JPH05279140A - Method for joining oxide superconductor - Google Patents

Method for joining oxide superconductor

Info

Publication number
JPH05279140A
JPH05279140A JP7674092A JP7674092A JPH05279140A JP H05279140 A JPH05279140 A JP H05279140A JP 7674092 A JP7674092 A JP 7674092A JP 7674092 A JP7674092 A JP 7674092A JP H05279140 A JPH05279140 A JP H05279140A
Authority
JP
Japan
Prior art keywords
silver
solder
joining
superconductor
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7674092A
Other languages
Japanese (ja)
Inventor
Hisao Nonoyama
久夫 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP7674092A priority Critical patent/JPH05279140A/en
Publication of JPH05279140A publication Critical patent/JPH05279140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To enable the soldering at a low contact resistivity without being affected by technique of an operator by using a solder having a prescribed value or below of a melting temperature or an Sn-Pb-based solder containing a prescribed amount of silver in joining a conductor composed of an oxide superconductor to other conductors. CONSTITUTION:In the first method, a solder having <=100 deg.C [e.g. Rose's alloy having a composition of Bi(50%)-Pb(28%)-Sn(22%), 76 deg.C melting point and a solidifying range of 77-94 deg.C] is used. In the second method, the first conductor composed of an oxide superconductor is joined through a silver film formed on the surface of the first conductor to the second conductors. An Sn-Pb- based solder containing 2-5wt.% silver is used as a joining material. For example, both ends of a wiry bismuth-based superconductor 1 are sputter coated with the silver to 5mum thickness [parts (2a) and (2b)], then heat-treated (at 840 deg.C for 15hr) and subsequently joined to copper electrodes 4 and 4 with a solder material 5, composed of In-Sn-Cd and having 93 deg.C melting point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体からな
る導体を他の導体に接合するための方法に関し、特に、
電力、輸送、高エネルギー、医療およびエレクトロニク
ス等の分野において酸化物超電導体を配設するに際し、
接触抵抗を低く抑えて他の導体と接合するための方法に
関する。
FIELD OF THE INVENTION The present invention relates to a method for joining a conductor comprising an oxide superconductor to another conductor, and more particularly,
When disposing oxide superconductors in the fields of electric power, transportation, high energy, medical care and electronics,
TECHNICAL FIELD The present invention relates to a method for suppressing contact resistance to be low and joining with another conductor.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】酸化
物超電導体からなる導体と他の導体(たとえば金属な
ど)とを接合させる場合、まず、酸化物超電導体の表面
を蒸着法やスパッタ法により銀等でメタライズすること
が好ましい。
2. Description of the Related Art When a conductor made of an oxide superconductor is joined to another conductor (for example, a metal), the surface of the oxide superconductor is first deposited by vapor deposition or sputtering. Metallization with silver or the like is preferable.

【0003】このようなメタライズに関して、たとえ
ば、銀または金によるメタライズがAppl.Phy
s.Lett.52(21),23 May 1988
に報告されている。メタライズにより酸化物超電導体の
表面には数μmの厚さの金属膜が形成される。金または
銀を用いたメタライズにより、接触抵抗を比較的低く抑
えて接合を行なうことができる。
With respect to such metallization, for example, metallization with silver or gold is described in Appl. Phy
s. Lett. 52 (21), 23 May 1988.
Has been reported to. By metallization, a metal film having a thickness of several μm is formed on the surface of the oxide superconductor. By metallizing with gold or silver, it is possible to carry out the bonding while keeping the contact resistance relatively low.

【0004】このようなメタライズの後、超電導体は、
メタライズにより形成された金属膜を介して他の導体に
ハンダ付けされる。このハンダ付けにおいては、従来、
一般にPb−Sn共晶ハンダが用いられている。
After such metallization, the superconductor is
It is soldered to another conductor through a metal film formed by metallization. In this soldering,
Generally, Pb-Sn eutectic solder is used.

【0005】しかしながら、従来のハンダを用いた接合
方法では、ハンダ付け作業者の技術、特に作業に要する
時間によって、接合された酸化物超電導体と金属との接
触抵抗に大きなばらつきが生じた。また、接合後の接触
抵抗率は、10-3Ω・cm2程度と比較的高いものであ
った。
However, in the conventional joining method using solder, the contact resistance between the joined oxide superconductor and the metal varies greatly depending on the technique of the soldering worker, particularly the time required for the work. Further, the contact resistivity after joining was relatively high at about 10 −3 Ω · cm 2 .

【0006】本発明の目的は、作業者の技術に左右され
ることなく、低い接触抵抗率で酸化物超電導体からなる
導体と他の導体とを接合させる方法を提供することにあ
る。
An object of the present invention is to provide a method for joining a conductor made of an oxide superconductor and another conductor at a low contact resistivity without depending on the technique of an operator.

【0007】[0007]

【課題を解決するための手段および作用】上述したよう
な問題が生じる原因を調査したところ、ハンダ付け時に
メタライズした金属が溶融ハンダ中に溶解するという現
象が生じ、そのためにメタライズされた金属が通電に対
して不都合なまでに薄くなったり、あるいは消失したり
することが判明した。
[Means and Actions for Solving the Problems] As a result of investigating the cause of the above-mentioned problems, a phenomenon in which metallized metal is melted in molten solder during soldering occurs, and the metallized metal is therefore energized. However, it has been found that the film becomes unfavorably thin or disappears.

【0008】メタライズされた金属膜は薄すぎると接触
抵抗が高くなる一方、厚くしすぎても接触抵抗を低減さ
せる効果は飽和するので作業時間およびコストの面から
考えると非能率的であり現実にそぐわない。よって、メ
タライズ金属の膜厚には最適値が存在し、たとえば銀に
よるメタライズの場合、3〜10μmである。このよう
な膜厚において、ハンダ付け作業を行ない、接触抵抗を
低く抑えることが作業時間およびコストの面から考えて
も望ましいことであった。
If the metallized metal film is too thin, the contact resistance will be high, but if it is too thick, the effect of reducing the contact resistance will be saturated, which is inefficient in terms of working time and cost, and actually It doesn't fit. Therefore, there is an optimum value for the film thickness of the metallized metal, which is 3 to 10 μm in the case of silver metallization, for example. With such a film thickness, it was desirable from the viewpoint of working time and cost to carry out soldering work and keep the contact resistance low.

【0009】以上に示した本発明者による知見および考
察の結果、本発明者は、メタライズされた金属の膜厚
が、ハンダ付けの作業時間に左右されない方法について
検討を行なった。検討の結果、まず、メタライズによる
金属膜に接する溶融ハンダの温度が高いほど、ハンダ中
に金属膜が溶解していく速度が速く、温度が低いほど溶
解速度が低いことを見出した。さらに検討を重ねた結
果、本発明者は、溶融温度が100℃以下のハンダ材な
ら長時間のハンダ付け作業でも金属膜の厚みはほとんど
変化しないことを見出し、第1の発明を完成させるに至
った。
As a result of the above findings and consideration by the present inventor, the present inventor has studied a method in which the film thickness of the metallized metal is not affected by the soldering work time. As a result of the study, first, it was found that the higher the temperature of the molten solder in contact with the metal film by metallization, the faster the dissolution rate of the metal film in the solder, and the lower the temperature, the lower the dissolution rate. As a result of further studies, the present inventor has found that a solder material having a melting temperature of 100 ° C. or less causes almost no change in the thickness of the metal film even after a long soldering operation, and has completed the first invention. It was

【0010】すなわち、第1の発明に従う酸化物超電導
体の接合方法は、酸化物超電導体からなる第1の導体を
その表面に形成された金属膜を介して第2の導体に接合
させる方法であって、接合材として融点が100℃以下
のハンダを用いることを特徴とする。
That is, the method for joining an oxide superconductor according to the first invention is a method for joining a first conductor made of an oxide superconductor to a second conductor through a metal film formed on the surface thereof. It is characterized in that solder having a melting point of 100 ° C. or lower is used as the bonding material.

【0011】第1の発明において用いるハンダは、融点
が100℃以下のもので良好に金属と接着し、抵抗の低
いものであれば特に限定されないが、たとえば、Bi
(50%)−Pb(28%)−Sn(22%)の組成を
有するローズ合金(融点76℃、凝固範囲77℃〜94
℃)およびBi(50±1%)−Pb(24±1%)−
Sn(14±1%)−Cd(12±1%)の組成を有す
るウッド合金(融点65℃、凝固範囲66℃〜71℃)
は、融点が十分低く、熱湯を加熱源としても十分にその
接着作業を行なうことができ、しかも安価で導電性にも
優れているため、好ましいハンダ材として用いることが
できる。
The solder used in the first invention is not particularly limited as long as it has a melting point of 100 ° C. or less and is well adhered to a metal and has low resistance. For example, Bi
Rose alloy having a composition of (50%)-Pb (28%)-Sn (22%) (melting point: 76 ° C, solidification range: 77 ° C to 94 ° C)
C) and Bi (50 ± 1%)-Pb (24 ± 1%)-
Wood alloy having a composition of Sn (14 ± 1%)-Cd (12 ± 1%) (melting point 65 ° C, solidification range 66 ° C to 71 ° C)
Has a sufficiently low melting point, can be sufficiently bonded even when hot water is used as a heating source, is inexpensive, and has excellent conductivity, and thus can be used as a preferable solder material.

【0012】なお、第1の発明において、ハンダの溶融
温度がこのように低いと、メタライズした金属や複合金
属のハンダとの濡れ性が悪くなることもあり得るので、
ハンダ付けに際して接合面に超音波をあてながら接合を
行なってもよい。また、メタライズが複合金属である場
合、濡れ性がさほど向上しない可能性もあり得るので、
その場合は複合金属の表面に薄くSn−Pbハンダをコ
ーティングしてから接合を行なってもよい。
In the first aspect of the invention, if the melting temperature of the solder is so low, the wettability of the metallized metal or the composite metal with the solder may deteriorate.
The soldering may be performed while applying ultrasonic waves to the bonding surfaces. Further, when the metallization is a composite metal, the wettability may not be improved so much,
In that case, the surface of the composite metal may be thinly coated with Sn-Pb solder before joining.

【0013】一方、さらに検討を行なった結果、金属膜
に接する溶融ハンダ中に銀が既に固溶しており、たとえ
ば、銀の溶融度の上限近くまで溶融ハンダ中に銀が含ま
れていれば銀皮膜が溶解されることはないとの結論に至
った。そして、銀を2重量%以上5重量%以下含むSn
−Pb系ハンダを用いれば、ハンダ中に溶解する銀皮膜
の量はごくわずかであり、ハンダ付け作業に必要な時間
内ではその量はほぼ無視できることを見出し、第2の発
明を完成させるに至った。
On the other hand, as a result of further investigation, if the molten solder in contact with the metal film already has a solid solution of silver, for example, if the molten solder contains silver up to the upper limit of the melting degree of silver, It was concluded that the silver film was not dissolved. Sn containing 2% by weight or more and 5% by weight or less of silver
With the use of -Pb-based solder, it was found that the amount of the silver film dissolved in the solder was very small, and that amount was almost negligible within the time required for the soldering work, leading to the completion of the second invention. It was

【0014】すなわち、第2の発明に従う酸化物超電導
体の接合方法は、酸化物超電導体からなる第1の導体を
その表面に形成された銀皮膜を介して第2の導体に接合
させる方法であって、接合材として銀を2重量%〜5重
量%含むSn−Pb系ハンダを用いることを特徴とす
る。
That is, the method of joining an oxide superconductor according to the second invention is a method of joining a first conductor made of an oxide superconductor to a second conductor through a silver film formed on the surface thereof. The Sn-Pb-based solder containing 2 wt% to 5 wt% of silver is used as the bonding material.

【0015】第2の発明に用いられるハンダに含有され
る銀の量は、2重量%より少ない場合、ハンダ付けに際
して銀皮膜が溶解され、結果的に超電導体と銀との接触
抵抗がかなり高くなってしまう。また、銀の添加量が5
重量%を超えると、融点が高くなり、ハンダ付けの作業
に支障が生じる。
When the amount of silver contained in the solder used in the second invention is less than 2% by weight, the silver film is dissolved during soldering, resulting in a considerably high contact resistance between the superconductor and silver. turn into. Also, the amount of silver added is 5
If the content exceeds 10% by weight, the melting point becomes high, which hinders the soldering work.

【0016】銀を上記範囲で含むSn−Pb系ハンダ
は、良好に銀皮膜と接着し、超電導体からなる導体と他
の導体を接合させることができる。また、この発明に従
うハンダは抵抗も低いため、接合に際して接触抵抗も低
く抑えることができる。
The Sn-Pb-based solder containing silver in the above range can adhere well to the silver film and can join the conductor made of a superconductor to another conductor. Further, since the solder according to the present invention has a low resistance, the contact resistance at the time of joining can be kept low.

【0017】第2の発明において用いるSn−Pb系ハ
ンダは、特に限定されるものではないが、たとえば、P
b−Sn、Pb−Sn−Sb、Pb−Sn−Cd、およ
びPb−Sn−Inなどがある。これらの合金に、この
発明に従って、銀を2重量%〜5重量%の範囲で適当な
量添加すればよい。
The Sn-Pb-based solder used in the second invention is not particularly limited, but is, for example, P.
b-Sn, Pb-Sn-Sb, Pb-Sn-Cd, and Pb-Sn-In. According to the present invention, silver may be added to these alloys in an appropriate amount in the range of 2% by weight to 5% by weight.

【0018】第1および第2の発明において、酸化物超
電導体は、イットリウム系、ビスマス系およびタリウム
系等の酸化物超電導体を含む。
In the first and second inventions, the oxide superconductor includes an yttrium-based, bismuth-based, thallium-based oxide superconductor, or the like.

【0019】第1および第2の発明において、酸化物超
電導体の表面に形成される金属膜は、たとえば銀または
金等により形成されることが好ましい。また、この金属
膜の厚さは、上述したように3〜10μmが好ましく、
5μmがより好ましい。
In the first and second inventions, the metal film formed on the surface of the oxide superconductor is preferably made of, for example, silver or gold. The thickness of the metal film is preferably 3 to 10 μm as described above,
5 μm is more preferable.

【0020】第1および第2の発明において、酸化物超
電導体に接合される導体は、たとえば、金属の他、表面
をメタライズされた別の酸化物超電導体とすることもで
きる。この発明の方法は、金属と酸化物超電導体とを接
合させる場合のみならず、複数の酸化物超電導体を束ね
て接合する場合にも適用することができる。
In the first and second inventions, the conductor joined to the oxide superconductor may be, for example, a metal or another oxide superconductor whose surface is metallized. The method of the present invention can be applied not only when bonding a metal and an oxide superconductor but also when bonding a plurality of oxide superconductors in a bundle.

【0021】[0021]

【実施例】【Example】

実施例1 一方向凝固法により作製した線状のビスマス系超電導体
(Bi2 Sr2 CaCu2 Ox、臨界電流Ic:200
A)の両端部に、銀を5μmの厚みでスパッタコーティ
ングした。得られた線材は図1(a)に示すとおりであ
り、ビスマス系超電導体1の両端部には、銀コーティン
グ2a、2bがそれぞれ形成されている。
Example 1 A linear bismuth-based superconductor (Bi 2 Sr 2 CaCu 2 Ox, produced by the unidirectional solidification method, critical current Ic: 200)
Both ends of A) were sputter coated with silver to a thickness of 5 μm. The obtained wire is as shown in FIG. 1 (a), and silver coatings 2a and 2b are formed on both ends of the bismuth-based superconductor 1, respectively.

【0022】次に、線材について840℃で15時間、
熱処理を行なった後、In44%、Sn42%、Cd1
4%からなる融点が93℃のハンダを用いて線材の両端
部に銅電極をそれぞれハンダ付けした。ハンダ付けに際
しては、銅電極のハンダに対する濡れ性を向上させるた
め、接着面に超音波ハンダごてにより超音波をあてた。
Next, the wire rod was heated at 840 ° C. for 15 hours,
After heat treatment, In44%, Sn42%, Cd1
Copper electrodes were soldered to both ends of the wire using solder composed of 4% and having a melting point of 93 ° C. At the time of soldering, in order to improve the wettability of the copper electrode with respect to solder, ultrasonic waves were applied to the adhesive surface with an ultrasonic soldering iron.

【0023】ハンダ付けの後得られた線材を図1(b)
に示す。ビスマス系超電導体1において、銀コーティン
グが施された部分は、銅電極4、4′に形成された孔に
それぞれ通され、ハンダ材5によってそれぞれの銅電極
に接合されている。
The wire obtained after soldering is shown in FIG.
Shown in. In the bismuth-based superconductor 1, the portions coated with silver are passed through the holes formed in the copper electrodes 4 and 4 ', and are joined to the respective copper electrodes by the solder material 5.

【0024】液体窒素中にて銅電極4、4′間に100
Aの直流電流を流し、電極間の電圧を測定して接触抵抗
率を計算したところ、10-8Ω・cm2 と低かった。ま
た、電極間に190Aの電流を100時間クエンチさせ
ることなく流すことができた。
100 in between the copper electrodes 4, 4'in liquid nitrogen.
When the direct current of A was passed and the voltage between the electrodes was measured to calculate the contact resistivity, it was as low as 10 −8 Ω · cm 2 . Also, a current of 190 A could be passed between the electrodes without quenching for 100 hours.

【0025】実施例2 一方向凝固法により作製した線状のビスマス系超電導体
(Bi2 Sr2 CaCu2 Ox、臨界電流Ic:200
A)の両端部に銀を5μmの厚みでスパッタコーティン
グした。得られた線材は図1(a)に示すとおりであ
る。
Example 2 A linear bismuth-based superconductor (Bi 2 Sr 2 CaCu 2 Ox, produced by the unidirectional solidification method, critical current Ic: 200)
Both ends of A) were sputter coated with silver to a thickness of 5 μm. The obtained wire rod is as shown in FIG.

【0026】次に、線材について840℃で15時間、
熱処理を行なった後、Bi(50±1%)−Pb(24
±1%)−Sn(14±1%)−Cd(12±1%)か
らなる融点が65℃のウッド合金を用いて線材の両端部
に銅電極をそれぞれハンダ付けした。ハンダ付けに際し
ては銀被膜のハンダによる濡れ性を向上させるため、接
合面に超音波ハンダごてにより超音波をあてた。ハンダ
付けの後、得られた線材は図1(b)に示すとおりであ
る。
Next, the wire rod was heated at 840 ° C. for 15 hours,
After heat treatment, Bi (50 ± 1%)-Pb (24
Copper electrodes were soldered to both ends of the wire using a wood alloy having a melting point of 65 ° C. made of ± 1%)-Sn (14 ± 1%)-Cd (12 ± 1%). At the time of soldering, in order to improve the wettability of the silver coating with solder, ultrasonic waves were applied to the joint surface with an ultrasonic soldering iron. After soldering, the obtained wire is as shown in FIG. 1 (b).

【0027】液体窒素中にて銅電極間に100Aの直流
電流を流し、電極間の電圧を測定して接触抵抗率を計算
したところ、10-9Ω・cm2 と低かった。また、電極
間に190Aの電流を100時間クエンチさせることな
く流すことができた。
A direct current of 100 A was passed between the copper electrodes in liquid nitrogen, the voltage between the electrodes was measured, and the contact resistivity was calculated to be as low as 10 −9 Ω · cm 2 . Also, a current of 190 A could be passed between the electrodes without quenching for 100 hours.

【0028】実施例3 一方向凝固法にて作製した1.5mmφ×100mm長
のビスマス系超電導線材(Bi2 Sr2 CaCu2
x、臨界電流Ic:200A)の表面全体に銀を5μm
の厚みでスパッタコーティングした後、840℃で15
時間熱処理した。
Example 3 A bismuth-based superconducting wire (Bi 2 Sr 2 CaCu 2 O) having a length of 1.5 mm and a length of 100 mm manufactured by the unidirectional solidification method.
x, critical current Ic: 200 A) 5 μm of silver on the entire surface
After sputter coating with a thickness of 15
Heat treated for hours.

【0029】このようにして得られた線材を10本束ね
て2枚の銀テープで固定し、線材間をBi(50±1
%)−Pb(24±1%)−Sn(14±1%)−Cd
(12±1%)からなる融点が65℃のウッド合金で接
着させた。ハンダ付けに際しては、銀コーティングのハ
ンダとの濡れ性をよくするために、接着面に超音波ハン
ダごてにより超音波をあてた。
Ten wire rods thus obtained were bundled and fixed with two silver tapes, and the distance between the wire rods was set to Bi (50 ± 1).
%)-Pb (24 ± 1%)-Sn (14 ± 1%)-Cd
A wood alloy having a melting point of 65 ° C. (12 ± 1%) was used for adhesion. At the time of soldering, in order to improve the wettability with the silver-coated solder, ultrasonic waves were applied to the adhesive surface with an ultrasonic soldering iron.

【0030】液体窒素中に接着した線材全体を浸漬し1
95Aの直流電流を流したところ、超電導状態を保った
まま100時間クエンチさせることなく流すことができ
た。
Immerse the entire bonded wire in liquid nitrogen 1
When a direct current of 95 A was passed, it could be passed without quenching for 100 hours while maintaining the superconducting state.

【0031】比較例1 一方向凝固法により作製した線状のビスマス系超電導体
(Bi2 Sr2 CaCu2 Ox、臨界電流Ic:200
A)の両端部に銀を5μmの厚みでスパッタコーティン
グして図1(a)に示すような線材を得た。
Comparative Example 1 A linear bismuth-based superconductor (Bi 2 Sr 2 CaCu 2 Ox, produced by the unidirectional solidification method, critical current Ic: 200).
Both ends of (A) were sputter coated with silver to a thickness of 5 μm to obtain a wire as shown in FIG.

【0032】次に、線材について840℃で15時間、
熱処理を行なった後、In52%、Sn48%からなる
融点が118℃のハンダを用いて、線材の両端部に図1
(b)に示すようにして銅電極をそれぞれハンダ付けし
た。ハンダ付けに際しては、銀被膜のハンダに対する濡
れ性を向上させるため、上記と同様にして接合面に超音
波をあてた。
Next, the wire rod was heated at 840 ° C. for 15 hours,
After the heat treatment, a solder composed of In52% and Sn48% and having a melting point of 118 ° C. was used to bond the ends of the wire to FIG.
Copper electrodes were soldered as shown in FIG. At the time of soldering, ultrasonic waves were applied to the joint surface in the same manner as described above in order to improve the wettability of the silver coating to the solder.

【0033】液体窒素中にて銅電極間に10Aの直流電
流を流し、電極間の電圧を測定して接触抵抗率を計算し
たところ、10-3Ω・cm2 と高かった。また、電極間
に30Aの電流を通電したところ、ジュール発熱により
超電導体は溶断した。
A direct current of 10 A was passed between the copper electrodes in liquid nitrogen, the voltage between the electrodes was measured, and the contact resistivity was calculated to be as high as 10 −3 Ω · cm 2 . When a current of 30 A was applied between the electrodes, the superconductor melted due to Joule heat generation.

【0034】比較例2 一方向凝固法にて作製した1.5mmφ×100mm長
のビスマス系超電導線材(Bi2 Sr2 CaCu2
x、臨界電流Ic:200A)の表面全体に銀を5μm
の厚みでスパッタコーティングした後、840℃で15
時間熱処理した。
Comparative Example 2 A bismuth-based superconducting wire (Bi 2 Sr 2 CaCu 2 O) having a length of 1.5 mmφ × 100 mm manufactured by the unidirectional solidification method.
x, critical current Ic: 200 A) 5 μm of silver on the entire surface
After sputter coating with a thickness of 15
Heat treated for hours.

【0035】このようにして得られた線材を10本束ね
て2枚の銀テープで固定し、線材間をIn52%、Sn
48%からなる融点が118℃のハンダで接着させた。
ハンダ付けに際しては、銀コーティングのハンダとの濡
れ性をよくするために、接合面に上記と同様にして超音
波をあてた。
Ten wire rods thus obtained were bundled and fixed with two silver tapes.
Bonding was performed with solder having a melting point of 118 ° C. composed of 48%.
Upon soldering, ultrasonic waves were applied to the joint surface in the same manner as above in order to improve the wettability of the silver coating solder.

【0036】液体窒素中に接着させた線材全体を浸漬
し、1Aの直流電流を通じたところ、線材に電圧が発生
した。これは結合した銀テープと超電導線材の接触抵抗
が高いため、銀テープから超電導線材に電流が流れ移ら
なかったためであり、発生電圧は銀の抵抗によるもので
あった。
When the entire bonded wire was immersed in liquid nitrogen and a direct current of 1 A was applied, a voltage was generated in the wire. This is because the contact resistance between the combined silver tape and the superconducting wire was high, so that the current did not flow from the silver tape to the superconducting wire, and the generated voltage was due to the resistance of silver.

【0037】実施例4 一方向凝固法により作製した線状のビスマス系超電導体
(Bi2 Sr2 CaCu2 Ox、臨界電流Ic:200
A)の両端部に銀を5μmの厚みでスパッタコーティン
グした。得られた線材は、図1(a)に示すとおりであ
り、ビスマス系超電導体1の両端部には銀コーティング
2a、2bがそれぞれ形成されている。
Example 4 A linear bismuth-based superconductor (Bi 2 Sr 2 CaCu 2 Ox, produced by the unidirectional solidification method, critical current Ic: 200)
Both ends of A) were sputter coated with silver to a thickness of 5 μm. The obtained wire is as shown in FIG. 1A, and silver coatings 2a and 2b are formed on both ends of the bismuth-based superconductor 1, respectively.

【0038】次に、線材について840℃で15時間、
熱処理を行なった後、表1に示すハンダをそれぞれ用い
て、線材の両端部に銅電極をそれぞれハンダ付けした。
Next, the wire rod was heated at 840 ° C. for 15 hours,
After the heat treatment, each of the solders shown in Table 1 was used to solder copper electrodes to both ends of the wire.

【0039】[0039]

【表1】 [Table 1]

【0040】銅電極にハンダ付けされた線材は図1
(b)に示すとおりである。ビスマス系超電導体1にお
いて銀コーティングが施された部分は、銅電極4、4′
に形成された孔にそれぞれ通され、ハンダ材5によって
導電極に接合されている。
The wire soldered to the copper electrode is shown in FIG.
It is as shown in (b). The silver-coated portions of the bismuth-based superconductor 1 are copper electrodes 4, 4 '.
Through the holes formed in each and are joined to the conductive electrodes by the solder material 5.

【0041】表1に示される組成のハンダでそれぞれ接
合された超電導体について、液体窒素中にて導電極間に
100Aの直流電流を通じ、電極間の電圧を測定して接
触抵抗率を計算した。計算により求められた接触抵抗率
を表1の右欄に合せて示す。
With respect to the superconductors joined with solder having the compositions shown in Table 1, a DC current of 100 A was passed between the conductive electrodes in liquid nitrogen, the voltage between the electrodes was measured, and the contact resistivity was calculated. The contact resistivity calculated is shown in the right column of Table 1.

【0042】表1に示すように、銀の添加量が2重量%
〜5重量%の範囲内のハンダで接合した実施例A〜D
は、接触抵抗率が低かった。一方、銀合金の添加量がこ
の発明の範囲外にある比較例Aは、その接触抵抗率が実
施例A〜Dの約105 倍であった。
As shown in Table 1, the amount of silver added is 2% by weight.
Examples A to D joined with solder in the range of ~ 5 wt%
Had a low contact resistivity. On the other hand, in Comparative Example A in which the amount of silver alloy added was outside the range of the present invention, the contact resistivity was about 10 5 times that in Examples A to D.

【0043】また、実施例A〜Dの線材では、電極間に
190Aの電流を100時間クエンチさせることなく流
すことができたが、比較例Aでは、電極間に30Aの電
流を流したところ、ジュール発熱により超電導体は溶断
した。
In the wire rods of Examples A to D, a current of 190 A could be passed between the electrodes without quenching for 100 hours, but in Comparative Example A, a current of 30 A was passed between the electrodes. The superconductor melted due to Joule heat generation.

【0044】また、図1(a)に示すビスマス系超電導
体を840℃で15時間熱処理した後、銀を6重量%含
むSn−Pbハンダを用いて図1(b)に示すように銅
電極を接合しようとしたところ、300℃まで温度を上
げてもこのハンダ材は溶融せず、電極を超電導体に接合
させることができなかった。
After heat treating the bismuth superconductor shown in FIG. 1 (a) at 840 ° C. for 15 hours, Sn--Pb solder containing 6% by weight of silver was used to form a copper electrode as shown in FIG. 1 (b). When the temperature was raised to 300 ° C., the solder material did not melt and the electrode could not be joined to the superconductor.

【0045】実施例5 一方向凝固法にて作製した、1.5mmφ×100mm
長のビスマス系超電導線材(Bi2 Sr2 CaCu2
x、臨界電流Ic:200A)の表面全体に銀を5μm
の厚みでスパッタコーティングした後、840℃で15
時間熱処理した。このようにして得られた線材を10本
束ねて2枚の銀テープで固定し、線材間を表2に示す組
成のハンダでそれぞれ接着させた。
Example 5 1.5 mmφ × 100 mm produced by the unidirectional solidification method
Long Bismuth Superconducting Wire (Bi 2 Sr 2 CaCu 2 O
x, critical current Ic: 200 A) 5 μm of silver on the entire surface
After sputter coating with a thickness of 15
Heat treated for hours. Ten wire rods thus obtained were bundled and fixed with two silver tapes, and the wire rods were bonded together with solder having the composition shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】実施例E〜Hのハンダでそれぞれ接合した
線材全体を液体窒素中にそれぞれ浸漬し、195Aの直
流電流を通じたところ、超電導状態を保ったまま100
時間クエンチさせることなく流すことができた。
The entire wires joined by the solders of Examples E to H were each immersed in liquid nitrogen, and a direct current of 195 A was applied to the wires.
I was able to flush it without quenching for hours.

【0048】一方、比較例Cのハンダによりそれぞれ接
合した線材全体を液体窒素中に浸漬し、1Aの直流電流
を通じたところ、線材に電圧が発生した。これは、結合
した銀テープと超電導線材の接触抵抗が高いため、銀テ
ープから超電導線材に電流が流れ移らなかったためであ
り、発生電圧は銀の抵抗に起因するものであった。
On the other hand, when the entire wire material joined by the solder of Comparative Example C was immersed in liquid nitrogen and a direct current of 1 A was applied, a voltage was generated in the wire material. This is because the contact resistance between the bonded silver tape and the superconducting wire was high, so that the current did not flow from the silver tape to the superconducting wire, and the generated voltage was due to the resistance of silver.

【0049】以上に示すように、Sn−Pbに2重量%
〜5重量%の範囲で銀を添加したハンダを用いることに
より、接触抵抗を低く抑えて、超電導体と金属または超
電導体同士を接合させることができた。
As shown above, Sn-Pb contains 2% by weight.
By using the solder to which silver was added in the range of up to 5% by weight, the contact resistance was suppressed to be low and the superconductor and the metal or the superconductors could be joined.

【0050】[0050]

【発明の効果】以上説明したように、第1の発明に従え
ば、融点が100℃以下のハンダ材を用いて、金属被膜
が形成された酸化物超電導体と他の導体とを接合させる
ことにより、金属被膜のハンダ材への溶融を防ぐことが
でき、作業者の技術に左右されることなく低い接触抵抗
率で接合を行なうことができる。
As described above, according to the first aspect of the present invention, a solder material having a melting point of 100 ° C. or less is used to join an oxide superconductor having a metal coating formed thereon to another conductor. Thus, the metal coating can be prevented from melting into the solder material, and the joining can be performed at a low contact resistivity without being influenced by the skill of the operator.

【0051】また、第2の発明に従えば、銀を2重量%
〜5重量%含むSn−Pb系ハンダを酸化物超電導体の
接合に用いることにより、作業者の技術に左右されるこ
となく、低い接触抵抗率で酸化物超電導体からなる導体
と他の導体とを接合させることができる。
According to the second invention, the silver content is 2% by weight.
By using Sn-Pb-based solder containing up to 5% by weight for joining oxide superconductors, conductors composed of oxide superconductors and other conductors with low contact resistivity can be obtained without being influenced by the technique of the operator. Can be joined.

【0052】したがって、本発明に従う方法は、電力、
輸送、高エネルギー、医療およびエレクトロニクス等の
分野における酸化物超電導体の配設に有用である。
Therefore, the method according to the invention is
It is useful for the placement of oxide superconductors in fields such as transportation, high energy, medical and electronics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において両端部に銀コーティングが施さ
れた酸化物超電導体に電極を設けていく工程を示す斜視
図である。
FIG. 1 is a perspective view showing a process of providing electrodes on an oxide superconductor having silver coating on both ends in an example.

【符号の説明】[Explanation of symbols]

1 ビスマス系超電導体 2a、2b 銀コーティング 4、4′ 銅電極 5 ハンダ材 1 Bismuth-based superconductor 2a, 2b Silver coating 4, 4'Copper electrode 5 Solder material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体からなる第1の導体をそ
の表面に形成された金属膜を介して第2の導体に接合さ
せる方法であって、 接合材として融点が100℃以下のハンダを用いること
を特徴とする、酸化物超電導体の接合方法。
1. A method of joining a first conductor made of an oxide superconductor to a second conductor through a metal film formed on the surface thereof, wherein a solder having a melting point of 100 ° C. or less is used as a joining material. A method for joining oxide superconductors, which is characterized by being used.
【請求項2】 酸化物超電導体からなる第1の導体をそ
の表面に形成された銀皮膜を介して第2の導体に接合さ
せる方法であって、 接合材として、銀を2重量%〜5重量%含むSn−Pb
系ハンダを用いることを特徴とする、酸化物超電導体の
接合方法。
2. A method of joining a first conductor made of an oxide superconductor to a second conductor through a silver coating formed on the surface thereof, wherein the joining material is 2 wt% to 5 wt% of silver. Sn-Pb containing wt%
A method for joining oxide superconductors, characterized in that a system solder is used.
JP7674092A 1992-03-31 1992-03-31 Method for joining oxide superconductor Pending JPH05279140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7674092A JPH05279140A (en) 1992-03-31 1992-03-31 Method for joining oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7674092A JPH05279140A (en) 1992-03-31 1992-03-31 Method for joining oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05279140A true JPH05279140A (en) 1993-10-26

Family

ID=13614003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7674092A Pending JPH05279140A (en) 1992-03-31 1992-03-31 Method for joining oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05279140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304163A (en) * 2003-02-06 2004-10-28 Dowa Mining Co Ltd Oxide superconducting current lead, its manufacturing method, and superconducting system
JP2004304164A (en) * 2003-03-14 2004-10-28 Dowa Mining Co Ltd Oxide superconducting current lead and superconducting system
US7394024B2 (en) * 2003-02-06 2008-07-01 Dowa Mining Co., Ltd. Oxide superconductor current lead and method of manufacturing the same, and superconducting system
JP2010205717A (en) * 2009-09-14 2010-09-16 Council Scient Ind Res Method of manufacturing contact having low contact resistance for high transition temperature superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304163A (en) * 2003-02-06 2004-10-28 Dowa Mining Co Ltd Oxide superconducting current lead, its manufacturing method, and superconducting system
US7394024B2 (en) * 2003-02-06 2008-07-01 Dowa Mining Co., Ltd. Oxide superconductor current lead and method of manufacturing the same, and superconducting system
JP2004304164A (en) * 2003-03-14 2004-10-28 Dowa Mining Co Ltd Oxide superconducting current lead and superconducting system
JP2010205717A (en) * 2009-09-14 2010-09-16 Council Scient Ind Res Method of manufacturing contact having low contact resistance for high transition temperature superconductor

Similar Documents

Publication Publication Date Title
US4966142A (en) Method for electrically joining superconductors to themselves, to normal conductors, and to semi-conductors
WO2004105141A1 (en) Electrode wire material and solar battery having connection lead formed of the wire material
JPS6112397B2 (en)
US5116810A (en) Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby
JP3836299B2 (en) Connecting method of oxide superconductor
CN110867713A (en) Welding method of superconducting strip
KR970005162B1 (en) Improvements in or relating to high-tc superconducting units having low contact surface resistivity
JPH07227690A (en) Solder alloy and target structural body
EP0469894B1 (en) Method of forming a joint between superconducting tapes
US5296459A (en) Method for making an electrically conductive contact for joining high T.sub.
JPH05279140A (en) Method for joining oxide superconductor
JPH0867978A (en) Method for soldering target for sputtering
JPH0997637A (en) Joint part of oxide superconductor and metal terminal, and its forming method
US5592732A (en) Method of making super conducting bonds for thin film devices
JP3592054B2 (en) Electronic circuit and manufacturing method thereof
JPH09213975A (en) Forming method of collecting electrode
JPH0779046B2 (en) Electrode forming method for superconducting current lead
JPH0645141A (en) Electrode of oxide superconductor current lead
JPS6035796B2 (en) How to connect superconducting wires
JPH04106809A (en) Superconductor
JPS58127355A (en) Lead frame
JPH0783172B2 (en) Wiring board
JP3906584B2 (en) Lead for electronic parts
JPS62281376A (en) Photovoltaic device
JPS61161682A (en) Joint of superconductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010717