JPS61190092A - Manufacture of heat transfer pipe - Google Patents

Manufacture of heat transfer pipe

Info

Publication number
JPS61190092A
JPS61190092A JP60032149A JP3214985A JPS61190092A JP S61190092 A JPS61190092 A JP S61190092A JP 60032149 A JP60032149 A JP 60032149A JP 3214985 A JP3214985 A JP 3214985A JP S61190092 A JPS61190092 A JP S61190092A
Authority
JP
Japan
Prior art keywords
heat transfer
pipe
plating
plating layer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60032149A
Other languages
Japanese (ja)
Other versions
JPH0633500B2 (en
Inventor
Hiroto Nakama
啓人 中間
Masatoshi Inatani
正敏 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP60032149A priority Critical patent/JPH0633500B2/en
Publication of JPS61190092A publication Critical patent/JPS61190092A/en
Publication of JPH0633500B2 publication Critical patent/JPH0633500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To form a copper plating layer having tree plate-like ruggedness on the inside surface of a heat transfer pipe and to produce the heat transfer pipe having an excellent effect of transferring boiling heat by circulating a copper plating liquid contg. a specific surface active agent and chloride ion in the heat transfer pipe and conducting electricity between said pipe and a counter electrode therein. CONSTITUTION:The counter electrode 14 consisting of a Ti bar coated with Pt is disposed into a Cu heat transfer pipe 10 provided with heat radiating fins 3 made of thin Al sheets on the outside surface. DC is conducted to the pipe 10 as a cathode and the electrode 14 as an anode by a DC power source 13 while the Cu plating liquid 9 in a plating cell 7 is circulated in the pipe 10 by a pump 12 and a connecting pipe 11. The plating liquid contg. copper sulfate and sulfuric acid and contg. 100mg/l polyethylene glycol as an oxyethylene surface active agent and 0.001X10<-3>-2.0X10<-3>mol/l chloride ion such as HCl is used for the plating liquid. The Cu plating layer having the tree plate-like ruggedness is formed on the inside surface of the pipe 10. Such pipe has excellent heat transfer effect when used for a heat exchanger in which gaseous freon is used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱交換器や、ヒートパイプに利用される、特に
液媒体を流動させる伝熱管に関する0従来の技術 熱交換部材に多孔質層を形成し、表面積の増大沸騰伝熱
の促進効果を計ることは一般に知られているが、伝熱管
内に多孔質層を形成することは焼結、溶射法では困難で
あるから通常はメッキ法を利用する。しかし、この様な
表面積を増大し沸騰伝熱の促進効果を計るために行うメ
ッキ法は、平滑メッキと異った条件で加工し、適度なポ
ーラス性と突起を有するメッキ層に仕上げる必要がある
0この様なメッキ層を形成する方法としては、通常の平
滑メッキを得るために必要な錯塩や、にかわ状物質、光
沢剤、結晶微粒子化のための添加剤等はメッキ液中に配
合しないか、極〈微量としたメッキ液を使用し、メッキ
条件としては一般的に高温で高電流密度で行ない、メッ
キ液は高速の流動攪拌を行うことにより形成される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to heat exchangers and heat pipes, in particular heat transfer tubes for flowing liquid media. It is generally known that increasing the surface area promotes boiling heat transfer, but it is difficult to form a porous layer inside the heat transfer tube using sintering or thermal spraying methods, so plating methods are usually used. . However, the plating method used to increase the surface area and measure the effect of promoting boiling heat transfer requires processing under conditions different from those for smooth plating, and it is necessary to finish the plating layer with appropriate porousness and protrusions. 0As for the method of forming such a plating layer, it is necessary to add complex salts, glue-like substances, brighteners, additives for making crystal fine particles, etc. necessary for obtaining normal smooth plating to the plating solution. The plating solution is formed by using a very small amount of plating solution, plating conditions generally at high temperature and high current density, and by performing high-speed fluid stirring.

発明が解決しようとする問題点 しかしながら、この様な条件で伝熱管内壁面等にメッキ
液を導入してもなかなか内部まで均一に多孔質状のメッ
キをすることができず、錯塩の少ない不安定なメッキ液
条件となっているため短時間に分解を起こし、量産性に
向かないばかりか、伝熱管パイプ壁面とメッキ層との密
着も不充分であり、液媒体の流動時及び振動や衝撃にて
メッキ層が剥離してしまう等の問題点があった。
Problems to be Solved by the Invention However, even if a plating solution is introduced to the inner wall surface of the heat transfer tube under these conditions, it is difficult to uniformly form a porous plating to the inside, and the plating is unstable due to the lack of complex salts. Because the plating solution conditions are such that it decomposes in a short time and is not suitable for mass production, the adhesion between the wall surface of the heat exchanger tube and the plating layer is insufficient, and it is susceptible to vibrations and shocks when the liquid medium flows. There were problems such as the plating layer peeling off.

本発明は、上記問題点に鑑み、均一にかつ密着性の優れ
た凸凹状のメッキ層を形成し表面積の増大した、沸騰伝
熱の促進効果が計れる伝熱壁面をもつ伝熱管を提供する
ものである。
In view of the above-mentioned problems, the present invention provides a heat transfer tube having a heat transfer wall surface that forms a uniform and highly adhesive uneven plating layer, increases the surface area, and is capable of promoting boiling heat transfer. It is.

問題点を解決するための手段 上記問題点を解決するために、本発明の伝熱管は、オキ
シエチレン系界面活性剤であるポリエチレングリコール
と、0.001 x 10−3rnol/flから2.
0x10−’mo17αの塩化物イオンを添加剤として
加えたメッキ液を用い、伝熱管側をカソードとし電気メ
ッキを施すことにより、伝熱管内壁面に凸凹のメッキ層
を形成させたものである。
Means for Solving the Problems In order to solve the above problems, the heat exchanger tube of the present invention contains polyethylene glycol, which is an oxyethylene surfactant, and 0.001 x 10-3 rnol/fl to 2.
An uneven plating layer is formed on the inner wall surface of the heat exchanger tube by electroplating using a plating solution containing chloride ions of 0x10-'mo17α as an additive and using the heat exchanger tube side as a cathode.

作  用 本発明は上記した構成によって、メッキ液中のオキ7工
チレン系界面活性剤であるポリエチレングリコールの分
子につかまえられて錯体化している金属イオンが、0 
、001 X 10 ””fno 11 /Ilカら2
 、OXl 0−’rnof1./fLの低濃度の塩化
物イオンの存在下で、塩化物イオンと不安定に結合し凸
凹のメッキ層を形成するのに働く0すなわち錯塩の少な
い不安定なメッキ液や過度な条件でのメッキ工法を必要
としないのでメッキ液の分解も少なく、メッキ層と伝熱
管壁面との密着も良好となり、前記凸凹のメッキ層が表
面積の増大と沸騰伝熱の促進効果をはかることができる
ものである。
Function The present invention has the above-described structure, so that the metal ions that are caught and complexed by the molecules of polyethylene glycol, which is an oxytyrene surfactant in the plating solution, are reduced to zero.
, 001
, OXl 0-'rnof1. In the presence of chloride ions at a low concentration of /fL, unstable plating solutions with low complex salts or plating under excessive conditions work by unstably bonding with chloride ions to form an uneven plating layer. Since no construction method is required, there is little decomposition of the plating solution, and the adhesion between the plating layer and the wall surface of the heat transfer tube is good, and the uneven plating layer can increase the surface area and promote boiling heat transfer. .

実施例 以下本発明の一実施例について、第1図から第4図を参
考にしながら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4.

1は銅パイプの伝熱管2とアルミニウムの薄片加工した
放熱フィン3とからなる熱交換器である。
Reference numeral 1 denotes a heat exchanger consisting of a heat exchanger tube 2 made of a copper pipe and a radiation fin 3 made of thin aluminum.

この伝熱管2の内壁面4には凸凹の銅メッキ層5が形成
されている。又、この伝熱管2の両端6a。
An uneven copper plating layer 5 is formed on the inner wall surface 4 of the heat exchanger tube 2. Also, both ends 6a of this heat exchanger tube 2.

6bはかしめ加工と溶接により完全にシールされ、内部
にフロンガスが封入されている。7はヒーター8により
温調可能なメッキ槽であり、メッキ液9が入れられであ
る。このメッキ液9としては、0.6moj!/J! 
Cu 5o4−5H20、0,5rnoll/It H
2SO4゜0.04x10  rnoX/X HCX及
び1oorny/j!  ポリエチレングリコールが含
まれている。また10は両端6a 、6bf封止する前
の銅パイプからなる伝熱管であり、連結管11と循環ポ
ンプ12を組み合わせることにより、メッキ液9を伝熱
管1゜の内部に循環させるようにしている0尚、すでに
放熱フィン3は伝熱管10を拡管することにより伝熱管
10の外周に固定されている。さらに連結管11には、
直流電源13に直結されているチタン棒に白金メッキし
た対極14と、対極14と逆の電荷を与えられる接続端
子15とが固定されている。伝熱管1oと連結管11と
を接続端子16で結合させた時、接続端子15と伝熱管
1oとの接触を防止するためにポリプロピレンでできた
不電導体のスペーサー16が挿入されている。又17は
メッキ液9に空気を吸き込むエアーポンプである。
6b is completely sealed by caulking and welding, and fluorocarbon gas is sealed inside. 7 is a plating tank whose temperature can be controlled by a heater 8, into which a plating solution 9 is placed. This plating solution 9 is 0.6 moj! /J!
Cu 5o4-5H20, 0,5rnol/It H
2SO4゜0.04x10 rnoX/X HCX and 1oorny/j! Contains polyethylene glycol. Reference numeral 10 denotes a heat exchanger tube made of a copper pipe before both ends 6a and 6b are sealed, and by combining a connecting tube 11 and a circulation pump 12, the plating solution 9 is circulated inside the heat exchanger tube 1°. Note that the heat radiation fins 3 have already been fixed to the outer periphery of the heat exchanger tube 10 by expanding the heat exchanger tube 10. Furthermore, in the connecting pipe 11,
A counter electrode 14 made of a platinum-plated titanium rod directly connected to a DC power source 13 and a connecting terminal 15 to which a charge opposite to that of the counter electrode 14 is applied are fixed. When the heat exchanger tube 1o and the connecting tube 11 are connected with the connection terminal 16, a spacer 16 made of a non-conductor made of polypropylene is inserted to prevent contact between the connection terminal 15 and the heat exchanger tube 1o. Further, 17 is an air pump that sucks air into the plating solution 9.

次にかかる構成での熱交換器の製造方法について説明す
る。
Next, a method for manufacturing a heat exchanger with such a configuration will be described.

まず、伝熱管1oと放熱フィン3とを定位置にて仮嵌合
しておき、伝熱管10f、所定の拡管機で拡管し、伝熱
管1oと放熱フィン3とを圧着させておく。次に、この
伝熱管10と連結管11と循環ポンプ12とを組み合わ
せ、メッキ槽7中のメッキ液9を伝熱管10の内部に循
環させる。この時、メッキ液9としては0 、6rno
X/fl CuSo4・5H20゜0.5moA/J!
 H2SO4,0,04x10 rnoX/ft HC
jl。
First, the heat exchanger tube 1o and the heat radiation fin 3 are temporarily fitted in a fixed position, and the heat exchanger tube 10f is expanded using a predetermined tube expanding machine, and the heat exchanger tube 1o and the heat radiation fin 3 are crimped together. Next, the heat transfer tube 10, the connecting tube 11, and the circulation pump 12 are combined to circulate the plating solution 9 in the plating bath 7 into the heat transfer tube 10. At this time, the plating solution 9 is 0,6rno
X/fl CuSo4・5H20゜0.5moA/J!
H2SO4,0,04x10 rnoX/ft HC
jl.

1009/nポリエチレングリコールを含む酸性硫酸銅
メッキ液を使用する。そこで、直流電源13によりチタ
ン棒に白金メッキを施した対極14に正の電荷をかけア
ノード側とし、一方の接続端子16には負の電荷をかけ
カソード側とする。この時の電流値は約200 mA/
crdとし約20分間通電する。又メッキ液の温度はメ
ッキ槽7のヒーター8により加熱され約50℃とした。
An acidic copper sulfate plating solution containing 1009/n polyethylene glycol is used. Therefore, the counter electrode 14, which is a titanium rod plated with platinum, is positively charged by the DC power source 13, making it the anode side, and one of the connecting terminals 16 is negatively charged, making it the cathode side. The current value at this time is approximately 200 mA/
Crd and turn on electricity for about 20 minutes. The temperature of the plating solution was heated to about 50° C. by the heater 8 of the plating tank 7.

ここで通常のメッキ液であれば、カソード側である伝熱
管10の内壁面全体に均一な厚みで銅が析出するが、メ
ッキ液9には、オキシエチレン系の界面活性剤であるポ
リエチレングリコールと低濃度の塩酸により生じる塩素
イオンとを有するために全体に均一な厚みの銅メッキ層
とはならず、凸凹の銅メッキ層6が形成されることにな
る。この理由としては、界面活性剤であるポリエチレン
グリコールの分子につかまえられ錯体化している銅イオ
ンが、低濃度の塩素イオンの存在下で塩素イオンと不安
定に結合するためである0特に、凸凹の銅メッキ層5の
形成においては、界面活性剤であるポリエチレング、リ
コール及び塩酸の濃度が重要な役割をはたしており、特
に塩酸の濃度は以下の範囲に規定する必要がある00塩
酸o、colxlo −’mo11./fl 〜2.O
X10−3rnoV1次に、伝熱管10の内壁を湯洗に
より洗浄し、乾燥した後フロンガスを内部に封入し、両
端6a。
If a normal plating solution is used, copper will be deposited in a uniform thickness on the entire inner wall surface of the heat exchanger tube 10 on the cathode side, but the plating solution 9 contains polyethylene glycol, which is an oxyethylene-based surfactant. Since the copper plating layer 6 contains chlorine ions produced by low concentration hydrochloric acid, the copper plating layer 6 does not have a uniform thickness over the entire surface, and the copper plating layer 6 is uneven. The reason for this is that copper ions, which are trapped and complexed by molecules of polyethylene glycol, a surfactant, combine unstablely with chlorine ions in the presence of low concentrations of chlorine ions. In the formation of the copper plating layer 5, the concentrations of surfactants polyethylene, recall, and hydrochloric acid play important roles, and in particular, the concentration of hydrochloric acid must be defined within the following range. 'mo11. /fl ~2. O
X10-3rnoV1 Next, the inner wall of the heat transfer tube 10 is washed with hot water, and after drying, Freon gas is sealed inside, and both ends 6a are sealed.

6biかしめ溶接することにより、伝熱管2と放熱フィ
ン3とを持つ熱交換器1が完成する。
By performing 6bi caulking welding, a heat exchanger 1 having heat transfer tubes 2 and radiation fins 3 is completed.

この様にして得られた熱交換器1は、メッキ液中の界面
活性剤である適量のポリエチレングリコール及び塩酸を
規定量加えているために伝熱管2の内壁面4に凸凹の銅
メッキ層6には、樹木状の銅メッキが密に形成されてお
り、表面積を増大させるばかりではなく、樹枝状の銅メ
ッキが密に形成されているため、凸凹の銅メッキ層6は
、沸騰伝熱の沸騰核となり、通常の針状の凸凹メッキに
比較して沸騰伝熱の促進効果を計ることができる〇又内
壁面4でフロンガスが液化した時、液体層が、凸凹の銅
メッキ層5の凸部にて粒滴となり、内壁面4から平滑面
よりも早く離れるために、厚い断熱層である液体層が形
成されないので、凝縮時の伝熱も促進されることになる
0すなわち、フロン液化ガスを封入し、蒸発、凝縮ヲ<
す返すヒートパイプの様な熱交換器1の伝熱効率を著し
く良くしたものが得られる0 又前記方法にて形成されたこの樹枝状の銅メッキが密に
形成された伝熱管2の内壁面4の凸凹の銅メッキ層5は
錯塩の少ない不安定なメッキ液や過度な条件でのメッキ
工法を必要としないのでメッキ液の分解も少なくその硬
度及び密着性はたいへん良好であり、常に安定した凸凹
の銅メッキ層6が形成される。
The heat exchanger 1 thus obtained has a copper plating layer 6 having an uneven surface on the inner wall surface 4 of the heat exchanger tube 2 due to the addition of a specified amount of polyethylene glycol and hydrochloric acid as surfactants in the plating solution. In addition to increasing the surface area, the uneven copper plating layer 6 has densely formed dendritic copper plating, which prevents boiling heat transfer. When the freon gas liquefies on the inner wall surface 4, the liquid layer forms a boiling nucleus, which promotes boiling heat transfer compared to ordinary needle-shaped uneven plating. Since the particles become droplets at the inner wall surface 4 and separate from the inner wall surface 4 faster than the smooth surface, a thick heat-insulating liquid layer is not formed, and heat transfer during condensation is also promoted. Enclose, evaporate and condense
The inner wall surface 4 of the heat exchanger tube 2 on which the dendritic copper plating formed by the above method is densely formed is obtained. The uneven copper plating layer 5 does not require an unstable plating solution with few complex salts or a plating method under excessive conditions, so there is little decomposition of the plating solution and its hardness and adhesion are very good, and the unevenness is always stable. A copper plating layer 6 is formed.

尚、本発明の実施例では凸凹のメッキ層5を形成させる
手段として、酸性硫酸銅メッキ液を使用したが、熱伝導
性の面で銅が有利であるものの他の金属メッキ液でも可
能であり銅メッキに限定するものではない。さらに塩酸
についてもN a Cftの様な塩化物でも可能であり
、メッキ液中で塩素イオンとして遊離する塩化物イオン
をすべて含むものである。但し塩素イオン濃度が2 、
Ox 10−3rnoR,711以上になると、メッキ
層が凸凹のメッキ層5とならず平たんなメッキ層となり
、又0.oo1x 10−5mOβ/J2未満になると
、凸凹のメッキ層5は形成されるがメッキの密度が疎に
なる。
In the embodiment of the present invention, an acidic copper sulfate plating solution was used as a means for forming the uneven plating layer 5, but although copper is advantageous in terms of thermal conductivity, other metal plating solutions may also be used. It is not limited to copper plating. Furthermore, as for hydrochloric acid, a chloride such as N a Cft can be used, and it contains all the chloride ions liberated as chloride ions in the plating solution. However, the chlorine ion concentration is 2,
When Ox 10-3 rnoR, 711 or more, the plating layer does not become an uneven plating layer 5, but becomes a flat plating layer, and 0. When oo1x is less than 10-5 mOβ/J2, an uneven plating layer 5 is formed, but the density of the plating becomes sparse.

発明の効果 以上のように本発明は、伝熱管壁面にオキシエチレン系
界面活性剤であるポリエチレングリコールと0.001
 X 10− ’ rnoIl、、/λから2.0X1
0−’man/nの塩化物イオンを添加剤として加えた
メッキ液により樹枝状の凸凹メッキ層を形成してなる伝
熱管であるから以下の効果が得られるものである。
Effects of the Invention As described above, the present invention provides polyethylene glycol, which is an oxyethylene surfactant, and 0.001%
X 10-'rnoIl,,/λ to 2.0X1
Since the heat exchanger tube is formed by forming a dendritic uneven plating layer using a plating solution containing chloride ions of 0-'man/n as an additive, the following effects can be obtained.

(al  伝熱管の内壁面の凸凹のメッキ層には、樹木
状のメッキが密に形成され、これが表面積を増大させる
ばかりではなく、樹枝状のメッキが密に形成されている
ため、前記凸凹のメッキ層は、ヒートパイプに用いたと
き沸騰伝熱の沸騰核となり、通常の針状の凸凹メッキに
比較して沸騰伝熱の促進効果を計ることができる。
(al) Tree-like plating is densely formed on the uneven plating layer on the inner wall surface of the heat exchanger tube, and this not only increases the surface area, but also because the dendritic plating is densely formed. When the plating layer is used in a heat pipe, it becomes a boiling nucleus for boiling heat transfer, and the effect of promoting boiling heat transfer can be measured compared to ordinary needle-like uneven plating.

(b)  凝縮時の熱伝達に関しても、ヒートパイプに
用いたとき伝熱管の内壁面でフロンガスが液化した場合
、液体層が凸凹メッキ層の凸部にて粒滴となり、内壁面
から平滑面よりも早く離れるために、厚い断熱層である
液体層が形成されないので、凝縮時の伝熱も促進される
ことになる0 (C)  伝熱管の゛内壁面に形成された凸凹のメッキ
層は、錯塩の少ない不安定なメッキ液や過度な条件での
メッキ工法を必要としないのでメッキ液の分解も少なく
その硬度及び密着性はたいへん良好であり、常に安定し
た凸凹のメッキ層が形成される。
(b) Regarding heat transfer during condensation, when fluorocarbon gas liquefies on the inner wall of the heat transfer tube when used in a heat pipe, the liquid layer becomes droplets on the convex parts of the uneven plating layer, and the liquid layer spreads from the inner wall to the smooth surface. Because they separate quickly, a thick insulating liquid layer is not formed, and heat transfer during condensation is promoted. (C) The uneven plating layer formed on the inner wall of the heat transfer tube is Since it does not require an unstable plating solution containing few complex salts or a plating method under excessive conditions, there is little decomposition of the plating solution, its hardness and adhesion are very good, and a stable uneven plating layer is always formed.

しかし、塩化物イオンの濃度が、0.001 X10−
 ’mo 171未満となると凸凹のメッキ層は形成さ
れるがメッキの密度が疎になり、又2.OX10一3m
oj!/n以上になるとメッキ層が凸凹のメッキ層とな
らず平たんなメッキ層になるため、塩素イオン濃度はo
、oolx 1o −’rno11./11〜2xi 
o −’moil/Itの範囲に規定する必要がある。
However, the concentration of chloride ions is 0.001
If the 'mo is less than 171, an uneven plating layer will be formed, but the density of the plating will be sparse; OX10-3m
oj! /n or more, the plating layer becomes a flat plating layer instead of an uneven plating layer, so the chlorine ion concentration becomes o.
, oolx 1o -'rno11. /11~2xi
It is necessary to specify the range of o -'moil/It.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す熱交換器の横断面図、
第2図は同熱交換器の縦断面図、第3図は同熱交換器の
斜視図、第4図は同メッキ装置の概略図である。 1・・・・・・熱交換器、2・・・・・・伝熱管、6・
・・用凸凹の銅メッキ層、9・・・・・・メッキ液、1
6・・・・・・対極。 代理人の氏名 弁理士 中 尾 敏 男 はが1名1°
”          9− jv”=’1i151.
対 楊
FIG. 1 is a cross-sectional view of a heat exchanger showing an embodiment of the present invention;
FIG. 2 is a longitudinal sectional view of the heat exchanger, FIG. 3 is a perspective view of the heat exchanger, and FIG. 4 is a schematic diagram of the plating apparatus. 1...Heat exchanger, 2...Heat transfer tube, 6.
...Rough copper plating layer, 9...Plating solution, 1
6... Opposite. Name of agent: Patent attorney Toshio Nakao Haga 1 person 1°
"9-jv"='1i151.
vs. Yang

Claims (1)

【特許請求の範囲】[Claims] 伝熱管壁面にオキシエチレン系界面活性剤であるポリエ
チレングリコールと、0.001×10^−^3mol
/lから2.0×10^−^3mol/lの塩化物イオ
ンを添加剤として加えたメッキ液により樹枝状の凸凹メ
ッキ層を形成してなる伝熱管の製造方法。
Polyethylene glycol, which is an oxyethylene surfactant, and 0.001 x 10^-^3 mol on the wall surface of the heat exchanger tube.
A method for manufacturing a heat exchanger tube in which a dendritic uneven plating layer is formed using a plating solution to which chloride ions of 2.0×10^-^3 mol/l are added as an additive.
JP60032149A 1985-02-20 1985-02-20 Heat transfer tube manufacturing method Expired - Lifetime JPH0633500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032149A JPH0633500B2 (en) 1985-02-20 1985-02-20 Heat transfer tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032149A JPH0633500B2 (en) 1985-02-20 1985-02-20 Heat transfer tube manufacturing method

Publications (2)

Publication Number Publication Date
JPS61190092A true JPS61190092A (en) 1986-08-23
JPH0633500B2 JPH0633500B2 (en) 1994-05-02

Family

ID=12350850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032149A Expired - Lifetime JPH0633500B2 (en) 1985-02-20 1985-02-20 Heat transfer tube manufacturing method

Country Status (1)

Country Link
JP (1) JPH0633500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422455B1 (en) * 2001-11-02 2004-03-11 엘지.필립스 엘시디 주식회사 Copper electroplating solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111025A (en) * 1974-07-19 1976-01-28 Sony Corp Nashijigaikano teisuru denkinitsukerumetsukiho
JPS5844319A (en) * 1981-09-09 1983-03-15 Canon Inc Scanning type weighing photometer for camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111025A (en) * 1974-07-19 1976-01-28 Sony Corp Nashijigaikano teisuru denkinitsukerumetsukiho
JPS5844319A (en) * 1981-09-09 1983-03-15 Canon Inc Scanning type weighing photometer for camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422455B1 (en) * 2001-11-02 2004-03-11 엘지.필립스 엘시디 주식회사 Copper electroplating solution

Also Published As

Publication number Publication date
JPH0633500B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4148294A (en) Solar collector panel and method of making
CN101421579A (en) Porous layer
JPS6376895A (en) Formation of porous layer on metal surface
US11274376B2 (en) Device for manufacturing hybrid metal foams
US4120994A (en) Method of preparing heat-transfer members
JPS61190092A (en) Manufacture of heat transfer pipe
CN103510132B (en) Efficient heat transfer nanometer copper material and preparation method thereof
US4659629A (en) Formation of a protective outer layer on magnesium alloys containing aluminum
JPS5948876B2 (en) Heat sink surface treatment method
JPS6210296A (en) Production of heat-transfer pipe
CN111020643A (en) Double-sided smooth copper foil and preparation method and device thereof
JPS61190087A (en) Manufacture of heat transfer pipe
US4311733A (en) Method of preparing a capillary heat-pipe wicking structure
JP2645425B2 (en) Heat transfer tube wall manufacturing method
JP2667146B2 (en) Heat exchanger manufacturing method
JPS6293039A (en) Plating method for heat transfer pipe
JPS61217594A (en) Formation of porous layer by plating
CN110894616B (en) High-density copper foil and preparation method thereof
JPS6293394A (en) Method for plating inner wall of heat exchanger tube
JPS61194193A (en) Plating method for inside wall of heat transmission pipe
JPS61291990A (en) Heat exchanger tube
JPS61270394A (en) Production of heat transmission pipe
JPS62180093A (en) Production of heat transmission member
JPS61291991A (en) Plating method for inside wall of heat transfer pipe
JPS6289892A (en) Production of heat exchanger