JPS6119061A - Hydrogen occlusion electrode - Google Patents

Hydrogen occlusion electrode

Info

Publication number
JPS6119061A
JPS6119061A JP59138753A JP13875384A JPS6119061A JP S6119061 A JPS6119061 A JP S6119061A JP 59138753 A JP59138753 A JP 59138753A JP 13875384 A JP13875384 A JP 13875384A JP S6119061 A JPS6119061 A JP S6119061A
Authority
JP
Japan
Prior art keywords
powder
laxni
electrode
hydrogen storage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59138753A
Other languages
Japanese (ja)
Other versions
JPH0582025B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59138753A priority Critical patent/JPS6119061A/en
Publication of JPS6119061A publication Critical patent/JPS6119061A/en
Publication of JPH0582025B2 publication Critical patent/JPH0582025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To decrease deformation of crystal lattice and suppress conversion of an electrode into fine powder by using an alloy having a molecular formula of Ca(1-x)LaxNi(5-y)Ay (A is Al, Mn, Cu, or Cr) as hydrogen occlusion material. CONSTITUTION:Calcium, lanthanum, nickel, and aluminum are mixed so as to have a specified atomic ratio, heated, and melted to alloy them, then crushed to obtain Ca(1-x)LaxNi(5-y)Aly powder. By using manganese, copper, or chromium instead of aluminium in similar process, Ca(1-x)LaxNi(5-y)Mny powder, Ca(1-x)LaxNi(5-y)Cuy powder, or Ca(1-x)LaxNi(5-y)Cry powder is obtained. 80wt% one of these alloys, 10wt% acetylene black, and 10wt% fluorine resin are mixed, then molded on a condition of specified temperature and pressure to form a hydrogen occlusion electrode measuring 2cm in diameter and 1.2l in thickness. Thereby, deformation of crystal lattice is decreased, and conversion of the electrode into fine powder is suppressed.

Description

【発明の詳細な説明】 イ(イ)産業上の利用分野 本発明は蓄電池の負極として用いられる水素吸蔵電極に
関し、特に高容量を長期にわたって維持するように改良
された水素吸蔵電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of a storage battery, and particularly to a hydrogen storage electrode that has been improved to maintain high capacity over a long period of time.

(ロ)従来の技術 従来からよく用いられる蓄電池としては、鉛電池及び二
ツケルー力ドミクム電池があるが、近年これら電池より
軽量で高容量となる可能性があるということで、特に低
圧で水素を可逆的に吸蔵・放出することのできる水素吸
蔵合金を水素極として用いたニッケルー水素電池などが
注目されている。
(b) Conventional technology Storage batteries that have been commonly used include lead batteries and Futsukerudomicum batteries, but in recent years, hydrogen batteries have been developed that have the potential to be lighter and have higher capacity than these batteries, especially at low pressure. Nickel-hydrogen batteries, which use hydrogen storage alloys that can reversibly absorb and release hydrogen as hydrogen electrodes, are attracting attention.

この水素を収蔵及び放出することのできる水素吸蔵合金
を備えた負極は、■特公昭49−25165号公報に見
られるように水素収蔵合金粉末に固着剤を加えてなるペ
ーストを支持体に塗着、乾燥した後焼結して得たもの、
■特開昭55−106541号公報に見られるように水
素吸蔵合金粉末及びアセチレンブラックを結着剤により
支持体に固着して得たものなど従来より種々の提案がな
されているが、これら電極に水素収蔵合金としてよく用
いられるCa(1−x)LaxNi5等の合金は、水素
の収蔵及び放出によって合金格子が変形し合金粒子の微
粉化が起こるため、これらの合金を水素吸蔵材として用
いた場合には合金粒子の微粉化による脱落が生じ電池容
量が劣化し、また特に前記■の方法によって作製された
焼結多孔体を水素吸に 蔵電極した時には、この合金粒子の微粉化とそれ八 に伴う脱落による電極の機械的強度及び電導性の低下が
著しく、長期にわたって電池性能を維持することか困難
であるという問題点があった。
A negative electrode equipped with a hydrogen storage alloy capable of storing and releasing hydrogen is produced by coating a support with a paste made by adding a binder to hydrogen storage alloy powder, as shown in Japanese Patent Publication No. 49-25165. , obtained by drying and sintering,
■Various proposals have been made in the past, such as those obtained by fixing hydrogen-absorbing alloy powder and acetylene black to a support using a binder, as seen in JP-A-55-106541. In alloys such as Ca(1-x)LaxNi5, which are often used as hydrogen storage alloys, the alloy lattice deforms and the alloy particles become pulverized due to storage and release of hydrogen, so when these alloys are used as hydrogen storage materials, However, when the sintered porous body produced by the method (①) is used as a storage electrode for hydrogen absorption, the alloy particles fall off due to pulverization, which deteriorates the battery capacity. There is a problem in that the mechanical strength and conductivity of the electrode are significantly reduced due to the accompanying falling off, making it difficult to maintain battery performance over a long period of time.

(ハ)発明が解決しようとする問題点 本発明は解決しようとする問題点は水素吸蔵材の微粉化
による脱落で生じる電池容量の劣化と電極の機械的強度
及び電導性低下に伴う電池性能の劣化である。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are the deterioration of battery capacity caused by the falling off of the hydrogen storage material due to pulverization, and the deterioration of battery performance due to the decrease in mechanical strength and conductivity of the electrodes. It is deterioration.

に)問題点を解決するための手段 本発明の水素収蔵電極はかかる問題点を解決するために
水素吸蔵材にCa (+ −x )LaxNi (5−
y )Ayからなる分子式で表わされ前記AがAl、 
Mn、 CuまたはCr である合金を用いたものであ
る。
2) Means for Solving the Problems In order to solve the problems, the hydrogen storage electrode of the present invention uses Ca (+ -x)LaxNi (5-) as the hydrogen storage material.
y) It is represented by a molecular formula consisting of Ay, and the above A is Al,
It uses an alloy of Mn, Cu or Cr.

(ホ)作 用 Ca (+−x )LaxNi (5−y )Ayから
なる分子式で表わされ前記入がAl、 Mn、、 Cu
またはCr である水素吸蔵材は充放電による水素の収
蔵及び放出の際に結晶格子の変形が小さく微細化が起こ
り難い。
(e) Action Ca (+-x)LaxNi (5-y)Ay is represented by the molecular formula consisting of Al, Mn, Cu
Alternatively, in the case of a hydrogen storage material such as Cr, the deformation of the crystal lattice during storage and release of hydrogen due to charging and discharging is small, making it difficult for refinement to occur.

(へ)実 施例 市販のカルシクム、ランタン、ニッケル、アルミニウム
を原子比でCa:La:Ni:At=(+ −X):x
:(s−y):y  二 (Xは 0.1〜0.5、 
 yは0.1〜0,6)になるよう混合し、アーク溶解
炉に入れて加熱、溶解して合金化した後粉砕してCa(
1−x)LaxNi (5−y)Aty粉末を得た。ま
た同様の操作でアルミニウムにかえてマンガン、銅及び
クロムを夫々用いCa(1−x)LaxNi (s−y
)Mny粉末Ca (1−x )LaxNi (s−y
 )Cuy粉末及びCa(+−x)LaxNi(s−y
)Cry粉末(何れもXは0.1〜0.5、yは0゜1
〜0.6)を得た。
(f) Example Commercially available calcium, lanthanum, nickel, aluminum in atomic ratio Ca:La:Ni:At=(+ -X):x
:(s-y):y two (X is 0.1-0.5,
The mixture is mixed so that y is 0.1 to 0.6), heated, melted and alloyed in an arc melting furnace, and then crushed to form Ca(
1-x) LaxNi (5-y) Aty powder was obtained. In addition, in the same operation, manganese, copper, and chromium were used instead of aluminum, respectively, and Ca(1-x)LaxNi (s-y
) Mny powder Ca (1-x) LaxNi (s-y
)Cuy powder and Ca(+-x)LaxNi(s-y
) Cry powder (X is 0.1 to 0.5, y is 0°1
~0.6) was obtained.

こうして得られたCa(1−x)LaxNi (5−y
)A/−y粉末、Ca(1−x)LaxNi (5−y
)Mny粉末、Ca(+−x)LaxNi (5−y)
Cuy粉末あるいは(:a (+ −X )LaxNi
 (5−y)Cry粉末80重量%と、導電材としての
アセチレンブラック10重量%及び結着剤としてのフッ
素樹脂粉末10重量%を混合し温度280〜600℃、
加圧力3t/cIiで成型して、直径2cm、厚さ1.
2mの円型の水素収蔵電極を種々作製した。この水素吸
蔵電極に用いられた合金粉末は約1.5gであり、約3
00〜350mAHに相当する容量を有している。
Thus obtained Ca(1-x)LaxNi (5-y
)A/-y powder, Ca(1-x)LaxNi(5-y
)Mny powder, Ca(+-x)LaxNi (5-y)
Cuy powder or (:a (+ -X)LaxNi
(5-y) Mix 80% by weight of Cry powder, 10% by weight of acetylene black as a conductive material, and 10% by weight of fluororesin powder as a binder, and heat at a temperature of 280 to 600°C.
It was molded with a pressure of 3t/cIi to a diameter of 2cm and a thickness of 1.
Various 2 m circular hydrogen storage electrodes were fabricated. The alloy powder used in this hydrogen storage electrode weighs approximately 1.5 g, and approximately 3
It has a capacity corresponding to 00 to 350 mAH.

次いでこうして作製された水素収蔵電極を理論容量が5
00 mAHである公知のニッケル正極と組み合わせて
本発明に於けるアルカリ蓄電池を作製した。
Next, the hydrogen storage electrode produced in this way has a theoretical capacity of 5
An alkaline storage battery according to the present invention was fabricated by combining this with a known nickel positive electrode of 0.00 mAH.

この電池を負極に水素吸蔵材として用いた合金粉末によ
り下表に示す様に電池A乃至りとする。
These batteries were designated as batteries A to B as shown in the table below by using alloy powder as a hydrogen storage material for the negative electrode.

表 また比較として負極の水素吸蔵材としてCa。table For comparison, Ca was used as the hydrogen storage material for the negative electrode.

k L a tiミノ i Sを用いその他は前記実施
例と同一の比較電池Qを作製した。
A comparative battery Q was prepared using KLatiMino iS and otherwise the same as in the above example.

図面は本発明による水素収蔵電極を負極に用いた電池A
乃至Pと比較電池Qのサイクル特性図であり、0,1C
電流で16時間充電し、0.20電流で放電して終止電
圧を1.Ovとするサイクル条件で充放電を行ない、電
池の初期容量を100として示している。
The drawing shows a battery A using the hydrogen storage electrode according to the present invention as a negative electrode.
It is a cycle characteristic diagram of P to P and comparative battery Q, and 0,1C
Charge with current for 16 hours and discharge with 0.20 current to bring the final voltage to 1. Charging and discharging were performed under cycle conditions of Ov, and the initial capacity of the battery is shown as 100.

図面より明らかなように電池A乃至Pは共に比較電池Q
に比しサイクル寿命が向上していることがわかる。これ
はCa&、5La6.yNsを水素IiljM材として
用いた負極を備えた比較電池Eが充放電に伴う負極の水
素の収蔵及び放出によって水素吸蔵合金粒子の微粉化が
起こり200サイクルから急激な容量低下が生じている
のに対し、電池A乃至りは負極の水素吸蔵材の水素の吸
蔵及び放出による微粉化が起り難く、結着剤によって形
成されるマトリックスによる水素吸蔵材粉末の強固な保
持が継続されるため、機械的強度や導電性の低下が抑制
され、より長期にわたり電池容量の劣化が抑えられたか
らと考えられる。
As is clear from the drawing, batteries A to P are both comparative battery Q.
It can be seen that the cycle life is improved compared to the previous model. This is Ca&, 5La6. Comparative battery E equipped with a negative electrode using yNs as a hydrogen IiljM material had a rapid capacity drop after 200 cycles due to pulverization of the hydrogen storage alloy particles due to storage and release of hydrogen in the negative electrode during charging and discharging. On the other hand, in batteries A through B, it is difficult for the negative electrode hydrogen storage material to become pulverized due to hydrogen storage and release, and the matrix formed by the binder continues to firmly hold the hydrogen storage material powder, so the mechanical This is thought to be because deterioration in strength and conductivity was suppressed, and deterioration of battery capacity was suppressed for a longer period of time.

(ト)発明の効果 本発明の水素収蔵電極はCa (+ −x )LaxN
i (5−y)Ay、か、らj碌ヨる1分、予成+rt
&わされ前記AがAl、 Mn、CuまたはCr であ
る水素吸蔵材を備えたものであるから、水素の吸蔵及び
放出による前記水素吸蔵材の脱落及びこれに伴う機械的
強度や導電性の低下が抑制され、より長期にわたって高
容量を維持する電池を提供せしめることができる。
(g) Effects of the invention The hydrogen storage electrode of the invention is Ca (+ -x)LaxN
i (5-y) Ay, ka, raj yoruru 1 minute, preparatory + rt
Since the above A is equipped with a hydrogen storage material of Al, Mn, Cu, or Cr, the hydrogen storage material may fall off due to absorption and release of hydrogen, and the mechanical strength and conductivity may decrease accordingly. This makes it possible to provide a battery that maintains high capacity for a longer period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の水素1及蔵電極を用いた電池及び従来の
電池のサイクル特性図である。 (A)乃至(p)・・・本発明の水素収蔵電極を用いた
電池、(0・・・従来の電池。
The drawings are cycle characteristic diagrams of a battery using the hydrogen storage electrode of the present invention and a conventional battery. (A) to (p)... Batteries using the hydrogen storage electrode of the present invention, (0... Conventional batteries.

Claims (1)

【特許請求の範囲】[Claims] (1)Ca_(_1_−_x_)La_xNi_(_5
_−_y)A_yからなる分子式で表わされ前記AがA
l、Mn、CuまたはCrである水素吸蔵材を備えたこ
とを特徴とする水素吸蔵電極。
(1) Ca_(_1_-_x_)La_xNi_(_5
____y) Represented by the molecular formula consisting of A_y, where the above A is A
1. A hydrogen storage electrode comprising a hydrogen storage material of 1, Mn, Cu, or Cr.
JP59138753A 1984-07-04 1984-07-04 Hydrogen occlusion electrode Granted JPS6119061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138753A JPS6119061A (en) 1984-07-04 1984-07-04 Hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138753A JPS6119061A (en) 1984-07-04 1984-07-04 Hydrogen occlusion electrode

Publications (2)

Publication Number Publication Date
JPS6119061A true JPS6119061A (en) 1986-01-27
JPH0582025B2 JPH0582025B2 (en) 1993-11-17

Family

ID=15229374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138753A Granted JPS6119061A (en) 1984-07-04 1984-07-04 Hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS6119061A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv
JPS55154301A (en) * 1979-05-18 1980-12-01 Sanyo Electric Co Ltd Hydrogen storing material
JPS5623244A (en) * 1979-08-03 1981-03-05 Sanyo Electric Co Ltd Hydrogen storing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv
JPS55154301A (en) * 1979-05-18 1980-12-01 Sanyo Electric Co Ltd Hydrogen storing material
JPS5623244A (en) * 1979-08-03 1981-03-05 Sanyo Electric Co Ltd Hydrogen storing material

Also Published As

Publication number Publication date
JPH0582025B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS6119063A (en) Hydrogen occlusion electrode
JPS6119061A (en) Hydrogen occlusion electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JPS6119062A (en) Hydrogen occlusion electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPS61176067A (en) Hydrogen occlusion electrode
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JPH0763004B2 (en) Sealed alkaline storage battery
JPS6116471A (en) Hydrogen occluding electrode
JPH07111151A (en) Hydrogen storage electrode active material
JP2679441B2 (en) Nickel-metal hydride battery
JPH0586621B2 (en)
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6119059A (en) Hydrogen occlusion electrode
JPS61288372A (en) Hydrogen occlusion electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH0586622B2 (en)
JPH05144433A (en) Electrode with hydrogen storage alloy
JPS6119060A (en) Hydrogen occlusion electrode
JPH0393158A (en) Hydrogen storage alloy electrode
JPS61176065A (en) Hydrogen occlusion electrode
JPH0578140B2 (en)
JPS6119058A (en) Hydrogen occlusion electrode
JPH0482162A (en) Manufacture of electrode made of hydrogen occluding