壁面の凸凹のメッキ層には、樹枝
状のメッキが密に形成され、これがグループ管の凸凹と
メッキ層の凸凹の相乗効果によりさらに表面積を増大さ
せるばかりでなく、樹枝状のメッキが密に形成されてい
るため、前記凸凹のメッキ層は、沸騰伝熱の沸騰核とな
り、通常の針状の凸凹メッキに比較して沸騰伝熱の促進
効果を計ることができる。
(a) Dendritic plating is densely formed on the uneven plating layer on the inner wall surface of the group pipe, and this not only further increases the surface area due to the synergistic effect of the unevenness of the group pipe and the unevenness of the plating layer, but also causes dendrites to form. Since the shaped plating is densely formed, the uneven plating layer becomes a boiling nucleus for boiling heat transfer, and can be more effective in promoting boiling heat transfer than normal needle-like uneven plating.

(b)凝縮時の熱伝達に関しても、伝熱管の内壁面でフ
ロンガスが液化した時、液体層が凸凹メッキ層の凸部に
て粒滴となり、内壁面から平滑面よりも早く離れるため
に、厚い断熱層である液体層が形成されないので、凝縮
時の伝熱も促進されることになる。
(b) Regarding heat transfer during condensation, when the fluorocarbon gas liquefies on the inner wall surface of the heat exchanger tube, the liquid layer becomes droplets on the convex parts of the uneven plating layer and separates from the inner wall surface faster than the smooth surface. Since a thick insulating liquid layer is not formed, heat transfer during condensation is also promoted.

(C)伝熱管の内壁面に形成された凸凹のメッキ層は、
錯塩の少ない不安定なメッキ液や過度な条件でのメッキ
工法を必要としないので、メッキ液の分解も少なく、そ
の硬度及び密着性はたいへん良好であり、常に”安定し
た凸凹のメッキ層が形成される。
(C) The uneven plating layer formed on the inner wall surface of the heat exchanger tube is
Since it does not require an unstable plating solution with few complex salts or a plating method under excessive conditions, there is little decomposition of the plating solution, its hardness and adhesion are very good, and a stable, uneven plating layer is always formed. be done.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は熱交換器の横
断面図、第2図は熱交換器の縦断面図、第3図は熱交換
器の斜視図、第4図はメッキ装置の概略図である。 1・・・熱交換器、2.10・・・グループ管、5・・
・凸凹の金属メッキ層、9・・・メッキ液、 代理人   森  本  義  弘 第1図 第2図 第3図
The drawings show an embodiment of the present invention, in which Fig. 1 is a cross-sectional view of a heat exchanger, Fig. 2 is a longitudinal sectional view of the heat exchanger, Fig. 3 is a perspective view of the heat exchanger, and Fig. 4 is a cross-sectional view of the heat exchanger. It is a schematic diagram of a plating apparatus. 1... Heat exchanger, 2.10... Group tube, 5...
・Uneven metal plating layer, 9...Plating solution, agent Yoshihiro Morimoto Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、グループ管壁面に、オキシエチレン系界面活性剤と
低濃度の塩化物イオンとを添加剤として加えたメッキ液
により、凸凹の金属メッキ層を形成してなる伝熱管。
1. Group A heat exchanger tube formed by forming an uneven metal plating layer on the tube wall surface using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives.
JP60133470A 1985-06-19 1985-06-19 Heat exchanger tube Pending JPS61291990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133470A JPS61291990A (en) 1985-06-19 1985-06-19 Heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133470A JPS61291990A (en) 1985-06-19 1985-06-19 Heat exchanger tube

Publications (1)

Publication Number Publication Date
JPS61291990A true JPS61291990A (en) 1986-12-22

Family

ID=15105524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133470A Pending JPS61291990A (en) 1985-06-19 1985-06-19 Heat exchanger tube

Country Status (1)

Country Link
JP (1) JPS61291990A (en)

Similar Documents

Publication Publication Date Title
US4258783A (en) Boiling heat transfer surface, method of preparing same and method of boiling
JP3107170B2 (en) Method and apparatus for applying surface treatment to metal foil
US20210087700A1 (en) Device for manufacturing hybrid metal foams
JPS5948876B2 (en) Heat sink surface treatment method
CN111663162A (en) Micro-arc oxidation electrolyte and micro-arc oxidation method
JPS61291990A (en) Heat exchanger tube
JP2667146B2 (en) Heat exchanger manufacturing method
JPS6210296A (en) Production of heat-transfer pipe
JPS61194193A (en) Plating method for inside wall of heat transmission pipe
JP2645425B2 (en) Heat transfer tube wall manufacturing method
JPS61217594A (en) Formation of porous layer by plating
JPS61190087A (en) Manufacture of heat transfer pipe
JPS61270394A (en) Production of heat transmission pipe
JPS61291991A (en) Plating method for inside wall of heat transfer pipe
JPS6293394A (en) Method for plating inner wall of heat exchanger tube
US4311733A (en) Method of preparing a capillary heat-pipe wicking structure
JPS6260890A (en) Device for plating inner wall of heat-transfer pipe
JPS6131891A (en) Heat transfer tube
JPS61270393A (en) Plating method for inside wall of heat transmission pipe
US6706329B1 (en) Local nickel plating for aluminum alloy radiator
JPS6293039A (en) Plating method for heat transfer pipe
JPS62180093A (en) Production of heat transmission member
JPS61190088A (en) Manufacture of heat transfer pipe
JPS6289892A (en) Production of heat exchanger
JPS61190092A (en) Manufacture of heat transfer pipe