JPS61198677A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS61198677A
JPS61198677A JP60250514A JP25051485A JPS61198677A JP S61198677 A JPS61198677 A JP S61198677A JP 60250514 A JP60250514 A JP 60250514A JP 25051485 A JP25051485 A JP 25051485A JP S61198677 A JPS61198677 A JP S61198677A
Authority
JP
Japan
Prior art keywords
charge
transfer
electrode
input
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60250514A
Other languages
Japanese (ja)
Other versions
JPH0255942B2 (en
Inventor
Mikio Kamata
幹夫 鎌田
Yoshimi Hirata
芳美 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60250514A priority Critical patent/JPS61198677A/en
Publication of JPS61198677A publication Critical patent/JPS61198677A/en
Publication of JPH0255942B2 publication Critical patent/JPH0255942B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76866Surface Channel CCD
    • H01L29/76883Three-Phase CCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enable uniform fat zero to be introduced into a two-phase CCD charge transfer device by implanting a charge QA' into the bits of each register by the so-called CCD transfer, and then pushing up the potential to cause excess charges to be emitted into the substrate, thereby making the remaining bias charges to fat zero. CONSTITUTION:A plurality of transfer electrodes 3 are arranged and formed along charge transfer direction (a) on one surface of a P-type silicon substrate 1 through a gate insulation film 2 composed of SiO2 or the like, whereby a CCD transfer portion also acting as a photo detector portion is constructed. The respective transfer electrodes 3 are alternately connected in common and applied with clock voltages phi1 and phi2, respectively. In order to introduce fat zero, within the vertical blanking period, a first gate voltage G1 and a second gate voltage G2 are simultaneously applied to a first input gate electrode 7 and a second input gate electrode 8, respectively, and a charge of a quantity somewhat greater than the quantity of the bias charge of fat zero is sequentially introduced from the diffusion layer of the input portion applied with an input voltage VIN to below the next electrode to receive light.

Description

【発明の詳細な説明】 本発明は、固体撮像素子に通用して好適な2相CCD電
荷転送装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-phase CCD charge transfer device suitable for use in solid-state imaging devices.

フレームトランスファ方式の表面チャンネル型COD固
体撮像素子においては、界面準位の影響を少なくするた
めにファツト・ゼロと呼ばれるバイアス電荷を導入する
ことにより転送効率の良い状態で動作させることができ
る。しかるに、イメージ部の各ビットに均一にファント
・ゼロを入れることは難かしく、不均一の場合には線状
の固定パターンノイズとなって表われる。このため、従
来例えば第1図に示す如く、入力に拡散層を設けて之か
ら電気的にバイアス電荷を導入するようにした電荷転送
装置が提案されている。第1図Aは、3層CCDによる
フレームトランスファ方式の固体撮像素子のイメージ部
に例をとった場合で、第1導電形例えばP形のシリコン
基体(1)の−面上に5i02等からなるゲート絶縁膜
(2)を介して複数の転送電極(3)が電荷転送方向a
に沿って配列形成されて受光領域を兼ねる転送部が構成
され、各転送電極(3)が3つ置きに共通接続されて夫
々に3相の転送り口7り電圧φ1.φ2及びφ3が印加
されるようになされ、又基体(1)にN十形の拡散層(
4)による入力部が設けられ、この入力部と転送部間に
ゲート絶縁膜(2)を介して入力ゲート電極(5)を形
成した入力ゲート部が設けられる。そしてファント・ゼ
ロなるバイアス電荷を導入するには、先ず第1図Aに示
す如く全ての転送電極(3)をオン状態となし、ゲート
電圧φIGにより入力ゲート部を開いて入力電圧VIN
の与えられた拡散層(4)から全ての転送電極(3)下
に必要以上の電荷QAを注入する。
In a frame transfer type surface channel type COD solid-state imaging device, it is possible to operate the device with high transfer efficiency by introducing a bias charge called a fat zero in order to reduce the influence of interface states. However, it is difficult to uniformly insert the phantom zeros into each bit of the image portion, and if the fant zeros are not uniformly inserted, linear fixed pattern noise appears. For this reason, a charge transfer device has been proposed, for example, as shown in FIG. 1, in which a diffusion layer is provided at the input and bias charges are electrically introduced therefrom. FIG. 1A shows an example of an image section of a frame transfer type solid-state image pickup device using a three-layer CCD. A plurality of transfer electrodes (3) are arranged in charge transfer direction a via a gate insulating film (2).
A transfer section that also serves as a light receiving area is constructed by being arranged along the lines, and every third transfer electrode (3) is commonly connected to each other to receive a three-phase transfer port 7 voltage φ1. φ2 and φ3 are applied, and an N-shaped diffusion layer (
4) is provided, and an input gate section is provided in which an input gate electrode (5) is formed between the input section and the transfer section with a gate insulating film (2) interposed therebetween. To introduce a bias charge called a fant zero, first turn on all the transfer electrodes (3) as shown in FIG.
More charge QA than necessary is injected from a given diffusion layer (4) under all the transfer electrodes (3).

次に、第1図Cに示す如く受光すべき領域の転送電極(
3)(この場合φ2の電極)のみをオン状態としてその
ポテンシャル井戸(6)を押し上げると同時に、その他
のφ1.φ3の転送電極(3)下をアキュミュレーショ
ンの電位まで押し上げる。このときφ2の転送電極(3
)下にはオンレベル電位と閾値電位vthの差に相当す
る電荷QBが蓄積され、余分な電荷は基体(1)中へ放
出される0次に、第1図りに示す如くφ2の転送電極(
3)下の電位を更に深くして受光hνを開始する。この
時点でφ2の転送電極(3)下に蓄積されたバイアス電
荷QBがファツト・ゼロとなる。
Next, as shown in FIG. 1C, the transfer electrode (
3) (in this case, the electrode of φ2) is turned on to push up its potential well (6), and at the same time, the other electrodes of φ1. Push up the bottom of the transfer electrode (3) of φ3 to the accumulation potential. At this time, the transfer electrode of φ2 (3
), a charge QB corresponding to the difference between the on-level potential and the threshold potential vth is accumulated, and the excess charge is released into the substrate (1).
3) Make the lower potential deeper and start light reception hv. At this point, the bias charge QB accumulated under the transfer electrode (3) of φ2 becomes fat zero.

このような手段をとると、ファツト・ゼロの量が第1図
Cにおいて各ビットの電極の電位によって決定され、入
力部から注入された電荷量に無関係なために、入力ゲー
ト部における表面電位にバラツキがあっても均一なファ
ツト・ゼロが導入され、線状の固定パターンノイズが入
る様なことはない、しかし乍ら、この手段は3相駆動、
4相駆動のCCD電荷転送装置に通用できるが、同一電
圧で階段ポテンシャルが形成される如き2相駆動のCC
DCC電荷転送装置は適用できない、なぜならば、バイ
アス電荷を入力するときに上記の動作を行うと最大取り
扱い電荷量を一旦レジスタ部に導入しなければならない
。即ち、第2図のポテンシャル分布で示す如く、φ1及
びφ2の転送電極(3)をオン状態にしてバイアス電荷
Q^を注入するためにはレジスタの各ビットには最大取
り扱い電荷量以上の電荷を一旦蓄積しなければならない
If such a measure is taken, the amount of fat zero is determined by the potential of the electrode of each bit in FIG. Even if there are variations, a uniform fat zero is introduced, and linear fixed pattern noise is not introduced. However, this method uses three-phase drive,
It can be used as a four-phase drive CCD charge transfer device, but two-phase drive CC where a step potential is formed with the same voltage
A DCC charge transfer device cannot be applied, because if the above operation is performed when bias charges are input, the maximum amount of charge that can be handled must be introduced into the register section once. That is, as shown in the potential distribution in Figure 2, in order to turn on the transfer electrodes (3) of φ1 and φ2 and inject the bias charge Q^, each bit of the register must be loaded with a charge greater than the maximum amount of charge that can be handled. It must be accumulated once.

この様にしても第1図C及びDの動作をすれば均等なフ
ァツト・ゼロを各ビットに与えることはできるも、しか
し、そのためには非常に多くの余分な電荷を基体(1)
中に放出しなければならず、この多(の余分な電荷はフ
レームトランスファ方式の場合、IiFM部に漏れ出し
、大きなノイズとなる等の不都合を生じさせる。
Even in this way, it is possible to apply equal fat zeros to each bit by performing the operations shown in Figure 1 C and D.
In the frame transfer method, this extra charge leaks into the IiFM section, causing problems such as large noise.

本発明は、上述の点に鑑み、特に2相CCDに於て各レ
ジスタの各ビットに均一なファツト・ゼロなるバイアス
電荷を導入できるようにした電荷転送装置を提供するも
のである。
In view of the above-mentioned points, the present invention provides a charge transfer device capable of introducing a uniform fat zero bias charge to each bit of each register, particularly in a two-phase CCD.

以下、第3図の実施例を参照して本発明を説明する。The present invention will be explained below with reference to the embodiment shown in FIG.

第3図Aは、2相CCDによるフレームトランスファ方
式の表面チャンネル型固体撮像素子のイメージ部を示す
0図中、(1)は第1導電形例えばP形のシリコン基体
で、この基体(1)の−面上に5i(h等からなるゲー
ト絶縁膜(2)を介して複数の転送電極(3)が電荷転
送方向aに沿って配列形成され、受光部を兼ねるCCD
転送部が構成される。各転送電極(31は1つ置きに共
通接続されて夫々2相のクロック電圧φ1及びφ2が印
加される。なお、φ1及びφ2の与えられる転送電極下
には夫々転送方向に沿って階段状ポテンシャル(ストレ
ージ部及びトランスファ部)が形成されるように、例え
ばストレージ部とトランスファ部のゲート絶縁膜(2)
の膜厚を異ならしめるか、又はストレージ部とトランス
ファ部とにおける基体表面の不純物濃度を互いに異なら
しめる等の構成を採り得る。一方、基体(1)には第2
導電形即ちN十形の拡散層(4)による入力部が設けら
れ、この入力部と転送部間にゲート絶縁膜(2)を介し
て第1人力ゲート電極(7)及び第2人力ゲート電極(
8)を形成してなる入力ゲート部が設けられる。
FIG. 3A shows an image part of a surface channel type solid-state imaging device using a frame transfer method using a two-phase CCD. A plurality of transfer electrodes (3) are arranged along the charge transfer direction a through a gate insulating film (2) made of 5i (h, etc.) on the − plane of the CCD which also serves as a light receiving part.
A transfer section is configured. Every other transfer electrode (31) is connected in common, and two-phase clock voltages φ1 and φ2 are applied to each transfer electrode. Note that below the transfer electrodes to which φ1 and φ2 are applied, there is a stepped potential along the transfer direction. For example, the gate insulating film (2) of the storage part and the transfer part is formed so that the storage part and the transfer part are formed.
It is possible to adopt a configuration in which the film thicknesses of the storage section and the transfer section are made different, or the impurity concentrations on the substrate surface in the storage section and the transfer section are made different from each other. On the other hand, the base (1) has a second
An input section is provided with a conductivity type, that is, an N-type diffusion layer (4), and a first manual gate electrode (7) and a second manual gate electrode are provided between the input section and the transfer section via a gate insulating film (2). (
8) is provided.

斯る構成に於てファツト・ゼロを導入するには、先ず第
4図に示す垂直ブランキング期間内の例えばフレームシ
フト期間Tpg(各転送電極(3)にクロック電圧φ1
及びφ2を印加してイメージ部から信号電荷を蓄積部に
転送する期間)で、同時に第1入カゲート電極(7)及
び第2人力ゲート電極(8)に夫々第5図のタイミング
をもって第1ゲート電圧G1及び第2ゲート電圧G2を
印加し、且つφ1及びφ2による各転送電極(3)の駆
動のもとに、入力電圧VINO印加された入力部の拡散
層(4)からファツト・ゼロなるバイアス電荷量より多
少多めの電荷量を次の受光すべき電極下に順次導入する
In order to introduce a fat zero in such a configuration, first, for example, a frame shift period Tpg (clock voltage φ1 is applied to each transfer electrode (3) in the vertical blanking period shown in FIG.
and φ2 are applied to transfer signal charges from the image section to the storage section), at the same time, the first input gate electrode (7) and the second manual gate electrode (8) are connected to the first input gate electrode (7) and the second manual gate electrode (8) at the timing shown in FIG. By applying the voltage G1 and the second gate voltage G2 and driving each transfer electrode (3) by φ1 and φ2, a fat zero bias is generated from the diffusion layer (4) of the input section to which the input voltage VINO is applied. A charge amount slightly larger than the charge amount is sequentially introduced under the next electrode to receive light.

この動作を更に詳しく述べると、第5図の時点t1で第
3図Bに示す如く拡散層(4)より第1人力ゲート部下
に所要のバイアス電荷量より多少多めの電荷q=が注入
され、時点t2で第3図Cに示す如く第1及び第2人力
ゲート部下に電荷QA’が蓄められる。このとき入力の
拡散層(4)と第2人力ゲート部との相対的な電位によ
り注入する電荷Qxの量が任意に制御される。次に時点
t3で第1入力ゲート部がオフされ第2人力ゲート部下
に電荷Qズが移され(第3図D)、さらに時点t4及び
t5を経て次の受光されるべき電極例えばφ1の転送電
極(3)下に電荷QAが転送される(第3図E及びF)
。以後、この電荷QXはクロック電圧φ1及びφ2によ
って順次転送されると同時に入力の拡散層(4)より同
じ量の電荷QXが順次各受光されるべきφ1の転送電極
(3)下に注入される(第3図G)。
To describe this operation in more detail, at time t1 in FIG. 5, as shown in FIG. 3B, charge q=a little more than the required bias charge amount is injected from the diffusion layer (4) into the area below the first manual gate. At time t2, charge QA' is accumulated under the first and second manual gates as shown in FIG. 3C. At this time, the amount of charge Qx to be injected is arbitrarily controlled by the relative potential between the input diffusion layer (4) and the second manual gate section. Next, at time t3, the first input gate section is turned off, and the charge Q is transferred to the lower part of the second manual gate (Fig. 3D), and then, through time t4 and t5, it is transferred to the next electrode to receive light, for example, φ1. Charge QA is transferred under electrode (3) (Fig. 3 E and F)
. Thereafter, this charge QX is sequentially transferred by clock voltages φ1 and φ2, and at the same time, the same amount of charge QX is sequentially injected from the input diffusion layer (4) under the transfer electrode (3) of φ1 where each light is to be received. (Figure 3G).

この状態では入力ゲート部の表面電位のバラツキで各レ
ジスタの電荷Qズの量にはバラツキがある。
In this state, the amount of charge Q in each register varies due to variations in the surface potential of the input gate portion.

このようにして、イメージ部の各ビットに所定の電荷Q
Xを注入した後、即ち第5図のフレームシフト期間TF
s後の期間Taで第3図Hで示す如くφ、の転送電極(
3)に所定電圧を印加してこの電極下のポテンシャル井
戸(9)を押し上げると同時に、他のφ2の転送電極(
3)に該電極下がアキュミエレーシッン状態となるよう
な電圧を印加し、該電極下をアキュミュレーションの電
位まで押し上げる。
In this way, each bit of the image part has a predetermined charge Q
After injecting X, that is, the frame shift period TF in FIG.
In the period Ta after s, as shown in FIG. 3H, the transfer electrode of φ (
3) to push up the potential well (9) under this electrode, and at the same time push up the other φ2 transfer electrode (
3) A voltage is applied to bring the area under the electrode into an accumulation state, and the area under the electrode is pushed up to the accumulation potential.

このときφ1の転送電極(3)下にはオンレベル電位と
閾値電圧vthの差に相当する量の電荷QBが蓄積され
、余分な電荷は基体(1)中に放出される0次に、第5
図の受光期間TiN丁に入りφ1の転送電極(3)下の
ホテンシャル井戸を更に深くして受光hνを開始する。
At this time, an amount of charge QB corresponding to the difference between the on-level potential and the threshold voltage vth is accumulated under the transfer electrode (3) of φ1, and the excess charge is discharged into the base (1). 5
Entering the light receiving period TiN in the figure, the hotential well under the transfer electrode (3) of φ1 is further deepened and light receiving hν is started.

この時点でφ1の転送電極(3)下に蓄積されたバイア
ス電荷QBがファツト・ゼロとなり、各ポテンシャル井
戸に受光量に応じた信号電荷Qsigが蓄積される(第
3図I)。
At this point, the bias charge QB accumulated under the transfer electrode (3) of φ1 becomes fat zero, and a signal charge Qsig corresponding to the amount of received light is accumulated in each potential well (FIG. 3I).

上述せる如く本発明によれば、最初にバイアス電荷Q、
より多めの電荷QXを所謂CCD転送により各レジスタ
のビットに注入し、しかる後電位を押し上げて必要量の
バイアス電荷QB以外の余分の電荷を基体中に放出せし
め、その残存するバイアス電荷QBをファツト・ゼロと
して用いるようにしたことにより、2相CCD電荷転送
装置においても、3相、4相CCD@荷転送装置と同様
に各レジスタのビットに均一なファツト・ゼロを導入す
ることが出来、しかもノイズ等の不都合が生ぜず、従っ
て、例えばフレームトランスファ方式の2相CCD固体
撮像素子に適用して好適ならしめるものである。
As described above, according to the present invention, the bias charges Q,
A larger amount of charge QX is injected into the bit of each register by so-called CCD transfer, and then the potential is pushed up to release the excess charge other than the required amount of bias charge QB into the substrate, and the remaining bias charge QB is fattened.・By using it as a zero, it is possible to introduce uniform fat zeros to the bits of each register in the two-phase CCD charge transfer device as well as in the three-phase and four-phase CCD @ charge transfer devices. This method does not cause any inconvenience such as noise, and is therefore suitable for application to, for example, a frame transfer type two-phase CCD solid-state image pickup device.

尚上側では電荷QXの注入をフレームシフト期間TF5
1において行ったが、垂直ブランキング期間内であれば
フレームシフト期間後になすことも可能である。
Furthermore, on the upper side, the charge QX is injected during the frame shift period TF5.
1, but it can also be performed after the frame shift period as long as it is within the vertical blanking period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Dは従来の3相CCD電荷転送装置の一例を
示すファツト・ゼロ導入のポテンシャル変化図、第2図
は本発明の説明に供する2相CCD電荷転送装置のポテ
ンシャル図、第3図A−1は本発明による2相CCD電
荷転送装置の一例を示すファツト・ゼロ導入のポテンシ
ャル変化図、第4図は本発明の説明に供する動作期間を
示す線図、第5図は本発明の駆動パルス波形図である。 (1)は半導体基体、(2)はゲート絶縁膜、(3)は
転送電極、(4)は入力の拡散層、(5)、(7)、(
8)は入力ゲート電極である。 第1図 第2図 第5図 図 第冬図
1A to 1D are potential change diagrams when fat zero is introduced, showing an example of a conventional three-phase CCD charge transfer device, FIG. 2 is a potential diagram of a two-phase CCD charge transfer device used to explain the present invention, and FIG. FIG. A-1 is a potential change diagram when fat zero is introduced, showing an example of a two-phase CCD charge transfer device according to the present invention, FIG. 4 is a diagram showing an operation period used to explain the present invention, and FIG. FIG. 3 is a drive pulse waveform diagram of FIG. (1) is the semiconductor substrate, (2) is the gate insulating film, (3) is the transfer electrode, (4) is the input diffusion layer, (5), (7), (
8) is an input gate electrode. Figure 1 Figure 2 Figure 5 Winter map

Claims (1)

【特許請求の範囲】[Claims]  入力部と転送部を有する2相CCD電荷転送装置に於
て、前記入力部に与えられる電位によって決められた所
定のバイアス電荷量より多少多めの電荷量を前記転送部
上の電極を駆動して該電極中の第1相電極下に導入し、
該第1相電極に所定の電位を与えると共に、第1相以外
の電極に該電極下がアキュミュレーション状態になるよ
うな電位を印加し、上記第1相電極下から上記所定のバ
イアス電荷量以外の電荷を基体中へ放出して該第1相電
極下に所定のバイアス電荷を導入したことを特徴とする
電荷転送装置。
In a two-phase CCD charge transfer device having an input section and a transfer section, an electrode on the transfer section is driven with a charge amount slightly larger than a predetermined bias charge amount determined by a potential applied to the input section. introduced under the first phase electrode in the electrode,
A predetermined potential is applied to the first phase electrode, and a potential is applied to the electrodes other than the first phase so that the bottom of the electrode becomes in an accumulation state, and the predetermined bias charge amount is applied from below the first phase electrode. A charge transfer device characterized in that a predetermined bias charge is introduced under the first phase electrode by discharging charges other than that into the substrate.
JP60250514A 1985-11-08 1985-11-08 Charge transfer device Granted JPS61198677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250514A JPS61198677A (en) 1985-11-08 1985-11-08 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250514A JPS61198677A (en) 1985-11-08 1985-11-08 Charge transfer device

Publications (2)

Publication Number Publication Date
JPS61198677A true JPS61198677A (en) 1986-09-03
JPH0255942B2 JPH0255942B2 (en) 1990-11-28

Family

ID=17209021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250514A Granted JPS61198677A (en) 1985-11-08 1985-11-08 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS61198677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252078A (en) * 1988-03-31 1989-10-06 Toshiba Corp Solid-state image pickup device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134591A (en) * 1992-10-27 1994-05-17 Takimoto Giken Kogyo Kk Needle disposing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353278A (en) * 1976-10-25 1978-05-15 Fujitsu Ltd Facet zero input system for charge transfer device
JPS5487077A (en) * 1977-12-22 1979-07-11 Sony Corp Charge transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353278A (en) * 1976-10-25 1978-05-15 Fujitsu Ltd Facet zero input system for charge transfer device
JPS5487077A (en) * 1977-12-22 1979-07-11 Sony Corp Charge transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252078A (en) * 1988-03-31 1989-10-06 Toshiba Corp Solid-state image pickup device

Also Published As

Publication number Publication date
JPH0255942B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
US3996600A (en) Charge coupled optical scanner with blooming control
US4616249A (en) Solid state image pick-up element of static induction transistor type
JPS61198677A (en) Charge transfer device
US4443886A (en) Charge transfer device imager with bias charge
JPH0771235B2 (en) Driving method for charge detection circuit
US5760430A (en) Charge transfer device and solid-state imaging apparatus using the same device
JP2870046B2 (en) Charge-coupled device
JP3658178B2 (en) Driving method of charge transfer device
JP2609363B2 (en) Driving method of charge-coupled device
JPH0697408A (en) Photoelectric conversion device and manufacture thereof
JP3228238B2 (en) Solid-state imaging device
US7253393B2 (en) Control of a photosensitive cell
JP2508638B2 (en) Solid-state imaging device
JPS58180060A (en) Charge coupled device
JP3148459B2 (en) Driving method of solid-state imaging device
Kubo et al. A wideband low-noise analog delay line
JPH0738912A (en) Charge transfer element
JPS63128665A (en) Photoelectric converter
JP3024276B2 (en) Charge transfer element
JPS63234677A (en) Drive method of charge coupling element
JPH02230747A (en) Charge-coupled device and driving method therefor
JPH09246518A (en) Ccd solid image pickup element and its driving method
JPH0697207A (en) Semiconductor device
JPS61279175A (en) Driving method for charge transfer device
JPH1188772A (en) Solid-state image pickup device