JPS61194656A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPS61194656A
JPS61194656A JP60034745A JP3474585A JPS61194656A JP S61194656 A JPS61194656 A JP S61194656A JP 60034745 A JP60034745 A JP 60034745A JP 3474585 A JP3474585 A JP 3474585A JP S61194656 A JPS61194656 A JP S61194656A
Authority
JP
Japan
Prior art keywords
alloy
recording medium
light
metal
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60034745A
Other languages
Japanese (ja)
Inventor
Norifumi Miyamoto
詔文 宮本
Satoshi Shimada
智 嶋田
Hiroshi Sasaki
宏 佐々木
Nobuyoshi Tsuboi
坪井 信義
Hideki Nihei
秀樹 二瓶
Tetsuo Ito
伊藤 鉄男
Yoshio Sato
佐藤 美雄
Makoto Hiraga
平賀 良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60034745A priority Critical patent/JPS61194656A/en
Publication of JPS61194656A publication Critical patent/JPS61194656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To obtain an information recording medium which does not require an automatic focusing system by forming a recording medium of a metal or alloy which has at least two kinds of crystal structure in a solid state, maintains the crystal structure of one temp. region in the other temp. region and/or induces the volumetric changes different from each other in a crystal state. CONSTITUTION:An objective lens which condenses the light from a light source and forms a spot is united to the recording medium. The recording medium is formed of the metal or alloy which has at least two kinds of the crystal structure in the solid state, maintains the crystal structure of one temp. region in the other temp. region and/or induces the volumeric changes different from each other in the crystal state. The optical disk which does not require automatic focusing is thus constituted. The high density and high speed recording and reproducing are possible even if the rotating speed of the disk is decreased by scanning the disk with a beam in the radial direction thereof by using a galvanomirror.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光デイスク装置、カメラ、V−ザービームプリ
ンタなどの焦点調整を必要とする光学系に利用するに好
適な光学Vンズ装置を備え次情報記録媒体に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention includes an optical V-lens device suitable for use in an optical system requiring focus adjustment such as an optical disk device, a camera, and a V-zer beam printer. Regarding information recording media.

〔発明の背景〕[Background of the invention]

上記したところの装置は多くのレンズにより構成される
光学系であり、レンズは主にガラスにより構成される。
The above-mentioned device is an optical system composed of many lenses, and the lenses are mainly composed of glass.

かつレンズのうち多くのものは焦点調整を自動的に行な
う必要がある几めに、/ンズの駆動機構を有している。
In addition, many of the lenses have a lens drive mechanism in order to automatically adjust the focus.

係る光学系の・代表的−例として光デイスク装置は雑誌
[日立評論J 1984年8月号等にて知られている。
As a typical example of such an optical system, an optical disk device is known from the magazine [Hitachi Hyoron J, August 1984 issue, etc.].

〔発明の目的〕[Purpose of the invention]

本発明の目的は自動焦点系が不要な情報記録媒体を提供
するにある。
An object of the present invention is to provide an information recording medium that does not require an automatic focusing system.

〔発明の概要〕[Summary of the invention]

本発明は、対物レンズと光ディスクとを一体化するとと
もに、前記記録媒体として固体状態で少なくとも2種類
の結晶構造を有し、一方の温度領域での結晶構造を他方
の温度領域で保持し、及び/又は結晶状態で互いに異な
つt体積変化を生じる金属又は合金からなることを特徴
とする情報記録媒体にある。
The present invention integrates an objective lens and an optical disk, has at least two types of crystal structures in a solid state as the recording medium, maintains the crystal structure in one temperature range in the other temperature range, and An information recording medium characterized in that it is made of a metal or an alloy that causes different t volume changes in a crystalline state.

なお、結晶変化が生じなくても凹凸の変化を生じる合金
であれば使用可能である。
Note that any alloy that causes a change in unevenness can be used even if no crystal change occurs.

合金例としては、Cu−A1合金、Cu−Zn合金、C
u−7Vl−Zn合金、Cu−At−Ni合金、Cu−
At−Mn合金、Cu−At−Fe−Cr合金、Cu−
Qa金合+ Cu At Qa合金、Cu−In合金、
CbbAA−In合金。
Examples of alloys include Cu-A1 alloy, Cu-Zn alloy, C
u-7Vl-Zn alloy, Cu-At-Ni alloy, Cu-
At-Mn alloy, Cu-At-Fe-Cr alloy, Cu-
Qa gold alloy + Cu At Qa alloy, Cu-In alloy,
CbbAA-In alloy.

(:u−Ga合金、Cu−ht−Ge合金、Cu−8u
合金、Cu−’I”e合金、Cu−Ti合金。
(: u-Ga alloy, Cu-ht-Ge alloy, Cu-8u
alloy, Cu-'I''e alloy, Cu-Ti alloy.

Cu−At−8a合金、Cu−Zn合金、Cu−5i合
金、cu−sb金合金 Cu−Be合金。
Cu-At-8a alloy, Cu-Zn alloy, Cu-5i alloy, cu-sb gold alloy Cu-Be alloy.

Cu−[3a合金、CLI−Mn合金、Cu−pd金合
金cu−pt金合金Ag−Zn合金、Ag−A/。
Cu-[3a alloy, CLI-Mn alloy, Cu-pd gold alloy, cu-pt gold alloy, Ag-Zn alloy, Ag-A/.

合金、Ag−Cd合金、xg−In合金、Ag−Qa合
金、Ag−AL−Au合金、xg−AL−Cu合金、A
g−At−Au−Cu合金、Ag−ht−Cd合金、Δ
g−ptメ′合金、xg−8合金。
Alloy, Ag-Cd alloy, xg-In alloy, Ag-Qa alloy, Ag-AL-Au alloy, xg-AL-Cu alloy, A
g-At-Au-Cu alloy, Ag-ht-Cd alloy, Δ
g-pt metal alloy, xg-8 alloy.

xg−8n合金、Ag−’pe合金lAg−Ti合金、
Ag−Zr合金、Ag−As合金、Ag−Au合金、A
g−Be合金、Ag−Mg合金。
xg-8n alloy, Ag-'pe alloy lAg-Ti alloy,
Ag-Zr alloy, Ag-As alloy, Ag-Au alloy, A
g-Be alloy, Ag-Mg alloy.

Ag−Li合金、Ag−Mn合金、At−Fe合金、A
t−Mg合金、xt−Mn合金、At−pd金合金AL
−Te合金、At−Ti合金。
Ag-Li alloy, Ag-Mn alloy, At-Fe alloy, A
t-Mg alloy, xt-Mn alloy, At-pd gold alloy AL
-Te alloy, At-Ti alloy.

AA−Zn合金、At−Zr金合+ N I  S b
合金、Ni−8n合金、Ni−8n合金、N1−()a
合金、Mn−Ge合金、Ni −Ge合金。
AA-Zn alloy, At-Zr gold alloy + N I S b
Alloy, Ni-8n alloy, Ni-8n alloy, N1-()a
alloy, Mn-Ge alloy, Ni-Ge alloy.

Nf−Mn合金、Ni−8合金、Ni−Ti合金。Nf-Mn alloy, Ni-8 alloy, Ni-Ti alloy.

Fe−As合金、As−8合金、As−Zn合金。Fe-As alloy, As-8 alloy, As-Zn alloy.

Fe−13a合金、l’e−Ni合金、Fe−Cr合金
、Fe−P合金、Mn−Pd合金、Mn−Pt合金、M
n−8b合金、Mn−8i合金、Au−Ca合金、Au
−A1合金、Au−In合金。
Fe-13a alloy, l'e-Ni alloy, Fe-Cr alloy, Fe-P alloy, Mn-Pd alloy, Mn-Pt alloy, M
n-8b alloy, Mn-8i alloy, Au-Ca alloy, Au
-A1 alloy, Au-In alloy.

Au−Ga合金、4u−Ca合金、4u−Cu合金、 
Au−1;’e金合、Au−Mn金合、p、u−Zn合
金、、3a−Ca合金、B1−Pb合金。
Au-Ga alloy, 4u-Ca alloy, 4u-Cu alloy,
Au-1; 'e gold alloy, Au-Mn gold alloy, p, u-Zn alloy, 3a-Ca alloy, B1-Pb alloy.

Bi−Tt合金、Ti−Ni合金、N1−V合金。Bi-Tt alloy, Ti-Ni alloy, N1-V alloy.

Ni−Zn合金、Cd−Li合金、Cd−Mg合金、C
d−Pb合金、Cd−8b合金、5b−In合金、5b
−In−Be合金、Mg−Ce合金、Co−Cr合金、
Co−Ge合金、CoMn合金、Co−8b合金、Co
−V合金、In −Mg合金、In−Mn合金、In−
Ni合金、In−8n合金、In−Tt合金、Li−Z
n合金。
Ni-Zn alloy, Cd-Li alloy, Cd-Mg alloy, C
d-Pb alloy, Cd-8b alloy, 5b-In alloy, 5b
-In-Be alloy, Mg-Ce alloy, Co-Cr alloy,
Co-Ge alloy, CoMn alloy, Co-8b alloy, Co
-V alloy, In-Mg alloy, In-Mn alloy, In-
Ni alloy, In-8n alloy, In-Tt alloy, Li-Z
n-alloy.

Mn−Zn合金、Pb−T/1.合金、pb−s合金。Mn-Zn alloy, Pb-T/1. alloy, pb-s alloy.

pb−sb金合金Pd−Zn合金、5n−8b合金、T
t−8b合金、5b−Zn合金、Ti−8u合金、Tt
−an合金、Zr−8n合金。
pb-sb gold alloy Pd-Zn alloy, 5n-8b alloy, T
t-8b alloy, 5b-Zn alloy, Ti-8u alloy, Tt
-an alloy, Zr-8n alloy.

7、r−’l’h合金、Ti−Zn合金金合i−Zr合
金などがある。
7, r-'l'h alloy, Ti-Zn alloy, gold alloy, i-Zr alloy, etc.

合金例として、重量組成で次のものが好ましい。As examples of alloys, the following are preferred in terms of weight composition.

Agに30〜46%Zn、6〜10%AA。30-46% Zn, 6-10% AA in Ag.

40〜60%Cd、20〜30%Inを単独、Cuに1
0〜20%八tI 2へ〜30%G3゜20〜40%I
 n 、 20〜30XG e 、  1.5〜35%
8n、10〜60%Zn、5〜109(S t。
40-60% Cd, 20-30% In alone, 1 in Cu
0~20%8tI 2~30%G3゜20~40%I
n, 20~30XGe, 1.5~35%
8n, 10-60% Zn, 5-109 (St.

4〜15%Be、30〜45%Sbを単独、Auに15
〜25%In、10〜15%Ga、5〜25%Zn、2
0〜55%Cd、Z5〜5%Atを単独、Niに55〜
60%At、40〜50%Tiを単独で加えた合金、I
n−25〜35%Tt合金、Feに55%以下のptを
加えた合金。
4-15% Be, 30-45% Sb alone, 15% in Au
~25%In, 10~15%Ga, 5~25%Zn, 2
0~55%Cd, Z5~5%At alone, 55~5%Ni
Alloy containing 60% At and 40-50% Ti, I
n-25-35% Tt alloy, alloy with 55% or less of PT added to Fe.

M n −5〜50%Cu合金、5e15〜25%−I
n30〜40%−Sb合金。これらの合金に対し更に第
3成分として第2成分以外の次の元素を加えることがで
きる。
M n -5~50% Cu alloy, 5e15~25%-I
n30-40%-Sb alloy. The following elements other than the second component can be added as a third component to these alloys.

Ia、[a、va、Vat ■a+■a、■。Ia, [a, va, Vat ■a+■a,■.

Ib−Vb、希土類元素の1種又は2種以上の合計で1
5重量%以下である。
Ib-Vb, the total of one or more rare earth elements is 1
It is 5% by weight or less.

具体的には、Ia族はLi、lra族はMg。Specifically, the Ia group is Li, and the Ira group is Mg.

Ca、 va族はT r 、 Z r 、 Hf 、 
Y a族は■。
Ca, va group is T r , Z r , Hf ,
The Y a family is ■.

Nb、’l’a、 va族はCr、Mo、W、■a族は
M n 、■族はCo、l(、h、I r、Fe、 R
u。
Nb, 'l'a, va group is Cr, Mo, W, ■a group is M n, ■ group is Co, l(, h, I r, Fe, R
u.

Os、Ni、Pd、Pt、  Ib族はCu、 Ag。Os, Ni, Pd, Pt, Ib group is Cu, Ag.

Au、Ib族はZn、Cd、mb族はB、 AL。Au, Ib group is Zn, Cd, mb group is B, AL.

Ga、InN tvb族はC,S i、Qe、 Sn。Ga, InN tvb group is C, Si, Qe, Sn.

Pb、Vb族はP、Sb、B i、希土類元XはY。The Pb and Vb groups are P, Sb, and Bi, and the rare earth element X is Y.

La、Ce、Sm、Gd、Tb、D)’、Luが好まし
い。特に、0.1〜5重量%が好ましい。
La, Ce, Sm, Gd, Tb, D)', and Lu are preferred. In particular, 0.1 to 5% by weight is preferred.

ま交、’l’e、 Seを主とした合金を溶解・昇華に
よって凹凸を形成させる合金も使用可能である。
It is also possible to use an alloy in which the irregularities are formed by melting and sublimating an alloy mainly composed of cylindrical, 'l'e, and Se.

〔発明の実施例〕[Embodiments of the invention]

第9図は光デイスク装置の光学系の全体構成を示す。同
図の各部の記号とその動作について以下に説明する。1
は光源となるV−ザダイオードでアル。2はコリメーシ
ョンレンズで、レーザーダイオード1の光束を平行光に
する。コリメーションレンズ3は平行にした2つのかま
ぼこ形レンズで構成される。3は偏光ビームスプリッタ
(以下、PBSと略称する)で、コリメーションレンズ
の出力光を透過するとともに、つぎに述べる記号4で示
すλ/4板からのもとり光を屈折する。λ/4板はPB
S3で入射光と反射光の識別を容易にする定めに光の位
相偏光に用いる。5は対物レンズであり、入射光を集光
する友めに用いられる。
FIG. 9 shows the overall configuration of the optical system of the optical disk device. The symbols of each part in the figure and their operations will be explained below. 1
is the V-the diode that serves as the light source. A collimation lens 2 converts the light beam from the laser diode 1 into parallel light. The collimation lens 3 is composed of two parallel semicylindrical lenses. Reference numeral 3 denotes a polarizing beam splitter (hereinafter abbreviated as PBS), which transmits the output light of the collimation lens and refracts the light taken from the λ/4 plate indicated by symbol 4, which will be described below. λ/4 plate is PB
In S3, it is used for phase polarization of light to facilitate discrimination between incident light and reflected light. Reference numeral 5 denotes an objective lens, which is used to condense incident light.

6はカップリングレンズで、PBS3からの光束を受け
てこれを集光させる。カップリングレンズ6は直交され
几2つのかまぼこ形レンズで構成されている。7は光検
知器である。光検知器7はカップリングレンズ6からの
入射光L6の光スポツト形状を検知することによって対
物レンズ5からの出力光L5の光スポツト形状を間接的
に検知する。8はアクチュエータであり、アクチュエー
タ8は光検知器7の出力に従い、対物レンズ5の出力光
L5の焦点位置を調整する。85はレンズ駆動部であり
、レンズ駆動部81はアクチュエータ8からの駆動制御
出力によって、対物レンズ5の位置を調整する。9は情
報を光学的に記録、再生、消去等が可能なディスクであ
りくその一部を示す。
A coupling lens 6 receives the light flux from the PBS 3 and condenses it. The coupling lens 6 is composed of two semicylindrical lenses that are orthogonal to each other. 7 is a photodetector. The photodetector 7 indirectly detects the shape of the light spot of the output light L5 from the objective lens 5 by detecting the shape of the light spot of the incident light L6 from the coupling lens 6. 8 is an actuator, and the actuator 8 adjusts the focal position of the output light L5 of the objective lens 5 according to the output of the photodetector 7. Reference numeral 85 denotes a lens drive section, and the lens drive section 81 adjusts the position of the objective lens 5 based on the drive control output from the actuator 8. 9 is a disk on which information can be optically recorded, reproduced, erased, etc., and a portion thereof is shown.

ディスク9は対物レンズ5からの出力光L5がディスク
面上に所望の光スポットを照射することによって、上記
の記録、再生、消去などを可能にしている。86はモー
タであり、ディスク9はモータ86により駆動する。
The disk 9 enables the above-mentioned recording, reproduction, erasing, etc. by irradiating a desired light spot on the disk surface with the output light L5 from the objective lens 5. 86 is a motor, and the disk 9 is driven by the motor 86.

第1図は本発明による1つの実施例で、保護膜の表面を
球面に加工して同心円状の凸レンズを組み入れmディス
クの断面を示したものである。
FIG. 1 shows one embodiment of the present invention, in which the surface of the protective film is processed into a spherical surface and a concentric convex lens is incorporated, showing a cross section of an m-disc.

図中10はガラス等のディスク母材、11が記録媒体、
12ならびに13がディスクの保護と、対物レンズをか
ね次回心円状の凸レンズを示している。記祿媒体と凸レ
ンズまでの距離は、その凸レンズの焦点距離とし、凸レ
ンズに平行な光を入射すると記録媒体上に焦点を結ぶ。
In the figure, 10 is a disk base material such as glass, 11 is a recording medium,
Reference numerals 12 and 13 designate convex lenses having a concentric circular shape, which serve as disk protection and objective lenses. The distance between the recording medium and the convex lens is the focal length of the convex lens, and when parallel light is incident on the convex lens, it is focused on the recording medium.

従ってディスクの記録、再生光に平行な光線を利用する
と、装置の光学系と、ディスクまでの距離が面ぶれなど
で変動しても、常に記録媒体上にスポットを結ぶことが
できる。
Therefore, by using a beam parallel to the recording and reproducing light on the disk, a spot can always be connected on the recording medium even if the distance between the optical system of the apparatus and the disk changes due to surface wobbling or the like.

まt第2の実施例として、第2図に示す様に保護膜をか
ねた凸レンズ21を同心円状かつ放射状にならべる方式
も考えられる。この場合も第1の実施例と同様に、レン
ズと記録媒体までの距離をレンズの焦点位置にすること
で、自動焦点系が不用になる。これらのディスクの駆動
光学系は後泳する。
As a second embodiment, a method may be considered in which convex lenses 21 serving as protective films are arranged concentrically and radially as shown in FIG. 2. In this case as well, as in the first embodiment, by setting the distance between the lens and the recording medium as the focal point of the lens, an automatic focusing system becomes unnecessary. The drive optics for these disks move backwards.

瀉4図にディスクを上面から見文ものを示す。Figure 4 shows the disc viewed from the top.

41.42で示される同心円状のものがレンズの機能を
果たす。この同心円の間隔は後述する走査匿光学系を利
用すれば、比較的太きく(ミリメートルのオーダ)する
ことができる。
The concentric circles indicated by 41 and 42 function as lenses. The spacing between these concentric circles can be made relatively thick (on the order of millimeters) by using a scanning optical system, which will be described later.

次に具体的なレンズ機能の実現例について説明する。第
3図にフレネルレンズを応用した実現例を示す。第3図
は第4図におけるディスクを;43で示される腺で切断
し、その断面を書いたものである。
Next, a specific example of realizing the lens function will be described. Figure 3 shows an example of implementation using a Fresnel lens. FIG. 3 is a cross-section of the disk shown in FIG. 4 cut at the gland indicated by 43.

第3図中、33はディスク母材、32は記録媒体、31
aならびに31bがフンネルレンズであり記録媒体上に
焦点を結ぶように設計されている。
In Fig. 3, 33 is a disk base material, 32 is a recording medium, and 31
a and 31b are Funnel lenses designed to focus on the recording medium.

従って31へ平行な光を入射することにより記録媒体へ
の記録、再生が可能となる。フンネルレンズは光感光素
材と、エレクトロンビーム照射法により比較的簡単に作
ることができる。
Therefore, by injecting parallel light into the recording medium 31, recording on and reproduction from the recording medium becomes possible. Funnel lenses can be made relatively easily using photosensitive materials and electron beam irradiation.

ま次第5図に屈折率分布型のレンズを利用し几実施例を
示す。
FIG. 5 shows an example using a gradient index lens.

53はディスク母材、52は記録媒体、51a。53 is a disk base material, 52 is a recording medium, and 51a.

51bが屈折率分布型のレンズである。51b is a gradient index lens.

屈折率分布型レンズはガラスなどの透明な材料の屈折率
分布を第6図に示すように放物線状にすることで実現す
る。これはイオン交換法により容易に作ることができる
A gradient index lens is realized by making the refractive index distribution of a transparent material such as glass parabolic as shown in FIG. This can be easily produced by an ion exchange method.

第7図は対物レンズ付ディスクの記録、再生の光学系を
説明するものである。
FIG. 7 illustrates an optical system for recording and reproducing a disk with an objective lens.

図中、71.72は位置決め用アクチュエータで、72
がスライドVディスつて対して半径方向の移動を担当す
る。75はガルバノミラ−176は記録、再生用光源、
79はディスク本体である。
In the figure, 71.72 is a positioning actuator;
is in charge of radial movement with respect to the slide V disc. 75 is a galvanometer mirror, 176 is a light source for recording and reproduction,
79 is a disc body.

記録ならびに再生用光源76は平行光線としてガルバノ
ミラ−75へ送られる。ガルバノミラーはある周期を持
って支点73を中心に振動しており、ディスク上のレン
ズ12へ平行光線を走査しながら送ることができる。7
5の位置にミラーがある時は、77示される光線をたど
るが、ミラーが74の位置に来九時、光は図中78で示
される光線を九どることになる。従ってこの光学系では
ディスクの半径方向に対して光スポットを走査し、記録
高密度で行なうことができる。この様子を第8図に示す
。ディスクは比較的低速で回転しつつ、ミラーにより半
径方向に情報が記録されるので、情報の走査軌せきは8
3で示される様にジグザグを描くことになる。
A recording and reproducing light source 76 is sent to a galvanometer mirror 75 as parallel light beams. The galvanometer mirror vibrates around the fulcrum 73 with a certain period, and can send parallel light beams to the lens 12 on the disk while scanning them. 7
When the mirror is at position 5, the light will follow the ray shown at 77, but when the mirror comes to position 74 at 9 o'clock, the light will follow the ray shown at 78 in the figure. Therefore, in this optical system, the optical spot can be scanned in the radial direction of the disk, and recording can be performed at high density. This situation is shown in FIG. The disk rotates at a relatively low speed and information is recorded in the radial direction by mirrors, so the information scanning trajectory is 8.
You will draw a zigzag as shown in 3.

以上の装置を用い次の実験を行つ次。Next, we will conduct the following experiments using the above apparatus.

スパッタリング法によってAg−40重シイ合金膜をガ
ラス基板に形成させ光ディスクを製作し友。合金膜の記
録、消去による加熱による酸化を防止する友め及び基板
から剥離するのを防止するため、その表面に5i(hの
保護膜(厚さ30nm)を蒸着によって形成した。ガラ
ス板上の合金膜の蒸着にはDC−マグネットロン型を、
5iOz膜の形成にはRF型のスパッタ法をそれぞれ適
用した。スパッタ出力は140〜200W、基板温度は
200Cの条件に設定し友。容器内を10−’’l’□
rr程度まで真空排気後、p、rガスを5〜30m’p
□rr導入して薄膜を作製した。膜厚は、S iCh膜
厚を3Q1m程度とし、合金膜厚を0.05〜10μm
の範囲内で種々の厚さに変え次。このようにして製作し
次光ディスクを使用して、記録及び消去、又それらの繰
返しを行った。p、rガスレーザは連続発振させ友。試
料を手動移動ステージの上に設置し、試料を移動させて
200mWレーザ光を該試料の膜表面に焦点を合せ走査
させた。
An optical disk was manufactured by forming an Ag-40 heavy Si alloy film on a glass substrate using the sputtering method. In order to prevent the alloy film from being oxidized by heating during recording and erasing, and to prevent it from peeling off from the substrate, a protective film (thickness: 30 nm) of 5i (h) was formed by vapor deposition on the surface of the alloy film. For vapor deposition of alloy film, DC-Magnetron type is used.
An RF type sputtering method was applied to form each of the 5iOz films. Set the sputtering output to 140-200W and the substrate temperature to 200C. Inside the container 10-''l'□
After evacuation to about rr, p, r gas is pumped 5 to 30 m'p
□rr was introduced to prepare a thin film. The film thickness is approximately 3Q1m for SiCh film and 0.05 to 10μm for alloy film thickness.
Next, vary the thickness within the following range. The optical disk thus produced was then used for recording and erasing, and for repeating these operations. P and R gas lasers are suitable for continuous oscillation. The sample was placed on a manual movement stage, the sample was moved, and the 200 mW laser beam was focused and scanned on the film surface of the sample.

レーザ光を照射させ穴部分はピンクに変化し穴。When irradiated with laser light, the hole turns pink and becomes a hole.

合金膜はあらかじめ基板ごと銀白色になる熱処理を施し
である。次にV−ザ光の焦点金膜表面から若干ずらし、
V−ザの出力密度を低くしてピンク色の部分と交差する
方向(図の上下方向)に走査させ文。その結果、元のピ
ンク色は消去され銀白色に変化し友。これらの色の変化
と同時にベース面に凹又は凸部が生じて記録でき、消去
によって元の平担な面に戻ることが確認された。
The alloy film, together with the substrate, has been heat-treated in advance to become silvery white. Next, the focus of the V-za light is slightly shifted from the gold film surface,
The output density of the V-za is lowered and the text is scanned in the direction intersecting the pink part (up and down in the figure). As a result, the original pink color is erased and the color changes to silvery white. It was confirmed that concave or convex portions were formed on the base surface at the same time as these color changes were recorded, and that the original flat surface returned to the original surface upon erasing.

以上の結果から薄膜状態の合金による記録、消去が可能
であることを確認された。この書込み、消去は何回でも
繰返しが可能であることが確認された。
From the above results, it was confirmed that recording and erasing can be performed using the alloy in a thin film state. It has been confirmed that this writing and erasing can be repeated any number of times.

〔発明の効果〕〔Effect of the invention〕

本発明によれば自動焦点合わせが不必要な光デイスク装
置を構成できる。またもう一つの効果として、ビームの
走査をガルバノミラ−でディスクの半径方向におこなう
ため、ディスクの回転数を下げても高密度、高速記録、
再生が可能である。
According to the present invention, it is possible to construct an optical disk device that does not require automatic focusing. Another advantage is that since the beam is scanned in the radial direction of the disk using a galvanometer mirror, high-density and high-speed recording can be achieved even at lower disk rotational speeds.
Reproduction is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は対物レンズと記録媒体を一体化させた光ディス
クの断面図、第2図は球面レンズをディスクの表面に同
心円かつ放射状にならべた光デイスフ、第3図は対物レ
ンズをフレネルレンズで実現し次回、第5図は屈折率分
布型レンズで実現し次回、第4図は上面より見比ディス
クを示す図、第6図は屈折率の分布状態を示すグラフ、
第7図は対物レンズ一体化光デイスクへ情報を記録、再
生する友めの光学系の構成、第8図は光デイスク上の情
報の走査順序、第9図は従来の光デイスク装置の光学系
の構成である。 10・・・ディスク母材、11・・・記録媒体、12゜
13・・・保護と対物レンズを兼ね九レンズ。 来1図 31CL       31& 佑乍図 帛5図 帛6図 イイ[装置【
Figure 1 is a cross-sectional view of an optical disc that integrates an objective lens and a recording medium, Figure 2 is an optical disk in which spherical lenses are arranged concentrically and radially on the surface of the disc, and Figure 3 is a Fresnel lens used as an objective lens. Next time, Figure 5 will be realized using a gradient index lens, Figure 4 will be a diagram showing the ratio disk viewed from the top, Figure 6 will be a graph showing the distribution of refractive index,
Figure 7 shows the configuration of a companion optical system for recording and reproducing information on an optical disk with an integrated objective lens, Figure 8 shows the scanning order of information on the optical disk, and Figure 9 shows the optical system of a conventional optical disk device. The composition is as follows. 10...Disk base material, 11...Recording medium, 12°13...Nine lenses that serve as protection and objective lenses. Next 1 Figure 31 CL 31 & Yugo Figure 5 Figure 6 II [Device]

Claims (1)

【特許請求の範囲】 1、レーザ等の光源からの光を微小なスポットに形成し
、加熱することにより光学的濃度、光学的反射率、光学
的透過率、光学的吸収率など光学的特性が変化する記録
媒体において、光源からの光を集光し、スポット形成す
る対物レンズを記録媒体と一体化し、前記記録媒体は固
体状態で少なくとも2種類の結晶構造を有し、一方の温
度領域での結晶構造を他方の温度領域で保持し、及び/
又は結晶状態で互いに異なつた体積変化を生じる金属又
は合金からなることを特徴とする情報記録媒体。 2、前記記録媒体は固体状態の高温における結晶構造が
高温からの過冷によつて保持される金属又は合金からな
る特許請求の範囲第1項に記載の情報記録媒体。 3、前記記録媒体は相変態を有する結晶質状態の金属あ
るいは合金にあつて、固相状態の少なくとも2つの温度
領域において結晶構造の異なつた相を有し、その相間の
変態に伴なう凹部又は凸部を形成してベース面との光の
反射状態を変化させて情報としての信号、文字、図形、
記号を識別できるように記憶させ又は前記凹部又は凸部
を元の状態に消去させる加熱手段及び前記情報を再生さ
せる手段を有する特許請求の範囲第1項に記載の情報記
録媒体。 4、前記記録媒体は元素周期律表の I ・b族からVII・
b族及びVIII族の金属元素遷移金属元素を主成分とする
金属あるいは合金からなる特許請求の範囲第1項〜第3
項のいずれかに記載の情報記録媒体。
[Claims] 1. By forming light from a light source such as a laser into a minute spot and heating it, optical properties such as optical density, optical reflectance, optical transmittance, and optical absorption rate can be changed. In a variable recording medium, an objective lens for condensing light from a light source and forming a spot is integrated with the recording medium, and the recording medium has at least two types of crystal structures in a solid state, and the recording medium has at least two types of crystal structures in a solid state, retaining the crystal structure in the other temperature range, and/or
Or an information recording medium characterized by being made of a metal or an alloy that undergoes different volume changes in a crystalline state. 2. The information recording medium according to claim 1, wherein the recording medium is made of a metal or an alloy whose crystal structure at high temperatures in a solid state is maintained by supercooling from high temperatures. 3. The recording medium is made of a metal or alloy in a crystalline state that undergoes phase transformation, and has phases with different crystal structures in at least two temperature ranges in a solid state, and there are recesses caused by the transformation between the phases. Or, by forming a convex part to change the state of light reflection with the base surface, it can be used as information such as signals, characters, figures, etc.
2. The information recording medium according to claim 1, further comprising heating means for memorizing a symbol so that it can be identified or erasing the concave or convex portion to its original state, and means for reproducing the information. 4. The recording medium contains elements from groups I, b to VII, of the periodic table.
Claims 1 to 3 consist of a metal or alloy whose main component is a transition metal element of Group B or Group VIII metal element.
The information recording medium described in any of paragraphs.
JP60034745A 1985-02-22 1985-02-22 Information recording medium Pending JPS61194656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034745A JPS61194656A (en) 1985-02-22 1985-02-22 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034745A JPS61194656A (en) 1985-02-22 1985-02-22 Information recording medium

Publications (1)

Publication Number Publication Date
JPS61194656A true JPS61194656A (en) 1986-08-29

Family

ID=12422859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034745A Pending JPS61194656A (en) 1985-02-22 1985-02-22 Information recording medium

Country Status (1)

Country Link
JP (1) JPS61194656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058098A (en) * 1988-02-17 1991-10-15 Victor Company Of Japan, Ltd. Optical record medium having an improved reflection thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058098A (en) * 1988-02-17 1991-10-15 Victor Company Of Japan, Ltd. Optical record medium having an improved reflection thin film

Similar Documents

Publication Publication Date Title
US6319368B1 (en) Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of forming recording layer for the optical recording medium
JPH066393B2 (en) How to record and delete information
JPH0778354A (en) Information recording medium and recording method using the same
JP2001184725A (en) Optical information recording medium
JPH0671828B2 (en) Information recording thin film
JPH05286249A (en) Data recording medium
JPH07105574A (en) Optical information recording medium
JPWO2004032130A1 (en) Optical information recording medium and manufacturing method thereof
JPS61194656A (en) Information recording medium
JP3163302B2 (en) Optical information recording medium and information recording / reproducing method
JP3784819B2 (en) Optical recording method
JP2679995B2 (en) Thin film for information recording
JP3066088B2 (en) Optical information recording medium and information recording / reproducing method
EP0362852B1 (en) Information-recording thin film and method for recording and reproducing information
JP3810025B2 (en) Sputtering target, method for producing the same, optical recording medium using the target, film forming method for the optical recording medium, and optical recording method
JP2001067719A (en) Optical information recording medium and method for recording/reproducing information
JPS6186287A (en) Information-recording member
JP2003323744A (en) Optical disk
JPS61194644A (en) Optical information recording and reproducing device
JPS6192447A (en) Information recording medium
JPS63167440A (en) Method for recording or recording and erasing information
JP3653254B2 (en) Optical information recording medium
JPH02151481A (en) Membrane for recording data and method for recording and reproducing data
JPS612592A (en) Optical information-recording member
CN1013527B (en) Information recording and reproducing equipment