JPS61194779A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61194779A
JPS61194779A JP3505485A JP3505485A JPS61194779A JP S61194779 A JPS61194779 A JP S61194779A JP 3505485 A JP3505485 A JP 3505485A JP 3505485 A JP3505485 A JP 3505485A JP S61194779 A JPS61194779 A JP S61194779A
Authority
JP
Japan
Prior art keywords
film
insulating film
source
si3n4
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3505485A
Other languages
Japanese (ja)
Inventor
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3505485A priority Critical patent/JPS61194779A/en
Publication of JPS61194779A publication Critical patent/JPS61194779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form opening sections for a drain electrode and a source electrode in a self-alignment manner to a gate electrode by forming a first insulating film coating the surface and side surface of the gate electrode, shaping a second insulating film coating the upper sections of source-in regions and the upper section of the first insulating film and selecting the etching rate of the second insulating film at a value higher than the etching rate of the first insulating film. CONSTITUTION:An SiO2 film 10 is grown on the upper surface and side surface of a gate electrode 7, an Si3N4 film 11 and further SiO2 12 onto the Si3N4 film 11 are grown in a vapor phase manner, and laminatings except a gate region are removed. Si3N4 13 is grown on the whole surface in the vapor phase manner. The Si3N4 layer is etched extending over the whole surface through a reactive ion etching method. The SiO2 film 12 on a gate is removed through etching, and a PSG film 8 is grown on the whole surface in the vapor phase manner. A resist film 14 to which source-drain electrode contact forming sections are bored through a photolithographic method is shaped, and the PSG film 8 is etched. Contact opening sections 9 for the PSG film are etched by a selection ratio of the PSG film 8 to the Si3N4 film 13 through the etching, and the stepped section of the Si3N4 film 13 is hardly etched.

Description

【発明の詳細な説明】 〔概要〕 電極コンタクト開口部の形成に当たり、マスク位置合わ
せ誤差を考慮する必要を無くし、集積度の向上を図るた
めに、セルファライン的にソース、ドレイン電極コンタ
クト開口部を形成可能としたM I S (Metal
 InsulatorSemiconductor) 
F ET (Field  Effect ”l’ra
nsistor )の構造と形成方法。
[Detailed Description of the Invention] [Summary] In order to eliminate the need to consider mask alignment errors when forming electrode contact openings and to improve the degree of integration, source and drain electrode contact openings are formed in a self-aligned manner. MIS (Metal
Insulator Semiconductor)
F ET (Field Effect "l'ra"
nsistor) structure and formation method.

〔産業上の利用分野〕[Industrial application field]

本発明は、MIS構造において、そのゲート絶縁膜の構
造と、′これに関連せるソースおよびドレイン電極コン
タクト部の形成方法に関する。
The present invention relates to a structure of a gate insulating film in a MIS structure and a method of forming source and drain electrode contact portions related thereto.

半導体集積回路の集積度の向上に伴って、MI5FET
における、ゲーI−電極とソース、ドレイン電極間の間
隙寸法は、益々微細化の傾向がある。
With the improvement in the degree of integration of semiconductor integrated circuits, MI5FET
There is a tendency for the gap size between the gate I-electrode and the source and drain electrodes to become smaller and smaller.

然しなから、ソース、ドレイン電極コンタクト部の形成
はマスクの位置合わせ精度を考慮して、位置合わせての
許容誤差分を含めた、間隙寸法を設計寸法として選ぶ必
要があり、許容誤差分を出来るだけ少なくする改善が要
望されている。
However, when forming the source and drain electrode contacts, it is necessary to select the gap dimensions as design dimensions, including the alignment tolerance, taking into account the alignment accuracy of the mask. There is a need for improvements to reduce this.

〔従来の技術〕[Conventional technology]

従来の技術によるMis  FETのゲート電極構造、
およびソース、ドレイン電極コンタクト部の形成方法を
第2図によって詳細説明する。
Gate electrode structure of MisFET according to conventional technology,
A method for forming the source and drain electrode contact portions will be explained in detail with reference to FIG.

第2図(a)はソース、ドレイン電極コンタクト部を形
成する直前での工程断面図を示す。
FIG. 2(a) shows a cross-sectional view of the process immediately before forming source and drain electrode contact portions.

図面でp型シリコン基板1にn゛型ソース、ドレイン拡
散領域2,3、フィールド酸化膜4、p゛型寄生チャネ
ル防止層5、ゲー)?J域には二酸化シリコン絶縁膜6
、ゲート電極7となる多結晶シリコンの形成を終わり、
全面に絶縁膜としてPSG膜8を積層した状態を示す。
In the drawing, a p-type silicon substrate 1 is provided with n-type source and drain diffusion regions 2 and 3, a field oxide film 4, a p-type parasitic channel prevention layer 5, and a gate layer 5). A silicon dioxide insulating film 6 is provided in the J region.
, the formation of the polycrystalline silicon that will become the gate electrode 7 is completed,
A state in which a PSG film 8 is laminated as an insulating film over the entire surface is shown.

次いで、フォトリソグラフィ法により、電極コンタクト
開口部9を形成する領域を除いて、他をレジスト膜でマ
スクして、PSG膜8をエツチング除去する。この状態
を第2図(b)に示す。
Next, by photolithography, the PSG film 8 is removed by etching, except for the region where the electrode contact opening 9 is to be formed, while masking the rest with a resist film. This state is shown in FIG. 2(b).

このとき、多結晶シリコンのゲート電極7と残存PSG
膜寸法aは0.3〜0.5μmあれば絶縁層としての機
能は充分である。
At this time, the polycrystalline silicon gate electrode 7 and the remaining PSG
If the film dimension a is 0.3 to 0.5 μm, it will have a sufficient function as an insulating layer.

然しなから、上記コンタクト開口部9の形成に当たって
、マスク合わせの精度の許容誤差0.3〜0.5μmを
見込んで設計上3寸法は0.8〜1.0μmに選定され
ている。
However, in forming the contact opening 9, the three dimensions are designed to be 0.8 to 1.0 μm, taking into account the tolerance of mask alignment accuracy of 0.3 to 0.5 μm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の技術で説明せるごとく、ゲート電極とソース
、あるいはドレイン電極間の間隙寸法aを約0.5 μ
mの余裕をとるため、1トランジスタ当たり両方で倍の
約1.0μmの寸法余裕を必要とする。
As explained in the above conventional technology, the gap dimension a between the gate electrode and the source or drain electrode is approximately 0.5 μm.
In order to have a margin of 1.0 .mu.m, a dimensional margin of approximately 1.0 .mu.m is required for each transistor.

これは、半導体集積回路で多数のトランジスタを&、1
1み込むLSI設計においては、高集積化の大きい障害
となり、解決が求められている。
This is a semiconductor integrated circuit that uses a large number of transistors &, 1
This is a major obstacle to achieving high integration in LSI designs that require a single integration, and a solution is required.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、ゲート電極周辺の構造を第
1図(dl、 (elOごとくに構成する。
In order to solve the above problem, the structure around the gate electrode is constructed as shown in FIG. 1 (dl, (elO).

即ち、ゲート電極7、ソース領域2、ドレイン領域3を
有し、該ゲート電極の表面及び側面覆う第1の絶縁膜1
1.13を形成する。
That is, the first insulating film 1 has a gate electrode 7, a source region 2, and a drain region 3, and covers the front and side surfaces of the gate electrode.
1.13 is formed.

次いで、ソース、ドレイン領域上及び前記第1の絶縁膜
上を覆う第2の絶縁膜8とが設ける。
Next, a second insulating film 8 is provided covering the source and drain regions and the first insulating film.

このとき形成される第2の絶縁膜のエツチングレートは
、前記第1の絶縁膜のエツチングレートよりも高く選ば
れるので、ドレイン電極、ソース電極接続用の電極窓内
に前記ゲート電極の側面に形成された前記第1の絶縁膜
が露出し、位置合わせ精度の極めて高いMIS  FE
Tの構造が得られる。
Since the etching rate of the second insulating film formed at this time is selected to be higher than the etching rate of the first insulating film, it is formed on the side surface of the gate electrode within the electrode window for connecting the drain electrode and source electrode. The first insulating film is exposed, and the MIS FE has extremely high alignment accuracy.
The structure of T is obtained.

また、その製造方法としては、ゲート電極の側面及び表
面を覆う第1の絶縁膜を形成する。ついで、ソース、ド
レイン及び前記第1の絶縁膜を覆い、且つ前記第1の絶
縁膜よりエツチングレートの高い第2の絶縁膜を形成す
る。
Further, as a manufacturing method thereof, a first insulating film is formed to cover the side surfaces and the surface of the gate electrode. Next, a second insulating film is formed which covers the source, drain and the first insulating film and has a higher etching rate than the first insulating film.

次いで、ソース、ドレイン電極接続用の開口を第2の絶
縁膜に形成することよって、ゲート電極の側面に第1の
絶縁膜が露出し、位置合わせ精度の極めて高いMis 
 FET構造がセルファライン的に形成される。
Next, by forming openings for connecting the source and drain electrodes in the second insulating film, the first insulating film is exposed on the side surface of the gate electrode, resulting in a misalignment with extremely high alignment accuracy.
The FET structure is formed in a self-aligned manner.

〔作用〕[Effect]

ゲート電極を薄い5iO12、次いで厚いS i 3N
 aを積層することによって、ゲート電極とソース、ド
レイン電極間の間隙寸法は、殆どゲート電極の段差部で
の5i3Nn膜の膜厚で規制される。
The gate electrode was made of thin 5iO12, then thick Si3N.
By stacking a, the gap size between the gate electrode and the source and drain electrodes is mostly regulated by the thickness of the 5i3Nn film at the stepped portion of the gate electrode.

また、このためPSG膜にソース、ドレイン電極芯の形
成方法はドライエツチング法により、PSG膜、S i
 3 N 4膜に対するエツチングの選択比を用いてゲ
ート電極に対してセルファライン的に形成可能となる。
For this reason, the source and drain electrode cores are formed on the PSG film by a dry etching method.
By using the etching selectivity with respect to the 3N4 film, it is possible to form the gate electrode in a self-aligned manner.

〔実施例〕〔Example〕

本発明による一実施例を図面により詳細説明する。 An embodiment according to the present invention will be described in detail with reference to the drawings.

第1図は、従来例で説明せる第2図(alにおいてPS
G膜8を形成する前の状態よりの、各工程での構造断面
図を示している。
FIG. 1 is a diagram showing the PS
A cross-sectional view of the structure at each step is shown before the G film 8 is formed.

図面において第2図で説明せる同一番号については説明
を省略する。
In the drawings, explanations of the same numbers explained in FIG. 2 will be omitted.

第1図(alは、ゲート電極7の上面および側面にSi
O□膜10全100〜500人成長させ、更にSi3N
4膜11を約1000〜2000人、更に、S i 3
 N 4膜11の上に5iOz12を1000〜200
0人の厚さに気相成長させて、ゲート領域以外の積層を
除去した状態を示す。
FIG. 1 (Al is Si on the top and side surfaces of the gate electrode 7.
A total of 100 to 500 O□ films were grown, and then Si3N
4 membranes 11 for about 1000 to 2000 people, and furthermore, S i 3
1000~200 5iOz12 on the N4 film 11
The state is shown in which the layer is grown in a vapor phase to a thickness of 0.0 mm and the stacked layers other than the gate region are removed.

ここで5iOz12は必ずしも必要ということではない
Here, 5iOz12 is not necessarily required.

次いで、全面に5i3N413を約2000〜2500
人の厚さに気相成長させる。これを第1図(blに示す
Next, apply approximately 2000 to 2500 5i3N413 to the entire surface.
It is grown by vapor phase to the thickness of a person. This is shown in Figure 1 (bl).

更に、反応性イオンエツチング法(RI E)でSi3
N4層を全面にエツチングを行う。RIE法は異方性で
あるため、基板面に平行なる面上に積層されたS i 
3N 4層13は除去され、ゲート部に垂直方向に積層
されたSi3N4膜13と5i02膜12に保護された
5izN411は残されて、第1図(C1の形状となっ
て残される。
Furthermore, Si3 was etched using reactive ion etching (RIE).
Etch the entire N4 layer. Since the RIE method is anisotropic, Si stacked on a plane parallel to the substrate surface
The 3N4 layer 13 is removed, and the 5izN411 protected by the Si3N4 film 13 and the 5i02 film 12 stacked vertically on the gate portion is left in the shape shown in FIG. 1 (C1).

次いで、ゲート上のSiO□膜12全12チング除去し
、全面にPSG膜8を気相成長させる。これを第1図(
d)に示す。
Next, the entire SiO□ film 12 on the gate is removed by 12 steps, and a PSG film 8 is grown in a vapor phase over the entire surface. This is shown in Figure 1 (
Shown in d).

次いで、フォトリソグラフィ法でソース、トレイン電極
コンタクト形成部を開口したレジスト膜14を形成し、
反応性プラズマエツチング法でPSG膜8のエツチング
を行う。
Next, a resist film 14 with openings for source and train electrode contact forming portions is formed by photolithography,
The PSG film 8 is etched using a reactive plasma etching method.

このエツチングではPSG膜8と5i3Na膜13との
選択比によって、PSG膜のコンタクト開口部9がエツ
チングされ、S i 3 N <膜13の段差部は殆ど
エツチングされない。
In this etching, the contact opening 9 of the PSG film is etched due to the selection ratio between the PSG film 8 and the 5i3Na film 13, and the step portion of the film 13 where S i 3 N < is hardly etched.

従って、電極コンタクト開口部9とゲート電極との間隙
寸法は、殆どSi3N4層13の膜厚によって決定され
る。 以上の方法により、ソース、ドレイン電極とゲー
ト電極との間隙は、S+3Na膜厚によってセルファラ
イン的に形成される。
Therefore, the gap size between the electrode contact opening 9 and the gate electrode is determined mostly by the thickness of the Si3N4 layer 13. By the above method, the gap between the source/drain electrode and the gate electrode is formed in a self-aligned manner depending on the thickness of the S+3Na film.

以後のアルミニウム電極層の形成工程以降は従来の方法
と変わらない。
The subsequent process of forming the aluminum electrode layer is the same as the conventional method.

〔発明の効果〕〔Effect of the invention〕

本発明のゲート電極の絶縁層構造、および電極コンタク
ト部の形成方法を用いることにより、ソース、ドレイン
電極コンタクト開口部はゲート電極に対してセルファラ
イン的に形成され、マスク合わせの精度誤差を考慮する
ことなく電極間隙寸法を決定出来る。従って、高集積化
に寄与するところ大きい。
By using the insulating layer structure of the gate electrode and the method for forming the electrode contact portion of the present invention, the source and drain electrode contact openings are formed in a self-aligned manner with respect to the gate electrode, taking into account accuracy errors in mask alignment. The electrode gap size can be determined without any problems. Therefore, it greatly contributes to higher integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を工程順に示す断面図、 第2図は従来技術による電極コンタクト部の工程途中の
断面図を示す。 図面において、 ■はp型シリコン基手反、 2はソース拡散領域、 3はドレイン拡散領域、 4はフィールド酸化膜、 5は寄生チャネル防止層、 6.10.12は5in2膜、 7はゲート電極、 8はPSG膜、 9は電極コンタクト開口部、 11.13はSi3N、膜、 14はレジスト膜、 をそれぞれ示す。 本発明/l(他fl’Jr+工科1!tえ朔図10.5
iOz 本発明の失胞例めτ程神説明図 第1r′4
FIG. 1 is a cross-sectional view showing an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view showing an electrode contact part in the middle of the process according to the prior art. In the drawing, ① indicates a p-type silicon substrate, 2 indicates a source diffusion region, 3 indicates a drain diffusion region, 4 indicates a field oxide film, 5 indicates a parasitic channel prevention layer, 6.10.12 indicates a 5in2 film, and 7 indicates a gate electrode. , 8 is a PSG film, 9 is an electrode contact opening, 11.13 is a Si3N film, and 14 is a resist film. The present invention/l (other fl'Jr + engineering 1!
iOz Example of ablation of the present invention τ Hogami explanatory diagram 1r'4

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート電極7、ソース領域2、ドレイン領域3を
有し、該ゲート電極の表面及び側面覆う第1の絶縁膜1
1、13と、 該ソース、ドレイン領域上及び該第1の絶縁膜上を覆う
第2の絶縁膜8とが設けられ、 前記第2の絶縁膜のエッチングレートは、前記第1の絶
縁膜のエッチングレートよりも高く、且つ、ドレイン電
極、ソース電極接続用の電極窓内に前記ゲート電極の側
面に形成された前記第1の絶縁膜が露出していることを
特徴とする半導体装置。
(1) A first insulating film 1 that has a gate electrode 7, a source region 2, and a drain region 3 and covers the front and side surfaces of the gate electrode.
1 and 13, and a second insulating film 8 covering the source and drain regions and the first insulating film, the etching rate of the second insulating film being equal to that of the first insulating film. A semiconductor device characterized in that the first insulating film formed on the side surface of the gate electrode is exposed within an electrode window for connecting a drain electrode and a source electrode, the first insulating film being higher than an etching rate.
(2)ゲート電極の側面及び表面を覆う第1の絶縁膜を
形成する工程と、 ソース、ドレイン及び前記第1の絶縁膜を覆い、且つ前
記第1の絶縁膜よりエッチングレートの高い第2の絶縁
膜を形成する工程と、 次いで、ソース、ドレイン電極接続用の開口を前記第2
の絶縁膜に形成する工程を有することを特徴とする半導
体装置の製造方法。
(2) forming a first insulating film that covers the side surfaces and surface of the gate electrode; and forming a second insulating film that covers the source, drain, and the first insulating film and has a higher etching rate than the first insulating film; a step of forming an insulating film, and then openings for connecting the source and drain electrodes to the second
1. A method for manufacturing a semiconductor device, comprising the step of forming an insulating film.
JP3505485A 1985-02-22 1985-02-22 Semiconductor device and manufacture thereof Pending JPS61194779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3505485A JPS61194779A (en) 1985-02-22 1985-02-22 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3505485A JPS61194779A (en) 1985-02-22 1985-02-22 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61194779A true JPS61194779A (en) 1986-08-29

Family

ID=12431320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3505485A Pending JPS61194779A (en) 1985-02-22 1985-02-22 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61194779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913121A (en) * 1997-02-25 1999-06-15 Nec Corporation Method of making a self-aligning type contact hole for a semiconductor device
US7649261B2 (en) 1996-07-18 2010-01-19 Fujitsu Microelectronics Limited Highly integrated and reliable DRAM and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649261B2 (en) 1996-07-18 2010-01-19 Fujitsu Microelectronics Limited Highly integrated and reliable DRAM and its manufacture
US8143723B2 (en) 1996-07-18 2012-03-27 Fujitsu Semiconductor Limited Highly integrated and reliable DRAM and its manufacture
US5913121A (en) * 1997-02-25 1999-06-15 Nec Corporation Method of making a self-aligning type contact hole for a semiconductor device

Similar Documents

Publication Publication Date Title
JPH05206451A (en) Mosfet and its manufacture
JPH05283519A (en) Manufacture of semiconductor device
JPH04348077A (en) Thin-film transistor
JPS63293850A (en) Manufacture of semiconductor device
JPS61247051A (en) Manufacture of semiconductor device
JPS61194779A (en) Semiconductor device and manufacture thereof
JPH0363219B2 (en)
JPH06151852A (en) Thin film transistor
US5792671A (en) Method of manufacturing semiconductor device
JPS6161539B2 (en)
JPH0225073A (en) Manufacture of semiconductor element
JPH01157570A (en) Semiconductor device and its manufacture
JPS6316672A (en) Manufacture of semiconductor element
JPS6147650A (en) Manufacture of semiconductor integrated circuit device
JPS6331156A (en) Semiconductor device
JPS6126223B2 (en)
JP3259439B2 (en) Method for manufacturing semiconductor device
JPH05343515A (en) Semiconductor device and its manufacture
JPH08236608A (en) Fabrication of semiconductor device
JPS63229747A (en) Manufacture of semiconductor device
JPS60235460A (en) Semiconductor device
JPS62136073A (en) Manufacture of semiconductor device
JPS62283663A (en) Thin film transistor
JPS61290762A (en) Manufacture of semiconductor device
JPS63276271A (en) Manufacture of mos field effect transistor