JPS61270393A - Plating method for inside wall of heat transmission pipe - Google Patents

Plating method for inside wall of heat transmission pipe

Info

Publication number
JPS61270393A
JPS61270393A JP60112439A JP11243985A JPS61270393A JP S61270393 A JPS61270393 A JP S61270393A JP 60112439 A JP60112439 A JP 60112439A JP 11243985 A JP11243985 A JP 11243985A JP S61270393 A JPS61270393 A JP S61270393A
Authority
JP
Japan
Prior art keywords
pipe
plating
heat exchanger
exchanger tube
heat transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60112439A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Hiroto Nakama
啓人 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP60112439A priority Critical patent/JPS61270393A/en
Publication of JPS61270393A publication Critical patent/JPS61270393A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To form a metallic plating layer having adequate dendrite ruggedness on the inside wall of a heat transmission pipe by using the wall surface of said pipe as a cathode side and pouring a plating liquid prepd. by adding an oxyethylene surface active agent and a low concn. of chloride as an additive to said liquid into the heat transmission pipe thereby plating the inside wall thereof. CONSTITUTION:The heat transmission pipe 10 and fins 3 are tentatively fitted to each other in a prescribed position. The pipe 10 and the fins 3 are press welded and fixed by expanding the pipe 10. The pipe 10, a connecting pipe 11 and a circulating pump 12 are then combined and the acidic copper sulfate plating liquid 9 added with the oxyethylene surface active agent and a low concn. of chloride in a plating cell 7 is circulated toward the side A in the pipe 10. Negative electric charge is thereupon applied to a counter electrode 15 of an iron bar from a DC power source and said electrode is used as the cathode side. Positive electric charge is applied to a connecting terminal 16 as the anode side. Since the terminal 16 and the pipe 10 conduct to each other, the pipe 10 has the positive charge and the inside wall of the pipe 10 is plated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱交換器や、ヒートパイプに利用される、特に
液媒体を流動させる伝熱管内壁面のメッキ方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of plating the inner wall surface of a heat exchanger tube used in a heat exchanger or a heat pipe, particularly in which a liquid medium flows.

従来の技術 熱交換部材に多孔質層を形成し、表面積を増大させ、ま
た、沸騰核としての働きによシ、伝熱効率を促進させる
ことは一般に良く知られている。
BACKGROUND OF THE INVENTION It is generally well known to form porous layers in heat exchange members to increase surface area and to act as boiling nuclei to promote heat transfer efficiency.

そζで、伝熱管内に多孔質層を形成することは、焼結法
や溶射法では困難で、伝熱管が熱により強度低下を来た
すため、通常はメッキ法が利用される。しかし従来この
様な表面積を増大し沸騰伝熱の促進効果をはかるために
行うメッキ層は、平滑メッキと違った条件で加工し、適
度なポーラス性と突起を有するメッキ層に仕上げる必要
がある。
Therefore, it is difficult to form a porous layer inside the heat exchanger tube by sintering or thermal spraying, and the strength of the heat exchanger tube decreases due to heat, so plating is usually used. However, the plating layer conventionally used to increase the surface area and promote boiling heat transfer needs to be processed under conditions different from those for smooth plating, and finished into a plating layer with appropriate porousness and protrusions.

それゆえに、この様なメッキ層を形成する方法としては
、通常の平滑メッキを得るために必要な錯塩や、釦かわ
状物質、光沢剤、結晶微粒子化のための添加剤などはメ
ッキ液中に配合しないか、極ぐ微量としたメッキ液を使
用し、メッキ条件としては例えば特公昭57−3231
9号公報の様に高温で高電流密度で行なうか、特公昭6
5−41312号公報の様にメッキ液を高速の流動攪拌
し行うことにより形成される。
Therefore, as a method for forming such a plating layer, complex salts, button glue, brightening agents, additives for making crystal particles, etc. necessary for obtaining normal smooth plating are added to the plating solution. The plating solution is either not mixed or used in a very small amount, and the plating conditions are, for example,
Either it is carried out at high temperature and high current density as in Publication No. 9, or
It is formed by stirring a plating solution in high-speed fluidization as disclosed in Japanese Patent No. 5-41312.

発明が解決しようとする問題点 しかしながら、この様な条件で伝熱管内壁面等にメッキ
液を導入しても、高温で高電流で行うと、メッキ液が不
安定な状態であるため、メッキ液入口部、および、電極
間間隔が比較的小さい個所に極部的に金属が析出するな
ど、仲々内部まで均一に多孔質状のメッキをすることが
できず、また、錯塩の少ない不安定なメッキ浴組成とな
っているため短時間にて分解を起こし、量産性に向かな
いばかりか、伝熱管内壁面とメッキ層との密着も不充分
であり、液媒体の流動時および外部からの振動や衝撃に
てメッキ層が剥離してしまうなどの欠陥があった。さら
に伝熱管内部のメッキ処理の場合、高電流を流すと、ア
ノード側よシネ安定な1価の銅イオンが多量に生成され
るため、粉状の銅が析出し、密着性が悪くやわらかいメ
ッキ層となる問題点があった。
Problems to be Solved by the Invention However, even if the plating solution is introduced onto the inner wall surface of the heat transfer tube under these conditions, the plating solution will be unstable if carried out at high temperature and high current. Porous plating cannot be achieved uniformly all the way to the inside, such as metal precipitating locally at the entrance and in areas where the spacing between electrodes is relatively small, and unstable plating with few complex salts. Due to the bath composition, it decomposes in a short period of time, making it unsuitable for mass production.In addition, the adhesion between the inner wall surface of the heat transfer tube and the plating layer is insufficient, and it is susceptible to external vibrations and vibrations when the liquid medium flows. There were defects such as the plating layer peeling off due to impact. Furthermore, when plating the inside of a heat transfer tube, when a high current is applied, a large amount of monovalent copper ions, which are more stable on the anode side, are generated, resulting in the precipitation of powdered copper, resulting in poor adhesion and a soft plating layer. There was a problem.

本発明は上記問題点に鑑み、均一にかつ密着性の優れた
凹凸状のメッキ層を形成し、さらに凹凸状の形状をコン
トロールすることで、表面積の増大した、沸騰伝熱の促
進効果がはかれる伝熱壁面をもつ伝熱管を提供するもの
である。
In view of the above problems, the present invention forms an uneven plating layer with uniformity and excellent adhesion, and further controls the uneven shape, thereby increasing the surface area and promoting boiling heat transfer. A heat transfer tube having a heat transfer wall surface is provided.

問題点を解決するための手段 上記問題点を解決するだめに、本発明の伝熱管は、メッ
キ液中にオキシエチレン系界面活性剤と適度な濃度の塩
化物イオンを介在させ、伝熱管壁面をカソード側とし、
伝熱管内に前記メッキ液を流し込みメッキするもので、
対極に固定された螺線状の絶縁物にてメッキ液の流れを
うずまき状にし、伝熱管壁面に適切な樹枝状の凹凸の金
属メッキ層を形成するものである。
Means for Solving the Problems In order to solve the above problems, the heat exchanger tube of the present invention has an oxyethylene surfactant and an appropriate concentration of chloride ions interposed in the plating solution to coat the wall surface of the heat exchanger tube. As the cathode side,
Plating is performed by pouring the plating solution into the heat exchanger tube,
A spiral insulator fixed to the counter electrode causes the flow of the plating solution to spiral, thereby forming a metal plating layer with appropriate dendritic irregularities on the wall surface of the heat exchanger tube.

作  用 本発明は上記した構成によって、メッキ液中のオキシエ
チレン系界面活性剤が、金属イオンと錯体を作り、塩化
物イオンが適度な凹凸状を形成するのに働く。またメッ
キ液の流れが伝熱管長手方向に沿って一定になると、樹
枝状の凹凸の金属メッキの先端部が、メッキ液の流れ方
向にそろうため、熱交換器として使用された時、冷媒の
流れを適確に疎外し伝熱効果を充分に発揮することがで
きない。そこで、メッキ途中にて流れを強制的に変化さ
せることにより、樹枝状の凹凸の金属メッキ層のスジが
螺線状に形成される様にし、伝熱効率を向上した凹凸の
金属メッキ層となる。
Function According to the present invention, the oxyethylene surfactant in the plating solution forms a complex with metal ions, and the chloride ions work to form an appropriate unevenness. In addition, when the flow of the plating solution becomes constant along the longitudinal direction of the heat transfer tube, the tips of the metal plating with dendritic irregularities align in the flow direction of the plating solution, so when used as a heat exchanger, the refrigerant flow It is not possible to properly alienate and fully exhibit the heat transfer effect. Therefore, by forcibly changing the flow during plating, the streaks of the dendritic uneven metal plating layer are formed in a spiral shape, resulting in an uneven metal plating layer with improved heat transfer efficiency.

すなわち錯塩の少ない不安定なメッキ液や過度々条件で
のメッキ工法を必要としないので、伝熱管内壁面に均一
に凹凸状のメッキ層が形成し、メッキ層と伝熱管壁面と
の密着性も良好となり、オキシエチレン系界面活性剤と
金属イオンとが錯塩を形成するのでメッキ液の分解も少
なく、安定した状態で、リエントラントな樹枝状の凹凸
金属メッキ層を形成するので、表面積の増大と沸騰伝熱
の促進効果を計ることができることとなる。
In other words, since there is no need for an unstable plating solution containing few complex salts or a plating method under excessively harsh conditions, a uniformly uneven plating layer is formed on the inner wall surface of the heat transfer tube, and the adhesion between the plating layer and the wall surface of the heat transfer tube is improved. Since the oxyethylene surfactant and metal ions form a complex salt, there is little decomposition of the plating solution, and a reentrant dendritic uneven metal plating layer is formed in a stable state, increasing the surface area and preventing boiling. This makes it possible to measure the effect of promoting heat transfer.

実施例 以下本発明の一実施例について、第1図から第7図を参
考にしながら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 7.

1は銅パイプの伝熱管2とアルミニウムの薄片加工した
放熱フィン3とからなる熱交換器であるこの伝熱管2の
内壁面4には樹枝状の凹凸の銅メッキ層6が螺線状に形
成されている。また、この伝熱管2の両端ea、ebは
かしめ加工と溶接により完全にシールされ、内部にはフ
ロン等の冷媒が封入されている。
1 is a heat exchanger consisting of a heat exchanger tube 2 made of a copper pipe and a heat dissipation fin 3 made of a thin piece of aluminum.A copper plating layer 6 having dendritic irregularities is formed in a spiral shape on the inner wall surface 4 of the heat exchanger tube 2. has been done. Further, both ends ea and eb of this heat transfer tube 2 are completely sealed by caulking and welding, and a refrigerant such as fluorocarbon is sealed inside.

7はヒーター8により温調可能なメッキ槽であり、メッ
キ液9が入れられである。このメッキ液9としては15
0 y /gcuso4−5H20と60g/gH2S
O4,o=osg/clポリオキシエチレンオレイルエ
ーテル、および0.3ミIJモルの塩酸を加えた酸性硫
酸銅メッキ液を使用する。
7 is a plating tank whose temperature can be controlled by a heater 8, into which a plating solution 9 is placed. This plating solution 9 is 15
0 y/gcuso4-5H20 and 60g/gH2S
An acidic copper sulfate plating solution with O4, o = osg/cl polyoxyethylene oleyl ether and 0.3 mmol of hydrochloric acid is used.

また10は両端6a、6bを封止する前の銅パイプの伝
熱管でアリ、連結管11と循環ポンプ12とを組み合わ
せることにより、メッキ液9を伝熱管10の内部に循環
させる様にしている。尚、すでに放熱フィン3は伝熱管
10を拡管することによ)伝熱管10の外周に固定され
ている。また連結管11には、切り替えスイッチ13を
介在して直流電源14に直結されている銅棒の対極16
と、5  対極16と逆の電荷を与えられる接続端子1
6とが固定されている。対極16の連結管14への固定
方法としては、対極15の中心を伝熱管1oの中心にす
るため、サイコロ状のリング17をナツトにて締め付け
る様にして、シールおよび固定を行う。また伝熱管1o
と連結管11とを接続端子1eで結合させた時、接続端
子16と伝熱管とが導電することとなる。尚、対極16
には伝熱管10との接触を防止するため一定の間隙18
をもたせメッキ液9の流れを螺線状にするために、螺線
状のポリプロピレンでできた不電導体のスペーサー19
が挿入されている。
Further, reference numeral 10 denotes a heat transfer tube made of a copper pipe before both ends 6a and 6b are sealed. By combining a connecting tube 11 and a circulation pump 12, the plating solution 9 is circulated inside the heat transfer tube 10. . Note that the heat radiation fins 3 have already been fixed to the outer periphery of the heat exchanger tube 10 (by expanding the heat exchanger tube 10). In addition, the connecting pipe 11 has a counter electrode 16 of a copper rod that is directly connected to the DC power source 14 via the changeover switch 13.
, 5 Connection terminal 1 that is given an opposite charge to the counter electrode 16
6 is fixed. The counter electrode 16 is fixed to the connecting tube 14 by tightening a dice-shaped ring 17 with a nut so that the center of the counter electrode 15 is the center of the heat exchanger tube 1o for sealing and fixing. Also, heat exchanger tube 1o
When the connecting tube 11 is connected to the connecting terminal 1e, the connecting terminal 16 and the heat exchanger tube become electrically conductive. Furthermore, the opposite pole 16
is provided with a certain gap 18 to prevent contact with the heat exchanger tube 10.
In order to maintain the flow of the plating solution 9 in a spiral shape, a non-conductive spacer 19 made of spiral polypropylene is used.
is inserted.

さらに2oはメッキ液9に空気をふき込むエアーポンプ
である。
Furthermore, 2o is an air pump for blowing air into the plating solution 9.

次にかかる構成での熱交換器の製造方法について説明す
る。
Next, a method for manufacturing a heat exchanger with such a configuration will be described.

まず、伝熱管1oと放熱フィン3とを所定位置にて仮嵌
合しておき、伝熱管10を所定の拡管機で拡管し、伝熱
管10と放熱フィン3とを圧着固定させておく。次にこ
の伝熱管10と連結管11と循環ポンプ12とを組み合
わせ、メッキ槽7中のメッキ液9を伝熱管10の内部に
上部より(図中入方向)循環させる。この時、メッキ液
としては150g/llCuS041I6H2o、60
g/1H2S04゜0.05g/l  ポリオキシエチ
レンオレイルエーテル、および0.3 ミリモルの塩酸
を加えた酸性硫酸銅メッキ液を使用する。
First, the heat exchanger tube 1o and the heat radiation fin 3 are temporarily fitted at a predetermined position, the heat exchanger tube 10 is expanded using a predetermined tube expander, and the heat exchanger tube 10 and the heat radiation fin 3 are crimped and fixed. Next, the heat exchanger tube 10, the connecting tube 11, and the circulation pump 12 are combined, and the plating solution 9 in the plating bath 7 is circulated inside the heat exchanger tube 10 from above (in the direction into the figure). At this time, the plating solution was 150 g/ll CuS041I6H2o, 60
g/1H2S04° An acidic copper sulfate plating solution containing 0.05 g/l polyoxyethylene oleyl ether and 0.3 mmol of hydrochloric acid is used.

そこで、まず直流電源よシ銅棒の対極16に負の電荷を
かけカソード側とし、片や、接続端子1eには正の電荷
をかけアノード側とする。この時の電流値は約1o o
 mA/crti  とし約1分間通電する。
Therefore, first, a negative charge is applied to the counter electrode 16 of the copper rod of the DC power source to make it the cathode side, and a positive charge is applied to the other end or the connecting terminal 1e to make it the anode side. The current value at this time is approximately 1 o
Turn on the current at mA/crti for about 1 minute.

すなわち接続端子16と伝熱管1oとが導通しているの
で伝熱管10が正の電荷をもつことになり、伝熱管10
の内壁面の表面層の銅が電解によシ溶出され電解研摩さ
れその后メッキされるメッキ層との密着性を向上させる
ことになる。
That is, since the connection terminal 16 and the heat exchanger tube 1o are electrically connected, the heat exchanger tube 10 has a positive charge, and the heat exchanger tube 10
Copper on the surface layer of the inner wall surface of the plate is electrolytically eluted and electrolytically polished to improve adhesion to the plating layer that is subsequently plated.

次に切替スイッチ13によシ、正と負の電荷を逆に切替
える。すなわち対極16側をアノード側とし、接続端子
16及び伝熱管1o側をカソード側とする。
Next, the changeover switch 13 is used to reverse the positive and negative charges. That is, the counter electrode 16 side is made into an anode side, and the connection terminal 16 and heat exchanger tube 1o side are made into a cathode side.

よって、前記工程とは逆に、対極15の銅棒より銅がメ
ッキ液9中に溶解し、伝熱管1oの内壁面にメッキ液e
中の銅イオンが銅として析出することになる。この時の
電流値も約100 mA/cniで、時間は約10分間
とした。またメッキ液9の温度はメッキ槽7のヒーター
8により加熱し、約60℃とした。
Therefore, contrary to the above process, copper is dissolved in the plating solution 9 from the copper rod of the counter electrode 15, and the plating solution e is applied to the inner wall surface of the heat exchanger tube 1o.
The copper ions inside will precipitate as copper. The current value at this time was also about 100 mA/cni, and the time was about 10 minutes. Further, the temperature of the plating solution 9 was heated to about 60° C. by the heater 8 of the plating tank 7.

ここで、通常のメッキ液であれば、伝熱管10内壁面面
全体に均一な厚みで銅が析出するが、メッキ液9には、
オキシエチレン系の界面活性剤であるポリオキシエチレ
ンオレイルエーテルと、0、3 ミIJモルという低濃
度の塩酸により生じる塩素イオンとを有するため、全体
に均一な厚みの銅メッキ層とはならず、樹枝状の凹凸の
銅メッキ層6が形成されることになる。この理由は、ポ
リオキシエチレンオレイルエーテルと1価の銅イオンと
が錯体を形成しポリカチオンとなり、通常光沢剤として
働く塩素イオンが低濃度であるため、カソード反応を不
安定に抑制するためである。またこの様な樹枝状の凹凸
メッキ層6はメッキ液9の流れに沿って成長する特性を
もつ(第6図の状態)。すなわち、伝熱管10の長手方
向に沿ったメッキ液9の流れのままでは、熱交換器1と
して使用された時、冷媒の流れを適切に疎外し得る凹凸
状のメッキ形状としては不充分である。そこで、本発明
の様に、対極15に螺線状のポリプロピレン樹艙ででき
た不能体のスペーサー19を固定しておくと、メッキ液
9の伝熱管1o内の流れは螺線状に沿ったものとなり、
伝熱管10内に形成する樹枝状の凹凸メッキ層5は螺線
状となる(第7図の状態〕。この様に樹枝状の凹凸メッ
キ層5を螺線状にすることによシ、冷媒強制循環型の熱
交換器で、伝熱管2の長手方向に流れる冷媒を適切に疎
外することになるので、伝熱効率の向上が計ることがで
きる。この様にして得られた銅メッキ層6は凹凸の高さ
の差が約100μmのものとなる。
Here, if a normal plating solution is used, copper will be deposited with a uniform thickness on the entire inner wall surface of the heat exchanger tube 10, but in the plating solution 9, copper will be deposited with a uniform thickness.
Because it contains polyoxyethylene oleyl ether, an oxyethylene surfactant, and chlorine ions generated by hydrochloric acid at a low concentration of 0.3 μIJmol, the copper plating layer does not have a uniform thickness throughout. A copper plating layer 6 having dendritic irregularities is formed. The reason for this is that polyoxyethylene oleyl ether and monovalent copper ions form a complex and become polycations, and the low concentration of chlorine ions that normally act as brighteners suppresses the cathode reaction in an unstable manner. . Further, such a dendritic uneven plating layer 6 has a characteristic of growing along the flow of the plating solution 9 (the state shown in FIG. 6). In other words, the flow of the plating liquid 9 along the longitudinal direction of the heat exchanger tube 10 is insufficient to form an uneven plating shape that can appropriately restrict the flow of refrigerant when used as the heat exchanger 1. . Therefore, if the spacer 19 made of a spiral polypropylene tree is fixed to the counter electrode 15 as in the present invention, the flow of the plating solution 9 in the heat transfer tube 1o will follow the spiral shape. Become a thing,
The dendritic uneven plating layer 5 formed in the heat exchanger tube 10 has a spiral shape (the state shown in FIG. 7).By making the dendritic uneven plating layer 5 into a spiral shape in this way, the refrigerant Since the forced circulation type heat exchanger appropriately dissipates the refrigerant flowing in the longitudinal direction of the heat transfer tubes 2, it is possible to improve the heat transfer efficiency.The copper plating layer 6 obtained in this way is The difference in height between the unevenness is approximately 100 μm.

次に、伝熱管1oの内壁を湯洗により洗浄し、乾燥した
のち、フロンガスを内部に封入し、両端6a、6bをか
しめ溶接することによシ、伝熱管2と放熱フィン3とを
もつ熱交換器1が完成する。
Next, the inner wall of the heat exchanger tube 1o is washed with hot water and dried, after which a fluorocarbon gas is sealed inside and both ends 6a and 6b are caulked and welded. Exchanger 1 is completed.

この様にして得られた熱交換器1は伝熱管2の内壁面4
の樹枝状の凹凸のメッキ層6が、表面積を増大させる効
果と共に、沸騰伝熱の促進効果を計るだけではなく、内
壁面4でフロンガスが液化した時、液体層が、メッキ層
5の凸部にて粒滴となシ、内壁面4から平滑面よりも早
く離れるため断熱層である液体層が形成され難いので、
凝縮時の伝熱も促進されることにもなる。すなわち、フ
ロン液化ガスを封入し、気化、凝縮を繰り返すヒートパ
イプの様な熱交換器1の伝熱効率を蓄しく良くしたもの
が得られる。
The heat exchanger 1 obtained in this way has the inner wall surface 4 of the heat exchanger tube 2.
The plating layer 6 with dendritic irregularities not only increases the surface area and promotes boiling heat transfer, but also when the fluorocarbon gas liquefies on the inner wall surface 4, the liquid layer 6 Since the droplets leave the inner wall surface 4 faster than the smooth surface, it is difficult to form a liquid layer as a heat insulating layer.
Heat transfer during condensation is also promoted. That is, the heat exchanger 1, which is like a heat pipe in which liquefied fluorocarbon gas is sealed and repeats vaporization and condensation, has a significantly improved heat transfer efficiency.

尚、本発明の実施例では樹枝状の凹凸メッキ層を形成さ
せる手段として酸性硫酸銅メッキ液を使用したが、熱伝
導性の面で銅系が有利であるものの、他の金属メッキ液
でも可能であり、銅メッキに限定するものではない。ま
た界面活性剤としてポリオキシエチレンオレイルエーテ
ルを使用したが、ポリエチレングリコールや、ポリオキ
シエチレンノリルフェニルエーテル等のオキシエチレン
系界面活性剤をすべて含むものである。また塩素イオン
の添加剤としては塩酸以外にも塩化ナトリウムの様な塩
化物でも可能でちゃ、メッキ液中で塩素イオンとして遊
離する塩化物をすべて含むものである。ただし塩素イオ
ン濃度が1ミリモル以上になると錯体化している銅イオ
ンとの結合が安定化するため、全体に均一な厚みで銅が
析出する。
In the examples of the present invention, an acidic copper sulfate plating solution was used as a means to form a dendritic uneven plating layer, but although copper-based plating solutions are advantageous in terms of thermal conductivity, other metal plating solutions can also be used. However, it is not limited to copper plating. Although polyoxyethylene oleyl ether was used as a surfactant, it includes all oxyethylene surfactants such as polyethylene glycol and polyoxyethylene noryl phenyl ether. In addition to hydrochloric acid, chloride such as sodium chloride can be used as the chloride ion additive, and the additive includes all chlorides that are liberated as chloride ions in the plating solution. However, when the chlorine ion concentration becomes 1 mmol or more, the bond with the complexed copper ion becomes stable, so that copper is deposited with a uniform thickness over the entire surface.

よって、塩素イオン濃度は低濃度である1ミリモル以下
にしておく必要がある。
Therefore, the chlorine ion concentration must be kept at a low concentration of 1 mmol or less.

発明の効果 以上のように本発明は、伝熱管壁面にオキシエチレン系
界面活性剤と、低濃度の塩化物イオンを添加剤として加
えたメッキ液を流し込み、その流れを対極に固定したス
ペーサーにより、うずまき流にすることにより、樹枝状
の凹凸の金属メッキ層を形成させるもので、安価で、量
産可能なメッキ条件で塩素イオン濃度と、メッキ液温度
電流密度、メッキ時間、および、流れの切シ替え等の管
理により凹凸の形状を安定化し、かつ密着性の優れた凹
凸のメッキ層を伝熱管内に螺線状に形成させたもので、
表面積を増大し、沸騰伝熱の促進効果が計られ、さらに
凝縮における伝熱効率を促進させる効果もあシ、容易に
高効率の伝熱管壁面を形成することができる。
Effects of the Invention As described above, the present invention allows a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions to be poured onto the wall surface of a heat transfer tube, and a spacer fixed to the opposite electrode to direct the flow. By creating a spiral flow, a metal plating layer with dendritic irregularities is formed.It is inexpensive and can be mass-produced by controlling the chlorine ion concentration, plating solution temperature, current density, plating time, and flow cutoff. The shape of the unevenness is stabilized through maintenance such as replacement, and an uneven plating layer with excellent adhesion is formed in a spiral shape inside the heat transfer tube.
It increases the surface area, has the effect of promoting boiling heat transfer, and also has the effect of promoting heat transfer efficiency in condensation, making it possible to easily form a highly efficient heat transfer tube wall surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す螺線状の絶縁物スペー
サーを取付けた対極の斜視図、第2図は同メッキ装置の
概略断面図、第3図は同熱交換器の横断面図、第4図は
同熱交換器の縦断面図、第6図は同熱交換器の斜視図、
第6図は螺線状の絶縁物スペーサーを入れない時形成す
る凹凸金属メッキ層を示す斜視図、第7図は本発明の凹
凸金属メッキ層を示す斜視図である。 2.1o・・・・・・伝熱管、5・・・・・・樹枝状の
凹凸金属メッキ層、9・・・・・・メッキ液、15・・
・・・・対極、18・・・・・・間R,19・・・・・
・スペーサー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図           15・・・り、を極/9
・・・ スベ−°す′−
Fig. 1 is a perspective view of a counter electrode equipped with a spiral insulating spacer according to an embodiment of the present invention, Fig. 2 is a schematic cross-sectional view of the plating equipment, and Fig. 3 is a cross-sectional view of the heat exchanger. Figure 4 is a longitudinal sectional view of the heat exchanger, Figure 6 is a perspective view of the heat exchanger,
FIG. 6 is a perspective view showing an uneven metal plating layer formed without a spiral insulating spacer, and FIG. 7 is a perspective view showing an uneven metal plating layer of the present invention. 2.1o... Heat exchanger tube, 5... Dendritic uneven metal plating layer, 9... Plating solution, 15...
...Counter electrode, 18...... R, 19...
·spacer. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 15... Ri, pole/9
・・・ Sube-°su'-

Claims (1)

【特許請求の範囲】[Claims] 伝熱管をカソード側とし、この伝熱管と一定の間隙をも
つ様に設けられた対極をアノード側とし、前記間隙にオ
キシエチレン系界面活性剤と低濃度の塩化物イオンを添
加剤として加えた硫酸銅溶液のメッキ液を流し込み、伝
熱管内壁に凹凸の金属メッキ層を形成させるものであっ
て、前記対極に螺線状の絶縁物のスペーサーを取付けた
ことを特徴とする伝熱管内壁のメッキ方法。
The heat exchanger tube is used as the cathode side, the counter electrode provided with a certain gap from the heat exchanger tube is used as the anode side, and sulfuric acid containing an oxyethylene surfactant and a low concentration of chloride ions as additives is placed in the gap. A method for plating the inner wall of a heat exchanger tube, which comprises pouring a copper solution plating solution to form an uneven metal plating layer on the inner wall of the heat exchanger tube, the method comprising: attaching a spiral insulating spacer to the counter electrode. .
JP60112439A 1985-05-24 1985-05-24 Plating method for inside wall of heat transmission pipe Pending JPS61270393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60112439A JPS61270393A (en) 1985-05-24 1985-05-24 Plating method for inside wall of heat transmission pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112439A JPS61270393A (en) 1985-05-24 1985-05-24 Plating method for inside wall of heat transmission pipe

Publications (1)

Publication Number Publication Date
JPS61270393A true JPS61270393A (en) 1986-11-29

Family

ID=14586655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112439A Pending JPS61270393A (en) 1985-05-24 1985-05-24 Plating method for inside wall of heat transmission pipe

Country Status (1)

Country Link
JP (1) JPS61270393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206382A (en) * 1986-03-06 1987-09-10 Mitsubishi Metal Corp Heat pipe
JP2011047598A (en) * 2009-08-27 2011-03-10 Kawamura Sangyo Kk Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206382A (en) * 1986-03-06 1987-09-10 Mitsubishi Metal Corp Heat pipe
JP2011047598A (en) * 2009-08-27 2011-03-10 Kawamura Sangyo Kk Cooling device

Similar Documents

Publication Publication Date Title
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
EP0198978B1 (en) Formation of an adherent metal deposit on an exposed surface of an electrically-conducting ceramic
KR100419952B1 (en) Battery sheath made of a formed cold-rolled sheet and method for producing battery sheaths
CN106906495B (en) Pb-ag alloy composite anode plate of aluminium base and preparation method thereof
JPS61270393A (en) Plating method for inside wall of heat transmission pipe
JP2667146B2 (en) Heat exchanger manufacturing method
JPS61194193A (en) Plating method for inside wall of heat transmission pipe
CN111101153A (en) Composite anode plate for copper electrodeposition and preparation method thereof
JPS61291991A (en) Plating method for inside wall of heat transfer pipe
JPS6210296A (en) Production of heat-transfer pipe
JPS6131891A (en) Heat transfer tube
JPS6260890A (en) Device for plating inner wall of heat-transfer pipe
JPS61270394A (en) Production of heat transmission pipe
JPS61190087A (en) Manufacture of heat transfer pipe
JPS61201796A (en) Manufacture of wall surface of heat exchanger tube
JPS61291990A (en) Heat exchanger tube
JPS6293394A (en) Method for plating inner wall of heat exchanger tube
JPS6293039A (en) Plating method for heat transfer pipe
JPS6289891A (en) Production of heat exchanger
JPS62185897A (en) Production of heat transfer member
JPS61217594A (en) Formation of porous layer by plating
US1403903A (en) Electroplating carbon articles
JPS6289892A (en) Production of heat exchanger
JPH0633500B2 (en) Heat transfer tube manufacturing method
JPS61190088A (en) Manufacture of heat transfer pipe