JPS61198673A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61198673A
JPS61198673A JP3741085A JP3741085A JPS61198673A JP S61198673 A JPS61198673 A JP S61198673A JP 3741085 A JP3741085 A JP 3741085A JP 3741085 A JP3741085 A JP 3741085A JP S61198673 A JPS61198673 A JP S61198673A
Authority
JP
Japan
Prior art keywords
polysilicon
region
oxide film
deposited
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3741085A
Other languages
Japanese (ja)
Inventor
Jun Nakayama
潤 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3741085A priority Critical patent/JPS61198673A/en
Publication of JPS61198673A publication Critical patent/JPS61198673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7325Vertical transistors having an emitter-base junction leaving at a main surface and a base-collector junction leaving at a peripheral surface of the body, e.g. mesa planar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce the junction capacitance by determining the space between the inactive region by the thickness of the insulation layer, thereby making the whole semiconductor device small-sized. CONSTITUTION:An N<+> buried layer 32 and a P buried region 33 are formed on a P-type silicon substrate 31, an N-type silicon layer 34 is grown thereon, and an isolation oxide film 35 is formed by patterning a nitride film. After removing the nitride film, a mask material is applied, boron ions are struck into, and heat treatment is performed, thereby making a P-type base region 37, and polysilicon 38 is deposited. Then, an N-type impurity is duffused to form polysilicon 39 and polysilicon 40, and oxidation is performed to form thick oxide films 41 and 42 on the polysilicons 39 and 40 and a thin oxide film on the base region 37. After removing the oxide film on the base region 37, a BSG film is deposited and removed by etching, thereby leaving BSG films 44 and 45 only on the side walls of the oxide film 41. Polysilicon 46 is deposited, boron ions are implanted and diffused, and etching-back is performed. After patterning this, thermal oxidation is performed, and finally emitter electrode metal 52, base electrode metal 53 and collector electrode metal 54 are vacuum deposited, respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は半導体装置の製造方法に係り、特に制御電極領
域と主電極領域とを少なくとも有する半導体装置の小型
化および高性能化を企図した製造方法に関する。 [従来技術] 第3図(轟)〜(C)は、従来の半導体装置の製造方法
を示す概略的工程図である。ただし、ここではバイポー
ラトランジスタの場合を一例として説明する。 まず、Pシリコン基板lにN十埋込み層2およびP埋込
み領域3を形成し、その上にNシリコンのエピタキシャ
ル層4を成長させ1分離酸化膜5を形成する。続いて、
イオン打ち込みおよび熱処理等の方法でP型不純物を拡
散させベース領域6を形成し、その上にポリシリコン7
、酸化膜8゜そして窒化g9をそれぞれ形成する[第3
図(A) ] 。 次に、ベース、エミッタ、コレクタの各電極を取り出す
部分の窒化1gl9を残して他をエツチング除去する。 続いて、残された窒化膜3をマスクにしてポリシリコン
7を酸化することで、酸化領域!0およびポリシリコン
11,12,13.14を形成する
[Industrial Field of Application 1] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device that is intended to reduce the size and improve the performance of a semiconductor device having at least a control electrode region and a main electrode region. [Prior Art] Figures 3 (Todoroki) to (C) are schematic process diagrams showing a conventional method for manufacturing a semiconductor device. However, here, the case of a bipolar transistor will be explained as an example. First, an N0 buried layer 2 and a P buried region 3 are formed on a P silicon substrate 1, and an epitaxial layer 4 of N silicon is grown thereon to form a one-isolation oxide film 5. continue,
P-type impurities are diffused by methods such as ion implantation and heat treatment to form a base region 6, and polysilicon 7 is formed on the base region 6.
, an oxide film 8°, and a nitride film G9 [3rd step]
Figure (A) ]. Next, except for the nitrided 1gl9 portion from which the base, emitter, and collector electrodes are taken out, the remaining portions are removed by etching. Next, the remaining nitride film 3 is used as a mask to oxidize the polysilicon 7 to form an oxidized region! 0 and polysilicon 11, 12, 13.14 are formed.

【同図(B) ] 
。 次に、酸化fI8および窒化M3を全て除去した後、ポ
リシリコン12および13にN型不純物を含有させ熱処
理を行うことによって、N+エミッタ領域15およびコ
レクタと電極とのオーミックコンタクトを取るためのN
十領域!6を形成する。続いて、ポリシリコン11およ
び13にP型不純物を含有させ熱処理を行うことによっ
て、不活性ベース領域17を形成する。そして、エミッ
タ電極金属1B。 ベース電極金属IE1.コレクタ電極金属20を各々形
成し、バイポーラトランジスタが完成する[同図(C)
 ] 。 [発明が解決しようとする問題点] しかしながら、このような従来の半導体装置の製造方法
では、電極領域間の距離はマスク合わせに必要な最小寸
法以下にすることができないという問題点を有していた
。 特に上記従来例では、エミッタ領域15と不活性ベース
領域17との間隔は、窒化膜8を部分的に除去するエツ
チング工程におけるマスク合わせの最小寸法以下にする
ことができない、その上、酸化領域lOを形成する酸化
工程において横方向の酸化が起こり、ポリシリコン12
とポリシリコン11および13との間隔が広くなる。こ
のために、ベース抵抗が増大してトランジスタの特性が
低下するとともに、素子の占有面積が増大するという欠
点を有していた。 ベース抵抗を下げる方法としては、ベースの不純物濃度
を上げることが考えられるが、接合容量の増大によって
トランジスタ特性の低下をもたらすために、上記問題点
の解決とはならない。 [問題点を解決するための手段] 本発明による半導体装置の製造方法は、制御電極領域と
主電極領域とを少なくとも有する半導体装置の製造方法
において、 一導電型半導体層上に1反対導電型不純物を含む第一拡
散源と、該第一拡散源の側面に絶縁層を介して接し前記
一導電型の不純物を含む第二拡散源と、該第二拡散源に
接し前記一導電型の不純物を前記第二拡散源より高濃度
に含む第三拡散源と、を形成し。 前記第一拡散源から該不純物を前記一導電型半導体層へ
拡散させることで一方の主電極領域を形成し、前記第二
および第三拡散源から各不純物を前記一導電型半導体層
へ拡散させることで該一導電型半導体層より高濃度の不
活性制御電極領域を形成することを特徴とする。 [作用] 上記絶縁層の厚さによって、上記主電極領域と上記#I
m′!ll極領域の不活性領域との間隔が決定されるた
めに、半導体装置全体を小型化することができ、 さらに、上記第二拡散源によって形成される不活性領域
の不純物濃度は、上記一導電型半導体層と上記第三拡散
源によって形成される不活性領域とのF11〒あるため
に一11112a雷緬鎖健の柾精が低イなる。 【実施例】 以下、本発明の実施例を図面を用いて詳細に説明する。 s1図(A)〜(I)は1本発明による半導体装置の製
造方法の一実施例を示す製造工程図である。 まず、P型シリコン基板31にN十埋込み層32および
P埋込み領域33を形成し、その上にN!!!シリコン
のエピタキシャル層34を約21Lm成長させ。 さらに窒化IIC図示せず)をパターニングして部分的
に分離酸化膜35を21Lm以上形成する。続いて、そ
の窒化膜を除去した後、マスク材36を塗布し、パター
ニングによって開口部を設け、ポロンイオンを濃度I 
X 1014 am−2で打ち込む【第1図(A) ]
 。 次に、マスク材3Bを除去し、熱処理を行うことで打ち
込まれたポロンイオンを拡散させ、厚さ0.2〜0.8
1LmのP型ベース領域37を形成する。 続いて、その上に厚さ3000〜5000人のポリシリ
コン3Bを堆積させる【同図(B) ] 。 次に、ポリシリコン38にN型不純物を拡散させてパタ
ーニングを行い、第一拡散源としてのポリシリコン39
およびポリシリコン40を形成する。続いて、酸化を行
うと、ポリシリコン33および40上には厚い酸化膜4
1および42が形成され、単結晶であるベース領域37
上には薄い酸化膜が形成される。ただし、酸化膜41の
厚さは、後述するように、不活性ベース領域とエミッタ
領域との間隔を決定するものである【同図(C) ] 
。 次に、リアクティブ・イオン・エツチング(以下、 R
IEとする。)によってベース領域37上の薄い酸化膜
を除去した後、BSG 1II43を堆積する【同図(
D) ] 。 次に、BSG膜4膜上3IEによってエツチング除去し
、酸化1141の側壁のみに第二拡散源としてのBSG
 H44および45を残す1同図(E) ] 。 次に、ポリシリコン4Bを4000〜7000人堆積さ
せ、そこにポロンイオンを注入し拡散する【同図CF)
 ] 。 次に、ポリシリコン4Bをエッチバックする【同図(G
)  ]  。 次に、エッチバックされたポリシリコン48は第三拡散
源であり、これをパターニングした後、熱酸化を行う、
この時の熱処理によって、N型不純物を含有するポリシ
リコン33および40からN型不純物が拡散し、N十エ
ミッタ領域47およびN十領域48が形成され、P型不
純物(ボロン)を含有するポリシリコン48と、同じく
ボロンを含有するOSG [144および41とからポ
ロンが拡散して、第一不活性ベース領域48と第二不活
性ベース領域50とが形成される。ただし、第二不活性
ベース領域50の不純物濃度は、ベース領域37の不純
物濃度(ここでは、〜1Q18)と第一不活性ベース領
域49の不純物濃度(ここでは、〜5X1019)との
間である。 また、この熱酸化によってポリシリコン48上に酸化膜
51が形成される【同図(H) ] 。 最後に、パターニングにより酸化膜44,42.51に
開口部が設けられ、エミッタ電極金属52.ベース電極
金属53およびコレクタ電極金属54が各々蒸着される
【同図(1) ] 。 このように、本実施例によって製造されるバイポーラト
ランジスタは、エミッタ領域47と不活性ベース領域4
8および50との間隔を酸化膜41の厚さによって決定
することができる。また、ベース領域37より濃度の高
い第二不活性ベース領域50を設けたために、ベース抵
抗を低くすることができる。 第2図は、本実施例の他の実施態様を示す部分的工程図
である。 第1図(B)でポリシリコン36を堆積してN型不純物
を拡散させた後、第2図(^)に示すように。 窒化@SOおよび81をパターニングし、この窒化膜6
0および61をマスクとしてポリシリコン38をエツチ
ングしてポリシリコン38および40を形成する。 そして、酸化を行い、エミッタ領域と不活性ベース領域
との間隔を決定する酸化膜41を所望の厚さ形成する。 次に、第2図(B)に示すように、ベース領域37上の
薄い酸化膜をRIEによって除去し、BSG膜4膜上3
積させ、以下、第1図(E)〜(I)と同様の処理を行
う。 このように、窒化M60および81を、ポリシリコン3
9および40を形成する際のマスクとして使用するとと
もに、絶縁膜としても用いるために、ポリシリコン38
および40のパターニング工程が簡略化される。 なお1本実施例に示されたトランジスタの導電型を逆転
させたものの製造方法は、本実施例から極めて容易に想
到するものである。 [発明の効果] 以上詳細に説明したように、本発明による半導体装置の
製造方法は、絶縁層の厚さによって、主電極領域と制御
電極領域の不活性領域との間隔が決定されるために、半
導体装置全体を小型化することができるとともに、不活
性領域と主電極領域とが接合を形成していないので接合
容量を小さくすることができる。 ざらに、第二拡散源によって形成される第二不活性領域
の不純物濃度は、制御電極領域と第三拡散源によって形
成される第一不活性領域との間であるために、制御電極
領域の抵抗が低くなり、装置の特性が向上する。 したがって、半導体装置の高集積化および高性能化を達
成できる。
[Same figure (B)]
. Next, after removing all of the oxide fI8 and the nitride M3, polysilicon 12 and 13 are doped with N-type impurities and heat treated to form an N
Ten areas! form 6. Subsequently, an inactive base region 17 is formed by incorporating P-type impurities into polysilicon 11 and 13 and performing heat treatment. And emitter electrode metal 1B. Base electrode metal IE1. Collector electrode metals 20 are formed, and the bipolar transistor is completed [Figure (C)]
]. [Problems to be Solved by the Invention] However, such conventional semiconductor device manufacturing methods have a problem in that the distance between electrode regions cannot be made smaller than the minimum dimension required for mask alignment. Ta. In particular, in the above conventional example, the distance between the emitter region 15 and the inactive base region 17 cannot be made smaller than the minimum dimension for mask alignment in the etching process for partially removing the nitride film 8, and in addition, the oxide region lO Lateral oxidation occurs during the oxidation process to form polysilicon 12.
The distance between the polysilicon and polysilicon 11 and 13 becomes wider. This has resulted in disadvantages such as an increase in base resistance, deterioration of transistor characteristics, and an increase in the area occupied by the element. One possible way to lower the base resistance is to increase the impurity concentration in the base, but this does not solve the above problem because the increase in junction capacitance causes deterioration in transistor characteristics. [Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device having at least a control electrode region and a main electrode region. a first diffusion source containing the impurity of the one conductivity type and in contact with the side surface of the first diffusion source via an insulating layer and containing the impurity of the one conductivity type; and a third diffusion source containing a higher concentration than the second diffusion source. One main electrode region is formed by diffusing the impurity from the first diffusion source into the one conductivity type semiconductor layer, and each impurity is diffused into the one conductivity type semiconductor layer from the second and third diffusion sources. This is characterized in that an inactive control electrode region having a higher concentration than the one conductivity type semiconductor layer is formed. [Function] Depending on the thickness of the insulating layer, the main electrode region and #I
m′! Since the distance between the ll pole region and the inactive region is determined, the entire semiconductor device can be miniaturized, and furthermore, the impurity concentration of the inactive region formed by the second diffusion source is Due to the F11 of the type semiconductor layer and the inactive region formed by the third diffusion source, the energy of the 111112a lightning chain is low. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. s1 Figures (A) to (I) are manufacturing process diagrams showing one embodiment of a method for manufacturing a semiconductor device according to the present invention. First, an N0 buried layer 32 and a P buried region 33 are formed on a P-type silicon substrate 31, and N! ! ! A silicon epitaxial layer 34 is grown to a thickness of about 21 Lm. Further, the nitride IIC (not shown) is patterned to partially form an isolation oxide film 35 of 21 Lm or more. Subsequently, after removing the nitride film, a mask material 36 is applied, openings are formed by patterning, and poron ions are transferred to a concentration I.
Enter with X 1014 am-2 [Figure 1 (A)]
. Next, the mask material 3B is removed, and heat treatment is performed to diffuse the implanted poron ions, resulting in a thickness of 0.2 to 0.8
A P-type base region 37 of 1 Lm is formed. Subsequently, polysilicon 3B having a thickness of 3,000 to 5,000 layers is deposited thereon [FIG. 3(B)]. Next, N-type impurities are diffused into the polysilicon 38 and patterned, and the polysilicon 39 serves as a first diffusion source.
and polysilicon 40 is formed. Subsequently, when oxidation is performed, a thick oxide film 4 is formed on the polysilicon 33 and 40.
1 and 42 are formed and the base region 37 is a single crystal.
A thin oxide film is formed on top. However, as will be described later, the thickness of the oxide film 41 determines the distance between the inactive base region and the emitter region [Figure (C)]
. Next, reactive ion etching (hereinafter referred to as R
IE. ) After removing the thin oxide film on the base region 37, BSG 1II43 is deposited [see the same figure (
D) ]. Next, the BSG film 4 was etched away by 3IE, and BSG was removed as a second diffusion source only on the sidewall of the oxide 1141.
1 (E) leaving H44 and 45]. Next, 4,000 to 7,000 layers of polysilicon 4B are deposited, and poron ions are implanted and diffused therein (CF in the same figure).
]. Next, polysilicon 4B is etched back [FIG.
) ]. Next, the etched back polysilicon 48 is a third diffusion source, and after patterning, thermal oxidation is performed.
By this heat treatment, N-type impurities are diffused from polysilicon 33 and 40 containing N-type impurities, forming N0 emitter regions 47 and N0 regions 48, and forming polysilicon containing P-type impurities (boron). 48 and OSG [144 and 41 which also contain boron], poron is diffused to form a first inactive base region 48 and a second inactive base region 50. However, the impurity concentration of the second inactive base region 50 is between the impurity concentration of the base region 37 (here, ~1Q18) and the impurity concentration of the first inactive base region 49 (here, ~5X1019). . Further, by this thermal oxidation, an oxide film 51 is formed on the polysilicon 48 [FIG. 4(H)]. Finally, openings are formed in the oxide films 44, 42.51 by patterning, and the emitter electrode metal 52. A base electrode metal 53 and a collector electrode metal 54 are each deposited [FIG. 1(1)]. In this way, the bipolar transistor manufactured according to this embodiment has the emitter region 47 and the inactive base region 4.
8 and 50 can be determined by the thickness of the oxide film 41. Furthermore, since the second inactive base region 50 having a higher concentration than the base region 37 is provided, the base resistance can be lowered. FIG. 2 is a partial process diagram showing another embodiment of this example. After depositing polysilicon 36 and diffusing N-type impurities in FIG. 1(B), as shown in FIG. 2(^). The nitride film 6 is patterned by patterning nitride @SO and 81.
Polysilicon 38 is etched using 0 and 61 as masks to form polysilicon 38 and 40. Then, oxidation is performed to form an oxide film 41 with a desired thickness, which determines the distance between the emitter region and the inactive base region. Next, as shown in FIG. 2(B), the thin oxide film on the base region 37 is removed by RIE, and the oxide film 3 on the BSG film 4 is removed.
Then, the same processing as in FIGS. 1(E) to (I) is performed. In this way, the nitrides M60 and 81 are added to the polysilicon 3
Polysilicon 38 is used as a mask when forming 9 and 40, and also as an insulating film.
and 40 patterning steps are simplified. Note that a manufacturing method for the transistor shown in this embodiment with its conductivity type reversed can be very easily conceived from this embodiment. [Effects of the Invention] As explained in detail above, the method for manufacturing a semiconductor device according to the present invention has advantages in that the distance between the main electrode region and the inactive region of the control electrode region is determined by the thickness of the insulating layer. In addition, the entire semiconductor device can be miniaturized, and since the inactive region and the main electrode region do not form a junction, the junction capacitance can be reduced. Roughly speaking, the impurity concentration of the second inactive region formed by the second diffusion source is between the control electrode region and the first inactive region formed by the third diffusion source. The resistance is lower and the characteristics of the device are improved. Therefore, higher integration and higher performance of the semiconductor device can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(1)は、本発明による半導体装置の製
造方法の一実施例を示す製造工程図、第2図は、本実施
例の他の実施態様を示す部分的工程図。 第3図(A)〜(C)は、従来の半導体装置の製造方法
を示す概略的工程図である。 31争争・基板 34−−・エピタキシャル層 3711・やベース領域 39・・・ポリシリコン(第一拡散源)44、45− 
@・ポリシリコン(第二拡散源)46・・拳ポリシリコ
ン(第三拡散源)47・・・エミッタ領域 49・・・第一不活性ベース領域 50・・・第二不活性ベース領域 第1図 第2図
1(A) to (1) are manufacturing process diagrams showing one embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIG. 2 is a partial process diagram showing another embodiment of this embodiment. FIGS. 3A to 3C are schematic process diagrams showing a conventional method for manufacturing a semiconductor device. 31 Dispute・Substrate 34--・Epitaxial layer 3711・Base region 39...Polysilicon (first diffusion source) 44, 45-
@・Polysilicon (second diffusion source) 46...Fist polysilicon (third diffusion source) 47...Emitter region 49...First inactive base region 50...Second inactive base region 1st Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)制御電極領域と主電極領域とを少なくとも有する
半導体装置の製造方法において、 一導電型半導体層上に、反対導電型不純 物を含む第一拡散源と、該第一拡散源の側面に絶縁層を
介して接し前記一導電型の不純物を含む第二拡散源と、
該第二拡散源に接し前記一導電型の不純物を前記第二拡
散源より高濃度に含む第三拡散源と、を形成し、 前記第一拡散源から該不純物を前記一導 電型半導体層へ拡散させることで一方の主電極領域を形
成し、前記第二および第三拡散源から各不純物を前記一
導電型半導体層へ拡散させることで該一導電型半導体層
より高濃度の不活性制御電極領域を形成することを特徴
とする半導体装置の製造方法。
(1) In a method of manufacturing a semiconductor device having at least a control electrode region and a main electrode region, a first diffusion source containing an impurity of an opposite conductivity type is provided on a semiconductor layer of one conductivity type, and an insulated side surface of the first diffusion source is provided. a second diffusion source containing the impurity of the one conductivity type and in contact with each other through a layer;
forming a third diffusion source that is in contact with the second diffusion source and contains impurities of the one conductivity type at a higher concentration than the second diffusion source; and directing the impurities from the first diffusion source to the one conductivity type semiconductor layer. One main electrode region is formed by diffusion, and each impurity is diffused into the one conductivity type semiconductor layer from the second and third diffusion sources to form an inactive control electrode with a higher concentration than the one conductivity type semiconductor layer. A method of manufacturing a semiconductor device, comprising forming a region.
JP3741085A 1985-02-28 1985-02-28 Manufacture of semiconductor device Pending JPS61198673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3741085A JPS61198673A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3741085A JPS61198673A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61198673A true JPS61198673A (en) 1986-09-03

Family

ID=12496748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3741085A Pending JPS61198673A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61198673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308077A (en) * 1991-02-21 1993-11-19 Samsung Electron Co Ltd Bipolar semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308077A (en) * 1991-02-21 1993-11-19 Samsung Electron Co Ltd Bipolar semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH06252359A (en) Manufacture of semiconductor device
JPH05206451A (en) Mosfet and its manufacture
JPS61198673A (en) Manufacture of semiconductor device
JPS61225851A (en) Semiconductor device and manufacture thereof
JPH01114042A (en) Manufacture of semiconductor device
JP2925910B2 (en) Manufacturing method of insulated gate semiconductor device
JP2000252290A (en) Semiconductor device and its manufacture
JPS61198674A (en) Manufacture of semiconductor device
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
KR940010540B1 (en) Isolating area forming method having gettering function and their structure
JPH06505127A (en) Bipolar transistor structure and its manufacturing method
JPH06196707A (en) Manufacture of vertical type insulated-gate transistor
JP2594697B2 (en) Method for manufacturing semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH06224208A (en) Manufacture of semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPH02210867A (en) Manufacture of semiconductor device
JPS61147575A (en) Manufacture of semiconductor device
JPH04162632A (en) Semiconductor device
JPH0258230A (en) Manufacture of bipolar transistor
JPH05226349A (en) Semiconductor device and its manufacture
JPH03272144A (en) Semiconductor device and manufacture thereof
JPH02256242A (en) Semiconductor device and manufacture thereof
JPH04321233A (en) Manufacture of semiconductor device
JPS5917282A (en) Semiconductor device