JPS6119010A - Method of producing superconductive wire with solder - Google Patents

Method of producing superconductive wire with solder

Info

Publication number
JPS6119010A
JPS6119010A JP59140008A JP14000884A JPS6119010A JP S6119010 A JPS6119010 A JP S6119010A JP 59140008 A JP59140008 A JP 59140008A JP 14000884 A JP14000884 A JP 14000884A JP S6119010 A JPS6119010 A JP S6119010A
Authority
JP
Japan
Prior art keywords
solder
superconducting wire
soldering
flux
stabilizing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59140008A
Other languages
Japanese (ja)
Other versions
JPH0345490B2 (en
Inventor
卓哉 鈴木
義則 長洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59140008A priority Critical patent/JPS6119010A/en
Publication of JPS6119010A publication Critical patent/JPS6119010A/en
Publication of JPH0345490B2 publication Critical patent/JPH0345490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は超電導線を機械的強度の大きい無酸素銅のハウ
ジングに連続的に組込み半田付けを行う半田付は超電導
線の製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a superconducting wire, in which a superconducting wire is successively assembled and soldered into a housing made of oxygen-free copper having high mechanical strength.

一般にブロンズ法やインサイチュ法により製造する化合
物超電導線は、化合物超電導体を形成するため複合材の
最後の工程において高温長時間熱処理を施しているもの
である。このため完全な焼鈍状態となシ機械的強度が著
しく低下して高磁界用マグネットの巻線としては不適当
なものとなるものであった。従って熱処理によって得ら
れたNb5SnHi電導線にIA〜1/2硬材の無酸素
銅の安定化材を半田付けすることによ多巻線としての要
求特性を満たしているものであった。黙しながらこの場
合半田付けによる安定化材の鈍シを極力小さくし且つ巻
線として線材表向の熱伝導度が低下することのないよう
に清浄な銅表面が要求されている。従来この半田付は方
法としては超電導線と安定化材との間に半田テープを挾
持し連続的に加熱半田付けする方法又は半田付けを忌避
する部分に半田溶湯中で表面に半田付着を防止する皮膜
を設る非半田処理化を行い、半田付けを要求する部分に
、部分的にフラックスを塗布し半田溶湯中に浸漬して半
田付けを行っているものである。
Generally, compound superconducting wires manufactured by the bronze method or the in-situ method are subjected to high-temperature and long-term heat treatment in the final step of the composite material in order to form a compound superconductor. As a result, the wire was completely annealed and its mechanical strength was significantly reduced, making it unsuitable for use as a winding wire for a magnet for high magnetic fields. Therefore, by soldering a stabilizing material of oxygen-free copper of IA to 1/2 hard material to the Nb5SnHi conductive wire obtained by heat treatment, the required characteristics as a multi-winding wire were satisfied. However, in this case, a clean copper surface is required in order to minimize the dullness of the stabilizing material by soldering and to prevent a decrease in the thermal conductivity of the surface of the wire used as a winding wire. Conventionally, this soldering has been done by sandwiching a solder tape between the superconducting wire and the stabilizing material and continuously heating and soldering, or by placing solder in molten metal to prevent solder from adhering to the surface of the part where soldering is avoided. This is a non-soldering process in which a film is formed, and the parts that require soldering are partially coated with flux and immersed in molten solder to perform soldering.

然しなから前者の方法においては・・ウジングとの接合
時においてガス抜き不良によるがイドが発生し非酸化雰
囲気(・X・Ar + N2等)の炉中加熱では熱伝導
が悪く長時間処理となる為銅基材の鈍シがおきやすいと
いう欠点があシ、後者の方法においては非半田の部分処
理、及び半田付部におけるフラックスの部分処理が困難
であシ、接合部に半田の溜υができたヤ、フラックスが
非半田付部を侵しこの部分に半田が付着するような問題
があった。又、溶湯を使うので溶湯表面に形成された酸
化物を半田付面に巻込み接層しない所謂るゲイトとなる
不都合がある。
However, in the former method, id occurs due to poor degassing when joining with the housing, and when heated in a furnace in a non-oxidizing atmosphere (・X・Ar + N2, etc.), heat conduction is poor and long-term processing is required. In the latter method, it is difficult to treat the non-solder parts and the flux in the soldered parts, and the solder pools in the joint parts. However, there was a problem in that the flux attacked the non-soldered parts, causing solder to adhere to these parts. In addition, since molten metal is used, there is a problem in that the oxide formed on the surface of the molten metal is rolled into the soldering surface and becomes a so-called gate that is not in contact with the soldering surface.

更に後者の方法では常温のCu基材と超電導線とを半田
浴中を短時間通過させ表面部分のみを急速に加熱して半
田付けを行いうるためCu基材の鈍ヤが少い利点がある
か前述のような不都合を生ずる。
Furthermore, the latter method has the advantage that the Cu base material is less dull because it allows the Cu base material and the superconducting wire at room temperature to pass through a solder bath for a short time and solder by rapidly heating only the surface portion. Otherwise, the above-mentioned inconvenience may occur.

而して銅基材による安定化材において接合部分のみを半
田付けし、他の部分に半田を被覆しない理由は、安定化
材の全面に半田付けを行った場合には半田被膜によって
熱伝導性が著しく低下し超電導体の冷却効果を著しく低
下するからである。従って安定化材の必要最小部分のみ
を半田付けを行えばよいのである。
The reason for soldering only the bonded parts and not coating the other parts with copper-based stabilizing material is that if the entire surface of the stabilizing material is soldered, the solder film will not provide thermal conductivity. This is because the cooling effect of the superconductor is significantly reduced. Therefore, it is only necessary to solder only the minimum necessary portion of the stabilizing material.

本発明はかかる現状に鑑み鋭意研究を行った結果、安定
化材の接合せんとする面以外の面には半田を付着せしめ
ることなく超電導線と安定化材とを接合する方法を見出
したものである。
As a result of extensive research in view of the current situation, the present invention has discovered a method for bonding superconducting wires and stabilizing materials without applying solder to surfaces other than those to be bonded. be.

即ち本発明方法は超電導線を安定化材のハウジングに組
込み半田付けを行って接合する半田付は超電導線の製造
方法において、安定化材の接合せんとする面以外の面に
酸化処理を施して酸化性被膜を設けた後、該酸化性被膜
を侵すことのないフラックス中に超電導線及び安定化材
を浸漬して該酸化性被膜以外の部分に半田付けを行うこ
とを特徴とするものである。
That is, in the method of the present invention, a superconducting wire is assembled into a housing of a stabilizing material and soldered to join.Soldering is a superconducting wire manufacturing method in which a surface of the stabilizing material other than the surface to be joined is subjected to an oxidation treatment. After the oxidizing film is provided, the superconducting wire and the stabilizing material are immersed in a flux that does not attack the oxidizing film, and the parts other than the oxidizing film are soldered. .

本発明方法は非接合面に酸化銅被膜を設けた安定化材を
超電導線と共にフラックス中に浸漬した後、次に予熱炉
を通過せしめ半田浴中に浸漬せしめて半田付けと同時に
無酸素鋼のハウジング内に超電導線を組込む方法である
から、特に非接合面の酸化銅被膜がフラックスに侵され
ないことが必要であり、そのためには酸化銅の被覆の厚
さを0.8〜1.5μ程度に限定するものである。その
理由は0.8μよシ酸化鋼被膜が薄いと半田付した後、
その表面にところどころ半田が付着するおそれがあル、
又銅基材表面の酸化銅被膜は厚さが1.5μよシ厚くな
ると粉末状酸化銅が形成され、それが粉末状異物となっ
て半田付は時に半田付着層中に巻きこまれゲイトを生ず
るものである。なお望ましくは1.0〜1.4μが好ま
しい。
The method of the present invention involves immersing a stabilizing material with a copper oxide coating on the non-bonding surface together with a superconducting wire in flux, then passing it through a preheating furnace and immersing it in a solder bath to simultaneously solder the oxygen-free steel. Since this is a method of incorporating superconducting wires into the housing, it is necessary that the copper oxide coating on the non-bonded surfaces is not attacked by flux, and for this purpose, the thickness of the copper oxide coating must be approximately 0.8 to 1.5 μm. It is limited to. The reason is that after soldering, the oxidized steel coating is as thin as 0.8μ.
There is a risk that solder may adhere to the surface here and there.
In addition, when the copper oxide film on the surface of the copper base material becomes thicker than 1.5 μm, powdery copper oxide is formed, which becomes powdery foreign matter and sometimes gets caught up in the solder adhesion layer during soldering, creating a gate. It is something. In addition, it is preferably 1.0 to 1.4μ.

又フラックスはCuの安定化材と超電導線の半田付けt
L十分な機能を発揮せしめなければならず、そのために
は水溶性フラックスにして比重0.82〜0.85の範
囲のものが好ましく例えば0683が使用される。
Also, the flux is used for soldering the Cu stabilizer and superconducting wire.
L must exhibit sufficient functionality, and for this purpose, a water-soluble flux with a specific gravity in the range of 0.82 to 0.85 is preferably used, such as 0683.

又本発明は化合物超電導線及び合金超電導線のいずれに
も適用できる。次に本発明方法の実施例について説明す
る。
Further, the present invention can be applied to both compound superconducting wires and alloy superconducting wires. Next, examples of the method of the present invention will be described.

実施例 図面に示す如くU字形状断面のCu異形材1と凸形状C
u異形材2の夫々に部分的に酸化処理3゜3′を施し、
1.0±0.2μ(t)のCuO皮膜を形成した。一方
、超電導線はCu異形材1及び2で狭まれるように配置
し各々比重を0.83〜0.84に調整した水溶性フラ
ックス液中を通し、予備加熱機を通しフラックス中の溶
剤を除去と同時にU超電導線を予備加熱し、250℃の
半田溶湯に全体を入れ同時に黒鉛の型で抑えつつ一体化
した超電導線は黒鉛型内を摺動して冷却ゾーンに移シ半
田は固化複合された。超電導体の表面は半田付着はなく
良好な状態であった。
As shown in the example drawings, a Cu profiled material 1 with a U-shaped cross section and a convex shape C
Partially oxidize 3゜3' on each of the u-shaped members 2,
A CuO film of 1.0±0.2 μ(t) was formed. On the other hand, the superconducting wire is placed between Cu shaped members 1 and 2, passed through a water-soluble flux solution whose specific gravity is adjusted to 0.83 to 0.84, and passed through a preheater to remove the solvent in the flux. At the same time as the removal, the U superconducting wire is preheated, and the whole is placed in a molten solder at 250°C. At the same time, it is held down with a graphite mold, and the integrated superconducting wire slides inside the graphite mold and is transferred to a cooling zone, where the solder solidifies and composites. It was done. The surface of the superconductor was in good condition with no solder adhesion.

以上詳述した如く本発明方法によれば銅基材の安定化材
内に超電導線を組入れるにおいて、安定化材の導電性を
低下せしめることなく超電導線と安定化材との接合を容
易に行いうるため作業性が向上し工業的に極めて有用な
ものである。
As detailed above, according to the method of the present invention, when a superconducting wire is incorporated into a stabilizing material of a copper base material, the superconducting wire and the stabilizing material can be easily joined without reducing the conductivity of the stabilizing material. It is extremely useful industrially as it improves workability.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明半田付は超電導線を製造するだめの型材の
1例を示す断面図である。 1・・・U字形状異形材、2・・・凸形状異形材、3.
3′・・・酸化皮膜。
The drawing is a cross-sectional view showing an example of a mold material for manufacturing a superconducting wire by soldering according to the present invention. 1... U-shaped profiled material, 2... Convex profiled profile, 3.
3'... Oxide film.

Claims (1)

【特許請求の範囲】 (1)超電導線を安定化材に組込み半田付けを行って接
合する半田付け超電導線の製造方法において、安定化材
の接合せんとする面以外の面に酸化処理を施して酸化性
被膜を設けた後、該酸化性被膜を侵すことのないフラッ
クス中に超電導線及び安定化材を浸漬して該酸化性皮膜
以外の部分に半田付けを行うことを特徴とする半田付け
超電導線の製造方法。(2)フラックスとして比重0.
82〜0.85を有する水溶性フラックスを使用するこ
とを特徴とする特許請求の範囲第1項記載の半田付け超
電導線の製造方法。 (3)酸化性被膜の厚さを0.8〜1.5μにすること
を特徴とする特許請求の範囲第1項記載の半田付け超電
導線の製造方法。
[Claims] (1) In a method for manufacturing a soldering superconducting wire in which a superconducting wire is assembled into a stabilizing material and joined by soldering, the surface of the stabilizing material other than the surface to be joined is subjected to an oxidation treatment. After forming an oxidizing film, the superconducting wire and the stabilizing material are immersed in a flux that does not corrode the oxidizing film, and the parts other than the oxidizing film are soldered. Method of manufacturing superconducting wire. (2) Specific gravity as flux: 0.
The method for manufacturing a soldered superconducting wire according to claim 1, characterized in that a water-soluble flux having a molecular weight of 82 to 0.85 is used. (3) The method for manufacturing a soldered superconducting wire according to claim 1, characterized in that the thickness of the oxidizing film is 0.8 to 1.5 μm.
JP59140008A 1984-07-06 1984-07-06 Method of producing superconductive wire with solder Granted JPS6119010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140008A JPS6119010A (en) 1984-07-06 1984-07-06 Method of producing superconductive wire with solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140008A JPS6119010A (en) 1984-07-06 1984-07-06 Method of producing superconductive wire with solder

Publications (2)

Publication Number Publication Date
JPS6119010A true JPS6119010A (en) 1986-01-27
JPH0345490B2 JPH0345490B2 (en) 1991-07-11

Family

ID=15258785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140008A Granted JPS6119010A (en) 1984-07-06 1984-07-06 Method of producing superconductive wire with solder

Country Status (1)

Country Link
JP (1) JPS6119010A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139696A (en) * 1980-03-31 1981-10-31 Showa Electric Wire & Cable Co Ltd Method for forming plated surface and surface-oxidation- treated surface in longitudinal direction on surface of long-sized copper material
JPS57182907A (en) * 1981-05-06 1982-11-11 Showa Electric Wire & Cable Co Method of producing superconductive composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139696A (en) * 1980-03-31 1981-10-31 Showa Electric Wire & Cable Co Ltd Method for forming plated surface and surface-oxidation- treated surface in longitudinal direction on surface of long-sized copper material
JPS57182907A (en) * 1981-05-06 1982-11-11 Showa Electric Wire & Cable Co Method of producing superconductive composite material

Also Published As

Publication number Publication date
JPH0345490B2 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
JPS6119010A (en) Method of producing superconductive wire with solder
JP2904998B2 (en) Solid object made of ceramic high-temperature superconducting material connected to metal conductor and method of manufacturing the same
KR101798075B1 (en) Hollow chain product using heat treatment process for preventing spreading of copper between two material
JPS59207232A (en) Aluminum-copper clad material
JPS628261B2 (en)
US5592732A (en) Method of making super conducting bonds for thin film devices
JPH0520949A (en) Electric contact point material and manufacture thereof
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPH0344454A (en) Production of lead wire for electronic parts and equipment
JPH05279140A (en) Method for joining oxide superconductor
JPS5837923B2 (en) Heat-resistant electrical conductor for wiring
JPH0313687B2 (en)
JPH0344453A (en) Production of lead wire for electronic parts and equipment
JPH07118223B2 (en) Lightweight heat-resistant magnet wire that can be soldered
JPH04202065A (en) Method for joining oxide superconductor and metal superconductor
JPS60225456A (en) Lead frame for semiconductor
JPS61161682A (en) Joint of superconductor
JPS62252012A (en) Compound superconductor wire material and manufacture of thesame
JPS6290954A (en) Lead frame
JPS59144160A (en) Plastic-sealed ic
JPS6353693B2 (en)
JPH01711A (en) superconducting coil
JPS6115535B2 (en)
JPS59226194A (en) Production of material for electronic parts
JPS63102115A (en) Manufacture of superconductive alloy wire material