JPH0255942B2 - - Google Patents

Info

Publication number
JPH0255942B2
JPH0255942B2 JP60250514A JP25051485A JPH0255942B2 JP H0255942 B2 JPH0255942 B2 JP H0255942B2 JP 60250514 A JP60250514 A JP 60250514A JP 25051485 A JP25051485 A JP 25051485A JP H0255942 B2 JPH0255942 B2 JP H0255942B2
Authority
JP
Japan
Prior art keywords
charge
electrode
transfer
input
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60250514A
Other languages
Japanese (ja)
Other versions
JPS61198677A (en
Inventor
Mikio Kamata
Yoshimi Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60250514A priority Critical patent/JPS61198677A/en
Publication of JPS61198677A publication Critical patent/JPS61198677A/en
Publication of JPH0255942B2 publication Critical patent/JPH0255942B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76866Surface Channel CCD
    • H01L29/76883Three-Phase CCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は、固体撮像素子に適用して好適な2相
CCD電荷転送装置のフアツト・ゼロ入力方式に
係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a two-phase
Relates to the fat zero input method of CCD charge transfer devices.

フレームトランスフア方式の表面チヤンネル型
CCD固体撮像素子においては、界面準位の影響
を少なくするためにフアツト・ゼロと呼ばれるバ
イアス電荷を導入することより転送効率の良い状
態で動作させることができる。しかるに、イメー
ジ部の各ビツトに均一にフアツト・ゼロを入れる
ことは難かしく、不均一の場合には線状の固定パ
ターンノイズとなつて表われる。このため、従来
例えば第1図に示す如く、入力に拡散層を設けて
之から電気的にバイアス電荷を導入するようにし
た電荷転送装置が提案されている。第1図Aは、
3層CCDによるフレームトランスフア方式の固
体撮像素子のイメージ部に例をとつた場合で、第
1導電形例えばP形のシリコン基体1の一面上に
SiO2等からなるゲート絶縁膜2を介して複数の
転送電極3が電荷転送方向aに沿つて配列形成さ
れて受光領域を兼ねる転送部が構成され、各転送
電極3が3つ置きに共通接続されて夫々に3相の
転送クロツク電圧φ1,φ2及びφ3が印加されるよ
うになされ、又基体1にN+形の拡散層4による
入力部が設けられ、この入力部と転送部間にゲー
ト絶縁膜2を介して入力ゲート電極5を形成した
入力ゲート部が設けられる。そしてフアツト・ゼ
ロになるバイアス電荷を導入するには、先ず第1
図Aに示す如く全ての転送電極3をオン状態とな
し、ゲート電圧φIGにより入力ゲート部を開いて
入力電圧VINの与えられた拡散層4から全ての転
送電極3下に必要以上の電荷QAを注入する。次
に、第1図Cに示す如く受光すべき領域の転送電
極3(この場合φ2の電極)のみをオン状態とし
てポテンシヤル井戸6を押し上げると同時に、そ
の他のφ1,φ3の転送電極3下をアキユミユレー
シヨンの電位まで押し上げる。このときφ2の転
送電極3下にはオンレベル電位と閾値電位Vthの
差に相当する電荷QBが蓄積され、余分な電荷は
基体1中へ放出される。次に、第1図Dに示す如
くφ2の転送電極3下の電位を更に深くして受光
hvを開始する。この時点でφ2の転送電極3下に
蓄積されたバイアス電荷QBがフアツト・ゼロと
なる。
Frame transfer surface channel type
CCD solid-state imaging devices can be operated with high transfer efficiency by introducing bias charges called fat zeros to reduce the influence of interface states. However, it is difficult to uniformly insert fat zeros into each bit of the image portion, and if the fat zeros are not uniform, it will appear as linear fixed pattern noise. For this reason, a charge transfer device has been proposed, for example, as shown in FIG. 1, in which a diffusion layer is provided at the input and bias charges are electrically introduced therefrom. Figure 1A is
Taking as an example the image part of a frame transfer type solid-state image sensor using a three-layer CCD, on one surface of the silicon substrate 1 of the first conductivity type, for example, the P type.
A plurality of transfer electrodes 3 are arranged along the charge transfer direction a through a gate insulating film 2 made of SiO 2 or the like to constitute a transfer section that also serves as a light receiving area, and every third transfer electrode 3 is connected in common. 3-phase transfer clock voltages φ 1 , φ 2 and φ 3 are applied to each of them, and an input section formed by an N + type diffusion layer 4 is provided on the base body 1, and this input section and the transfer section are connected to each other. An input gate portion with an input gate electrode 5 formed therebetween is provided with a gate insulating film 2 interposed therebetween. In order to introduce a bias charge that becomes a fat zero, first
As shown in Figure A, all the transfer electrodes 3 are turned on, and the input gate is opened by the gate voltage φ IG to remove unnecessary charges from the diffusion layer 4 to which the input voltage V IN is applied under all the transfer electrodes 3. Inject Q A. Next, as shown in FIG. 1C, only the transfer electrode 3 in the region to receive light (in this case, the φ 2 electrode) is turned on to push up the potential well 6, and at the same time, the other transfer electrodes 3 in the φ 1 and φ 3 areas are turned on. Push up the bottom to the acquisition potential. At this time, a charge Q B corresponding to the difference between the on-level potential and the threshold potential Vth is accumulated under the transfer electrode 3 of φ 2 , and the excess charge is released into the substrate 1 . Next, as shown in Figure 1D, the potential under the transfer electrode 3 of φ2 is further deepened to receive light.
Start hv. At this point, the bias charge Q B accumulated under the transfer electrode 3 of φ 2 becomes fat zero.

このような手段をとると、フアツト・ゼロの量
が第1図Cにおいて各ビツトの電極の電位によつ
て桁定され、入力部から注入された電荷量に無関
係なために、入力ゲート部における表面電位にバ
ラツキがあつても均一なフアツト・ゼロが導入さ
れ、線状の固定パターンノイズが入る様なことは
ない。しかし乍ら、この手段は3相駆動、4相駆
動のCCD電荷転送装置に適用できるが、同一電
圧で階段ポテンシヤルが形成される如き2相駆動
のCCD電荷転送装置には適用できない。なぜな
らば、バイアス電荷を入力するときに上記の動作
を行うと最大取り扱い電荷分を一旦レジスタ部に
導入しなければならない。即ち、第2図のポテン
シヤル分布で示す如く、φ1及びφ2の転送電極3
をオン状態にしてバイアス電荷QAを注入するた
めにはレジスタの各ビツトには最大取り扱い電荷
量以上の電荷を一旦蓄積しなければならない。こ
の様にしても第1図C及びDの動作をすれば均等
なフアツト・ゼロを各ビツトに与えることはでき
るも、しかし、そのためには非常に多くの余分な
電荷を基体1中に放出しなければならず、この多
くの余分な電荷はフレームトランスフア方式の場
合、蓄積部に漏れ出し、大きなノイズとなる等の
不都合を生じさせる。
If such a measure is taken, the amount of fat zero is determined by the potential of the electrode of each bit in FIG. Even if there are variations in surface potential, a uniform fat zero is introduced, and no linear fixed pattern noise is introduced. However, although this means is applicable to three-phase drive and four-phase drive CCD charge transfer devices, it cannot be applied to a two-phase drive CCD charge transfer device in which step potentials are formed with the same voltage. This is because, if the above operation is performed when inputting bias charges, the maximum amount of charges to be handled must be once introduced into the register section. That is, as shown in the potential distribution in FIG. 2, the transfer electrodes 3 of φ 1 and φ 2
In order to turn on and inject the bias charge Q A , each bit of the register must once accumulate a charge greater than the maximum amount of charge that can be handled. Even in this way, it is possible to give equal fat zeros to each bit by performing the operations shown in FIG. In the case of the frame transfer method, this large amount of excess charge leaks into the storage section, causing problems such as large noise.

本発明は、上述の点に鑑み、特に2相CCDに
於てレジスタの各ビツトに均一なフアツト・ゼロ
なるバイアス電荷を導入できるようにした電荷転
送装置のフアツト・ゼロ入力方式を提供するもの
である。
In view of the above-mentioned points, the present invention provides a fat-zero input method for a charge transfer device that can introduce a uniform fat-zero bias charge to each bit of a register, especially in a two-phase CCD. be.

以下、第3図の実施例を参照して本発明を説明
する。
The present invention will be explained below with reference to the embodiment shown in FIG.

第3図Aは、2相CCDによるフレームトラン
スフア方式の表面チヤンネル型固体撮像素子のイ
メージ部を示す。図中、1は第1導電形例えばP
形のシリコン基体で、この基体1の一面上に
SiO2等からなるゲート絶縁膜2を介して複数の
転送電極3が電荷転送方向aに沿つて配列形成さ
れ、受光部を兼ねるCCD転送部が構成される。
各転送電極3は1つ置きに共通接続されて夫々2
相のクロツク電圧φ1及びφ2が印加される。なお、
φ1及びφ2の与えられる転送電極下には夫々転送
方向に沿つて階段状ポテンシヤル(ストレージ部
及びトランスフア部)が形成されるように、例え
ばストレージ部とトランスフア部のゲート絶縁膜
2の膜厚を異ならしめるか、又はストレージ部と
トランスフア部とにおける基体表面の不純物濃度
を互いにならしめる等の構成を採り得る。一方、
基体1には第2導電形即ちN+形の拡散層4によ
る入力部が設けられ、この入力部と転送部間にゲ
ート絶縁膜2を介して第1入力ゲート電極7及び
第2入力ゲート電極8を形成してなる入力ゲート
部が設けられる。
FIG. 3A shows an image portion of a frame transfer type surface channel type solid-state imaging device using a two-phase CCD. In the figure, 1 is the first conductivity type, for example P
shaped silicon substrate, on one side of this substrate 1
A plurality of transfer electrodes 3 are arranged in a charge transfer direction a via a gate insulating film 2 made of SiO 2 or the like, thereby forming a CCD transfer section that also serves as a light receiving section.
Each transfer electrode 3 is commonly connected every other
Phase clock voltages φ 1 and φ 2 are applied. In addition,
For example, the gate insulating film 2 of the storage part and the transfer part is formed so that stepped potentials (storage part and transfer part) are formed along the transfer direction under the transfer electrodes given φ 1 and φ 2 , respectively. It is possible to adopt a configuration in which the film thicknesses are made different, or the impurity concentrations on the substrate surfaces in the storage section and the transfer section are made equal to each other. on the other hand,
The base body 1 is provided with an input section formed by a second conductivity type, that is, an N + type diffusion layer 4, and a first input gate electrode 7 and a second input gate electrode are connected to each other with a gate insulating film 2 interposed between the input section and the transfer section. An input gate portion formed by 8 is provided.

斯る構成に於てフアツト・ゼロを導入するに
は、先ず第4図に示す垂直ブランキング期間内の
例えばフレームシフト期間TFS(各転送電極3に
クロツク電圧φ1及びφ2を印加してイメージ部か
ら信号電荷を蓄積部に転送する期間)で、同時に
第1入力ゲート電極7及び第2入力ゲート電極8
に夫々第5図のタイミングをもつて第1ゲート電
圧G1及び第2ゲート電圧G2を印加し、且つφ1
びφ2による各転送電極3の駆動のもとに、入力
電圧VINの印加された入力部の拡散層4からフア
ツト・ゼロなるバイアス電荷量より多少多めの電
荷量を次の受光すべき電極下に順次導入する。こ
の動作を更に詳しく述べると、第5図の時点t1
第3図Bに示す如く拡散層4より第1入力ゲート
部下に所要のバイアス電荷量より多少多めの電荷
QA′が注入され、時点t2で第3図Cに示す如く第
1及び第2入力ゲート部下に電荷QA′が蓄められ
る。このときの入力の拡散層4と第2入力ゲート
部との相対的な電位により注入する電荷QA′の量
が任意に制御される。次に時点t3で第1入力ゲー
ト部がオフされ第2入力ゲート部下に電荷QA′が
移され(第3図D)、さらに時点t4及びt5を経て
次の受光されるべき電極例えばφ1の転送電極3
下に電荷QA′が転送される(第3図E及びF)。以
後、この電荷QA′はクロツク電圧φ1及びφ2によつ
て順次転送されると同時に入力の拡散層4より同
じ量の電荷QA′が順次各受光されるべきφ1の転送
電極3下に注入される(第3図G)。この状態で
は入力ゲート部の表面電位のバラツキで各レジス
タの電荷QA′の量にはバラツキがある。このよう
にして、イメージ部の各ビツトに所定の電荷
QA′を注入した後、即ち第5図のフレームシフト
期間TFS後の期間Taで第3図Hで示す如くφ1の転
送電極3に所定電圧を印加してこの電極下のポテ
ンシヤル井戸9を押しげると同時に、他のφ2
転送電極3に該電極下がアキユミユレーシヨン状
態となるような電圧を印加し、該電極下をアキユ
ミユレーシヨンの電位まで押し上げる。このとき
φ1の転送電極3下にはオンレベル電位と閾値電
圧Vthの差に相当する量の電荷QBが蓄積され、余
分な電荷は基体1中に放出される。次に、第5図
の受光期間TINTに入りφ1の転送電極3下のポテン
シヤル井戸を更に深くして受光hvを開始する。
この時点でφ1の転送電極3下に蓄積されたバイ
アス電荷QBがフアツト・ゼロとなり、各ポテン
シヤル井戸に受光量に応じた信号電荷Qsigが蓄
積される(第3図I)。
In order to introduce fat zero in such a configuration, first, for example, during the frame shift period T FS (by applying clock voltages φ 1 and φ 2 to each transfer electrode 3 in the vertical blanking period shown in FIG. (period in which signal charges are transferred from the image section to the storage section), the first input gate electrode 7 and the second input gate electrode 8 are simultaneously
Applying the first gate voltage G 1 and the second gate voltage G 2 to the input voltage V IN with the timing shown in FIG. 5, and driving each transfer electrode 3 by φ 1 and φ 2 , From the applied diffusion layer 4 of the input section, a charge amount slightly larger than the fat zero bias charge amount is sequentially introduced under the next electrode to receive light. To describe this operation in more detail, at time t1 in FIG. 5, a charge slightly larger than the required bias charge amount is applied from the diffusion layer 4 to the area below the first input gate, as shown in FIG. 3B.
Q A ' is injected, and at time t 2 a charge Q A ' is stored under the first and second input gates as shown in FIG. 3C. At this time, the amount of charge Q A ' to be injected is arbitrarily controlled depending on the relative potential between the input diffusion layer 4 and the second input gate portion. Next, at time t3 , the first input gate section is turned off, and the charge QA ' is transferred to the lower part of the second input gate (Fig. 3D), and then at time t4 and t5 , it is transferred to the next electrode to receive light. For example, transfer electrode 3 of φ 1
A charge Q A ' is transferred downward (FIG. 3E and F). Thereafter, this charge Q A ' is sequentially transferred by the clock voltages φ 1 and φ 2 , and at the same time, the same amount of charge Q A ' is sequentially transferred from the input diffusion layer 4 to the transfer electrode 3 of φ 1 to which each light is to be received. It is injected downward (Fig. 3G). In this state, the amount of charge Q A ' in each register varies due to variations in the surface potential of the input gate portion. In this way, each bit of the image part is given a predetermined charge.
After implanting Q A ', that is, during the period Ta after the frame shift period TFS in FIG. 5, a predetermined voltage is applied to the transfer electrode 3 of φ 1 as shown in FIG. At the same time, a voltage is applied to the other transfer electrode 3 of φ 2 to bring the area under the electrode into an accumulation state, and the area under the electrode is pushed up to the accumulation potential. At this time, an amount of charge Q B corresponding to the difference between the on-level potential and the threshold voltage Vth is accumulated under the transfer electrode 3 of φ 1 , and the excess charge is released into the substrate 1 . Next, the light reception period T INT shown in FIG. 5 is entered, and the potential well under the transfer electrode 3 of φ 1 is further deepened to start light reception hv.
At this point, the bias charge Q B accumulated under the transfer electrode 3 of φ 1 becomes a fat zero, and a signal charge Qsig corresponding to the amount of light received is accumulated in each potential well (FIG. 3I).

上述せる如く本発明によれば、最初にバイアス
電荷QBより多めの電荷QA′を所謂CCD転送により
各レジスタのビツトに注入し、しかる後電位を押
し上げて必要量のバイアス電荷QB以外の余分の
電荷を基体中に放出せしめ、その残存するバイア
ス電荷QBをフアツト・ゼロとして用いるように
したことにより、2相CCD電荷転送装置におい
ても、3相、4相CCD電荷装置と同様に各レジ
スタのビツトに均一なフアツト・ゼロを導入する
ことが出来、しかもノイズ等の不都合が生せず、
従つて、例えばフレームトランスフア方式の2相
CCD固体撮像素子に適用して好適ならしめるも
のである。
As described above, according to the present invention, a charge Q A ' larger than the bias charge Q B is first injected into the bit of each register by so-called CCD transfer, and then the potential is pushed up to remove the necessary amount of bias charge Q B. By discharging the excess charge into the substrate and using the remaining bias charge Q B as a fat zero, the 2-phase CCD charge transfer device also has a It is possible to introduce a uniform fat zero to the bits of the register, and there is no problem such as noise.
Therefore, for example, two-phase frame transfer method
This makes it suitable for application to a CCD solid-state image sensor.

尚上例では電荷QA′の注入をフレームシフト期
間TFSにおいて行つたが、垂直ブランキング期間
内であればフレームシフト期間後になすことも可
能である。
In the above example, the charge Q A ' was injected during the frame shift period T FS , but it can also be performed after the frame shift period as long as it is within the vertical blanking period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Dは従来の3相CCD電荷転送装置
の一例を示すフアツト・ゼロ導入のポテンシヤル
変化図、第2図は本発明の説明に供する2相
CCD電荷転送装置のポテンシヤル図、第3図A
〜Iは本発明による2相CCD電荷転送装置のフ
アツト・ゼロ入力方式の一例を示すフアツト・ゼ
ロ導入のポテンシヤル変化図、第4図は本発明の
説明に供する動作期間を示す線図、第5図は本発
明の駆動パルス波形図である。 1は半導体基体、2はゲート絶縁膜、3は転送
電極、4は入力の拡散層、5,7,8は入力ゲー
ト電極である。
1A to 1D are potential change diagrams for introducing fat zero, showing an example of a conventional three-phase CCD charge transfer device, and FIG. 2 is a two-phase CCD charge transfer device used to explain the present invention.
Potential diagram of CCD charge transfer device, Figure 3A
~I is a potential change diagram for introducing a fat zero showing an example of a fat zero input method of a two-phase CCD charge transfer device according to the present invention, FIG. 4 is a diagram showing an operation period used to explain the present invention, and FIG. The figure is a drive pulse waveform diagram of the present invention. 1 is a semiconductor substrate, 2 is a gate insulating film, 3 is a transfer electrode, 4 is an input diffusion layer, and 5, 7, and 8 are input gate electrodes.

Claims (1)

【特許請求の範囲】 1 入力部と転送部を有する2相CCD電荷転送
装置に於て、 上記入力部に与えられる電位によつて決められ
た所定のバイアス電荷量より多少多めの電荷量を
上記転送部上の電極を駆動して該電極中の第1相
電極下に導入し、該第1相電極のトランスフア部
がアキユミユレーシヨン状態になり、ストレージ
部が非アキユミユレーシヨン状態になるような電
位を上記第1相電極に与えると共に、上記第1相
電極以外の電極に該電極下がアキユミユレーシヨ
ン状態になるような電位を印加することにより、
上記第1相電極下から上記所定のバイアス電荷量
以外の電荷を基体中に放出して上記第1相電極下
に所定のバイアス電荷を導入したことを特徴とす
る電荷転送装置のフアツト・ゼロ入力方式。
[Claims] 1. In a two-phase CCD charge transfer device having an input section and a transfer section, an amount of charge slightly larger than a predetermined amount of bias charge determined by a potential applied to the input section is transferred to the above. The electrode on the transfer section is driven and introduced under the first phase electrode in the electrode, and the transfer section of the first phase electrode becomes in the accumulation state, and the storage section is in the non-accumulation state. By applying a potential to the first phase electrode such that the state is brought into a state, and applying a potential to an electrode other than the first phase electrode such that the area under the electrode becomes an accumulation state,
A fat zero input of a charge transfer device characterized in that a charge other than the predetermined bias charge amount is released from below the first phase electrode into the substrate to introduce a predetermined bias charge below the first phase electrode. method.
JP60250514A 1985-11-08 1985-11-08 Charge transfer device Granted JPS61198677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250514A JPS61198677A (en) 1985-11-08 1985-11-08 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250514A JPS61198677A (en) 1985-11-08 1985-11-08 Charge transfer device

Publications (2)

Publication Number Publication Date
JPS61198677A JPS61198677A (en) 1986-09-03
JPH0255942B2 true JPH0255942B2 (en) 1990-11-28

Family

ID=17209021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250514A Granted JPS61198677A (en) 1985-11-08 1985-11-08 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS61198677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134591A (en) * 1992-10-27 1994-05-17 Takimoto Giken Kogyo Kk Needle disposing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862540B2 (en) * 1988-03-31 1999-03-03 株式会社東芝 Solid-state imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353278A (en) * 1976-10-25 1978-05-15 Fujitsu Ltd Facet zero input system for charge transfer device
JPS5487077A (en) * 1977-12-22 1979-07-11 Sony Corp Charge transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353278A (en) * 1976-10-25 1978-05-15 Fujitsu Ltd Facet zero input system for charge transfer device
JPS5487077A (en) * 1977-12-22 1979-07-11 Sony Corp Charge transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134591A (en) * 1992-10-27 1994-05-17 Takimoto Giken Kogyo Kk Needle disposing equipment

Also Published As

Publication number Publication date
JPS61198677A (en) 1986-09-03

Similar Documents

Publication Publication Date Title
US4112456A (en) Stabilized charge injector for charge coupled devices with means for increasing the speed of propagation of charge carriers
US4686648A (en) Charge coupled device differencer
US4136335A (en) Semiconductor charge coupled device analog to digital converter
US4016550A (en) Charge transfer readout of charge injection device arrays
US5892251A (en) Apparatus for transferring electric charges
US6111279A (en) CCD type solid state image pick-up device
JPH02309877A (en) Solid-state image pickup device
JPH0255942B2 (en)
US4443886A (en) Charge transfer device imager with bias charge
JPS5921181B2 (en) charge transfer device
EP0496357B1 (en) Charge coupled device
US4951302A (en) Charge-coupled device shift register
JPH04315473A (en) Solid-state image pickup element
JP2870046B2 (en) Charge-coupled device
JP2716011B2 (en) Charge transfer device and method of manufacturing the same
US5900769A (en) Two-dimensional CCD having storage cells for withdrawing charge packets from transfer channels during horizontal scan periods
US4562363A (en) Method for using a charge coupled device as a peak detector
JP2609363B2 (en) Driving method of charge-coupled device
JPH06121235A (en) Drive method for charge transfer element
CA1101548A (en) Two phase charge coupled devices employing fixed charge for creating asymmetrical potential wells
JP2508638B2 (en) Solid-state imaging device
EP0490246A1 (en) Solid-state imager
JPS63164274A (en) Semiconductor device
JP3148459B2 (en) Driving method of solid-state imaging device
JPS63234677A (en) Drive method of charge coupling element