JPS61188978A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61188978A
JPS61188978A JP60029725A JP2972585A JPS61188978A JP S61188978 A JPS61188978 A JP S61188978A JP 60029725 A JP60029725 A JP 60029725A JP 2972585 A JP2972585 A JP 2972585A JP S61188978 A JPS61188978 A JP S61188978A
Authority
JP
Japan
Prior art keywords
magnetic field
insulating film
layer
interlaminar insulating
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60029725A
Other languages
Japanese (ja)
Other versions
JPH065795B2 (en
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60029725A priority Critical patent/JPH065795B2/en
Publication of JPS61188978A publication Critical patent/JPS61188978A/en
Publication of JPH065795B2 publication Critical patent/JPH065795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To facilitate the levelling of the layers and to ensure the high reliability and to contrive the improvement in the integration by increasing the number of laminated layers by providing a magnetic field producing means in either of the circuit sandwiching an interlaminar insulating film and a means for detecting the magnetic field produced by the above means through the interlaminar insulating film on another circuit. CONSTITUTION:On a magnetic field generating coil 2 or the like, an interlaminar insulating film 3 is arranged by using silicon dioxide, for example. In the magnetic field detecting part, a polysilicon layer is formed over the entire surface by thermal decomposition of silane, for example, and that is made into single crystal by laser annealing and etc. After that, it is patterned into insular form like a pattern 4 and an SiO2 film 5 is formed on the surface of that. A mask 6 is arranged on the pattern 4 and arsenic, for example, is ion-implanted followed by an activating heat treatment thereby forming the source 8 and drain 9 regions both of which are N<+> type FET elements, and two detection terminal regions 10 and 11. For the second time, the polysilicon layer is formed to about 0.4mum thick followed by patterning to form a gate electrode 12. Thus the N-channel Si gate MOS FET element of SOI structure is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特に3次元構造の半導体装置にか
かり、絶縁層を介して積層形成された2層の半導体回路
間の結合方法の改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor devices, particularly semiconductor devices with a three-dimensional structure, and improves a method for coupling two layers of semiconductor circuits stacked with an insulating layer interposed therebetween. Regarding.

半導体装置の高集積化、高速化及び多機能化を目的とし
て、能動素子を有する回路を層状に立体集積化する3次
元構造が開発されつつある。
2. Description of the Related Art A three-dimensional structure in which circuits including active elements are three-dimensionally integrated in layers is being developed for the purpose of increasing the integration, speed, and multifunctionality of semiconductor devices.

この3次元構造の半導体装置については解決すべき問題
点が多く残されているが、異なる半導体眉間の回路結合
方法についても新しい手段が要望されている。
Although many problems remain to be solved regarding this three-dimensionally structured semiconductor device, there is also a need for new means for connecting circuits between the eyebrows of different semiconductors.

〔従来の技術〕[Conventional technology]

3次元構造の半導体装置については既に種々の発表がな
されているが、例えば本発明者等は先に下記の積層CM
OS構造のインバータによる7段リング発振器を発表し
ている。
Various announcements have already been made regarding semiconductor devices with a three-dimensional structure, but for example, the present inventors have previously developed the following multilayer CM.
We have announced a 7-stage ring oscillator using an inverter with an OS structure.

N、5asaki et al、+ Suppleme
nt to the ExtendedAbstrac
ts of the 15th conf、 on t
he CSSDM(TC55D、 Aug、1983)
、 No、A−3−71NS、Kawamura  e
t  al、、  Tech、  Digest  o
f  IEEHIEDM(Washington D、
C,、Dec、1983)、 p、364−第4図はこ
の積層CMO5構造の模式側断面図である。同図におい
て、31はn型シリコン(Si)基板、32はp+型ソ
ース及びドレイン領域、33は二酸化シリコン(Si(
h)膜、34はSiゲート電極であり、これらによりP
MOS FET (電界効果トランジスタ)が構成され
、燐シリケートガラス(PSG)層間絶縁膜35が形成
される。
N, 5asaki et al, + Suppleme
nt to the Extended Abstract
ts of the 15th conf, on t
he CSSDM (TC55D, Aug, 1983)
, No.A-3-71NS, Kawamura e
tal,, Tech, Digest o
f IEEHIEDM (Washington D,
C., Dec. 1983), p. 364--FIG. 4 is a schematic side sectional view of this laminated CMO5 structure. In the figure, 31 is an n-type silicon (Si) substrate, 32 is a p+ type source and drain region, and 33 is a silicon dioxide (Si) substrate.
h) The film 34 is a Si gate electrode, which allows P
A MOS FET (field effect transistor) is constructed, and a phosphorous silicate glass (PSG) interlayer insulating film 35 is formed.

更に、37は多結晶シリコン(poly−5i)膜を例
えばアルゴン(^r)レーザ照射により単結晶化した後
に島状に分離したp型領域、38はこれに形成したn+
型ソース、ドレイン領域、39はSiO2膜、40はS
iゲート電極であり、これらによりNMOS FETが
構成される。
Further, 37 is a p-type region separated into islands after a polycrystalline silicon (poly-5i) film is single-crystalized by irradiation with an argon (^r) laser, and 38 is an n+ region formed thereon.
type source and drain regions, 39 is a SiO2 film, 40 is S
This is the i-gate electrode, and these constitute an NMOS FET.

このPMOS FET、 NMOS PET画素子間に
例えばアルミニウム(Aり配線41を配設して、積F!
 CMO5構造のインバータを形成している。
For example, an aluminum wiring 41 is arranged between the PMOS FET and NMOS PET pixel elements, and the product F!
An inverter with a CMO5 structure is formed.

前記例の如く層間絶縁膜に被覆された半導体素子、配線
等への配線接続方法としては、絶縁膜に接続位置でコン
タクトホールを形成し、例えばAI等の金属もしくは多
結晶Si等を用いてソース、ドレイン領域等に接続する
方法が従来行われている。
As a method for connecting wiring to a semiconductor element, wiring, etc. covered with an interlayer insulating film as in the above example, a contact hole is formed in the insulating film at the connection position, and a source is formed using a metal such as AI or polycrystalline Si. , a method of connecting to a drain region, etc. has been conventionally used.

しかしながら例えば前記例において、PMOS FET
素子のコンタクトホールは深く導電材料の充填が困難で
、ソース、ドレイン領域32との接触抵抗の信頼性が劣
化する虞があるばかりでな(、NMOS FET素子の
コンタクトホールとは深さに差があり層上に大きい凹凸
が発生する。
However, for example, in the above example, the PMOS FET
The contact hole of the element is deep and difficult to fill with a conductive material, which not only risks deteriorating the reliability of the contact resistance with the source and drain regions 32 (there is a difference in depth from the contact hole of an NMOS FET element). Large irregularities occur on the dovetail layer.

3次元構造の配線技術として、深い接続では中間の導体
層で位置をずらして中継するなどの方法が行われている
が、従来のこれらの層間接続構造では信頼性の低下、凹
凸の発生が避けられず、平坦化技術も開発が進められて
いるものの多層積層は極めて困難である。
As a wiring technology for three-dimensional structures, methods such as shifting the position and relaying in the middle conductor layer are used for deep connections, but with these conventional interlayer connection structures, it is difficult to avoid a decrease in reliability and the occurrence of unevenness. However, although planarization technology is being developed, multilayer stacking is extremely difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

3次元構造により高集積度の半導体装置を形成するにあ
たって、その信頼性を確保することが最重要条件である
が、従来の眉間絶縁膜にコンタクトホールを形成し金属
等を用いて眉間を接続する方法は信頌性劣化の虞が少な
くない。
When forming a highly integrated semiconductor device using a three-dimensional structure, ensuring its reliability is the most important condition.Contact holes are formed in the conventional glabella insulating film and the glabella is connected using metal, etc. There is a considerable risk that this method may deteriorate its credibility.

また積層する各層の平坦化は、信頼性の高い3次元構造
を実現するために極めて重要であるが、この従来の接続
方法では凹凸の発生が大きく、その上層の平坦化が甚だ
困難であり、3次元構造を開発する際の大きい問題点の
−っである。
Furthermore, planarization of each laminated layer is extremely important in order to realize a highly reliable three-dimensional structure, but this conventional connection method causes large unevenness, making it extremely difficult to planarize the upper layer. This is one of the major problems when developing three-dimensional structures.

この問題点に対処するために、信頼性が高く平坦化が容
易な新しい層間接続方法が強く要望されている。
To address this problem, there is a strong need for a new interlayer connection method that is highly reliable and easy to planarize.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、第1の半導体層と第2の半導体層とが絶
縁層を介して積層して設けられ、該第1の半導体層に磁
界生成手段を有する回路が設けられ、かつ該第2の半導
体層に該磁界生成手段による磁界の検知手段を有する回
路が設けられてなる本発明による半導体装置により解決
される。
The problem is that a first semiconductor layer and a second semiconductor layer are stacked with an insulating layer interposed therebetween, a circuit having a magnetic field generating means is provided in the first semiconductor layer, and the second semiconductor layer is provided with a circuit having a magnetic field generating means. This problem is solved by a semiconductor device according to the present invention, which includes a semiconductor layer provided with a circuit having means for detecting a magnetic field generated by the magnetic field generating means.

〔作 用〕[For production]

本発明は眉間絶縁膜を挟む一方の回路に磁界生成手段を
、他方の回路にこの磁界生成手段による磁界を層間絶縁
膜を介して検知する手段を設けて、この両回路間の信号
伝達を磁界によって行う。
The present invention provides a magnetic field generating means in one circuit sandwiching the glabella insulating film, and a means for detecting the magnetic field generated by the magnetic field generating means via an interlayer insulating film in the other circuit, and the signal transmission between the two circuits is performed using the magnetic field. done by.

この構造によれば、深いエツチング、金属層形成等のプ
ロセスは必要なく、若干の凹凸を生じても各層の平坦化
は甚だ容易であり、高い信頼性が確保されて、積層数を
増加し集積度を向上することが可能となる。
According to this structure, processes such as deep etching and metal layer formation are not required, and even if slight irregularities occur, it is extremely easy to flatten each layer. High reliability is ensured, and the number of laminated layers can be increased and integrated. It becomes possible to improve the degree of

[実施例〕 以下本発明を実施例により具体的に説明する。[Example〕 The present invention will be specifically explained below using examples.

第1図は3次元構造の半導体装置の本発明による信号伝
達部分の第1の実施例を示し、同図(alはその磁界発
生コイルの平面図、同図(b)はその磁界検知部の平面
図、同図(C)は前記両者からなる信号伝達部分のX−
X側断面図である。また第2図(a)乃至(C)は本実
施例の磁界検知部の単結晶島状領域の製造方法の例を示
す工程順平面図である。
FIG. 1 shows a first embodiment of a signal transmission part according to the present invention of a three-dimensional semiconductor device, in which (al is a plan view of its magnetic field generating coil, and FIG. The plan view (C) is the X-
It is an X side sectional view. Further, FIGS. 2(a) to 2(C) are step-by-step plan views showing an example of a method for manufacturing the single-crystal island region of the magnetic field sensing portion of this embodiment.

本実施例ではまず第1のSi層1上に、この層の回路か
ら電流が供給される磁界発生コイル2を設けている。こ
の磁界発生コイル2は、例えば図示の如く1辺の長さ約
15μmの正方形とその接続部分を、厚さ約0 、5 
am、幅約1−の断面積で形成している。この材料には
例えばアルミニウム(AI)、モリブデン(Mo)、タ
ングステン(W)等の金属、l’lo、W等のシリサイ
ド、Siなど従来と同様の導電材料を用いることができ
る。
In this embodiment, first, a magnetic field generating coil 2 is provided on a first Si layer 1 to which a current is supplied from a circuit in this layer. For example, as shown in the figure, this magnetic field generating coil 2 is made of a square with a side length of about 15 μm and a connecting portion thereof with a thickness of about 0.5 μm.
am, and has a cross-sectional area of approximately 1- width. As this material, a conventional conductive material such as metal such as aluminum (AI), molybdenum (Mo), or tungsten (W), silicide such as l'lo or W, or Si can be used.

この磁界発生コイル2等の上に、眉間絶縁膜3が例えば
二酸化シリコン(SiO□)を用いて、厚さ約0.5μ
m程度に設けられる。
On this magnetic field generating coil 2, etc., a glabellar insulating film 3 is made of, for example, silicon dioxide (SiO□) and has a thickness of about 0.5 μm.
It is provided about m.

磁界検知部はこの層間絶縁膜3上に例えば下記の如く形
成される。すなわち例えばシラン(SiH<)の熱分解
法により全面に多結晶Si層を厚さ0.4〜0.5μm
程度に形成し、レーザアニール法等によりこれを単結晶
化した後に、第2図ta+のパターン4の如く島状にパ
ターニングし、次いで例えば温度950℃程度のドライ
熱酸化法により、その表面に5i02膜5 (第1図(
C))を形成する。
The magnetic field detection section is formed on this interlayer insulating film 3, for example, as described below. That is, for example, a polycrystalline Si layer with a thickness of 0.4 to 0.5 μm is formed on the entire surface by the thermal decomposition method of silane (SiH<).
After crystallizing it into a single crystal by a laser annealing method or the like, it is patterned into an island shape as shown in pattern 4 in ta+ in FIG. Membrane 5 (Fig. 1 (
C)) to form.

このパターン4上に第2図(blの如くマスク6を設け
て、例えば砒素(As)をエネルギー100keV程度
T: ト−スi13 X 1015cm−2程度にイオ
ン注入し、温度900℃、時間20分程度の活性化熱処
理を行い、第2図(C)の如くいずれも1型のFET素
子のソース領域8及びドレイン領域9.2個の検出端子
領域10及び11を形成する。なおイオン注入が行われ
ない領域7はチャネル領域であり、本実施例では例えば
チャネル幅約10−、チャネル長約2ollrnとして
いる。
A mask 6 is provided on this pattern 4 as shown in FIG. 2 (bl), and ions of, for example, arsenic (As) are implanted at an energy of about 100 keV (T: 13×1015 cm−2) at a temperature of 900° C. for 20 minutes. Activation heat treatment is performed to form a source region 8 and a drain region 9, and two detection terminal regions 10 and 11 of a type 1 FET element as shown in FIG. 2(C). The region 7 that is not covered is a channel region, and in this embodiment, the channel width is about 10 - and the channel length is about 2 ollrn, for example.

再び多結晶Si層を厚さ0.4−程度に形成しパターニ
ングを行って、第1図(b)の如くゲート電極12を形
成することにより、5OI(silicon on 1
nsula−tor)構造のnチャネルSiデー8MO
5FET素子が完成する。
A polycrystalline Si layer is again formed to a thickness of about 0.4 mm and patterned to form a gate electrode 12 as shown in FIG.
n-channel Si-day 8MO with (nsula-tor) structure
The 5FET element is completed.

本実施例において、磁界発生コイル2に100μAの電
流を流して磁界を発生させ、その上層のFET素子のド
レイン電流を100μA流せば、検出端子10と11の
間に約0.1mVの起電力がホール効果によって得られ
る。この電圧を、このMOS FET素子と同一層に形
成された差動増幅器等に人力してこの層の後段の回路に
伝達する。
In this embodiment, if a current of 100 μA is passed through the magnetic field generating coil 2 to generate a magnetic field, and a drain current of 100 μA is passed through the FET element in the upper layer, an electromotive force of about 0.1 mV is generated between the detection terminals 10 and 11. Obtained by the Hall effect. This voltage is manually applied to a differential amplifier or the like formed in the same layer as this MOS FET element and transmitted to the circuit at the subsequent stage of this layer.

なお本実施例では磁界発生コイル2を下層に、磁界検知
素子であるMOS FET素子を上層に配置しているが
、逆に上層に磁界発生コイル、下層に磁界検知素子を設
けることも可能であることは明らかである。
In this embodiment, the magnetic field generating coil 2 is arranged in the lower layer and the MOS FET element as the magnetic field sensing element is arranged in the upper layer, but it is also possible to arrange the magnetic field generating coil 2 in the upper layer and the magnetic field sensing element in the lower layer. That is clear.

第3図は本発明の第2の実施例の磁界検知素子の平面図
であり、この磁界検知素子が前記第1の実施例の磁界検
知素子と同じ位置に形成される。
FIG. 3 is a plan view of a magnetic field sensing element according to a second embodiment of the present invention, and this magnetic field sensing element is formed at the same position as the magnetic field sensing element of the first embodiment.

本実施例では検出端子13及び14がドレインを兼ね、
検出端子13と14の間の電流分配率がホール効果によ
り磁界に従って定まる。すなわち前記第1の実施例では
磁界検知素子から電圧を取り出したのに対して、木筆2
の実施例では磁界検知素子から電流を取り出している。
In this embodiment, the detection terminals 13 and 14 also serve as drains,
The current distribution ratio between the detection terminals 13 and 14 is determined by the Hall effect according to the magnetic field. In other words, in the first embodiment, the voltage was extracted from the magnetic field sensing element, whereas the voltage was extracted from the magnetic field sensing element.
In the embodiment, current is taken out from the magnetic field sensing element.

以上説明した実施例に見られる様に、本発明による眉間
信号伝達構造では積層された複数の層を縦貫する製造プ
ロセスは必要なく、製造プロセスの安定とその信頼性の
確保が容易である。また各層の凹凸も軽減され、この点
からも信頼性が向上し多数の層の積層が容易となる。
As seen in the embodiments described above, the glabellar signal transmission structure according to the present invention does not require a manufacturing process that vertically traverses a plurality of laminated layers, making it easy to ensure the stability of the manufacturing process and its reliability. Furthermore, the unevenness of each layer is reduced, which also improves reliability and facilitates lamination of a large number of layers.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、3次元構造の半導体
装置の異なる半導体層間の回路の結合に高い信頼性が確
保され、かつ各層の凹凸が軽減され平坦化も容易となり
、積層数を増加し集積度を向上することが可能となるな
ど、3次元構造の半導体装置の進歩に大きい効果が得ら
れる。
As explained above, according to the present invention, high reliability is ensured in the circuit coupling between different semiconductor layers of a three-dimensional semiconductor device, the unevenness of each layer is reduced, flattening is facilitated, and the number of laminated layers is increased. This has great effects on the advancement of three-dimensionally structured semiconductor devices, such as making it possible to improve the degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3次元構造の半導体装置の信号伝達部分の第1
の実施例を示し、 第1図fa)はその磁界発生コイルの平面図、第1図(
b)はその磁界検知部の平面図、第1図fc)は前記両
者からなる信号伝達部分の側断面図、 第2図(al乃至(C1は該磁界検知部の単結晶島状領
域の工程順平面図、 第3図は第2の実施例の磁界検知部の平面図、第4図は
従来技術による積層CMOS構造のインバータの模式側
断面図である。 図において、 1は第1の5iii、     2は磁界発生コイル、
3は層間絶縁膜、    5は5iOz膜、7はチャネ
ル領域、   8はソース領域、9はドレイン領域、 1O111,13及び14は検出端子、12はゲート電
極を示す。
Figure 1 shows the first signal transmission part of a three-dimensional semiconductor device.
Fig. 1fa) is a plan view of the magnetic field generating coil, and Fig. 1(fa) is a plan view of the magnetic field generating coil.
b) is a plan view of the magnetic field detection section, FIG. 3 is a plan view of the magnetic field detection section of the second embodiment, and FIG. 4 is a schematic side sectional view of an inverter with a stacked CMOS structure according to the prior art. In the figures, 1 is the first 5iii , 2 is a magnetic field generating coil,
3 is an interlayer insulating film, 5 is a 5iOz film, 7 is a channel region, 8 is a source region, 9 is a drain region, 1O111, 13 and 14 are detection terminals, and 12 is a gate electrode.

Claims (1)

【特許請求の範囲】[Claims]  第1の半導体層と第2の半導体層とが絶縁層を介して
積層して設けられ、該第1の半導体層に磁界生成手段を
有する回路が設けられ、かつ該第2の半導体層に該磁界
生成手段による磁界の検知手段を有する回路が設けられ
てなることを特徴とする半導体装置。
A first semiconductor layer and a second semiconductor layer are provided in a stacked manner with an insulating layer interposed therebetween, a circuit having a magnetic field generating means is provided in the first semiconductor layer, and a circuit having a magnetic field generating means is provided in the second semiconductor layer. 1. A semiconductor device comprising a circuit having means for detecting a magnetic field generated by means for generating a magnetic field.
JP60029725A 1985-02-18 1985-02-18 Semiconductor device Expired - Fee Related JPH065795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60029725A JPH065795B2 (en) 1985-02-18 1985-02-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029725A JPH065795B2 (en) 1985-02-18 1985-02-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61188978A true JPS61188978A (en) 1986-08-22
JPH065795B2 JPH065795B2 (en) 1994-01-19

Family

ID=12284082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029725A Expired - Fee Related JPH065795B2 (en) 1985-02-18 1985-02-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH065795B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330646A (en) * 1995-03-30 1996-12-13 Toshiba Corp Lateral hall element
EP0855741A1 (en) * 1997-01-17 1998-07-29 Lucent Technologies Inc. Component arrangement having magnetic field controlled transistor
JP2001230467A (en) * 1999-12-09 2001-08-24 Sanken Electric Co Ltd Current detector provided with hall element
US7473656B2 (en) * 2003-10-23 2009-01-06 International Business Machines Corporation Method for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330646A (en) * 1995-03-30 1996-12-13 Toshiba Corp Lateral hall element
EP0855741A1 (en) * 1997-01-17 1998-07-29 Lucent Technologies Inc. Component arrangement having magnetic field controlled transistor
US5872384A (en) * 1997-01-17 1999-02-16 Lucent Technologies Inc. Component arrangement having magnetic field controlled transistor
JP2001230467A (en) * 1999-12-09 2001-08-24 Sanken Electric Co Ltd Current detector provided with hall element
US7473656B2 (en) * 2003-10-23 2009-01-06 International Business Machines Corporation Method for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
US8105445B2 (en) 2003-10-23 2012-01-31 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
US8470092B2 (en) 2003-10-23 2013-06-25 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks

Also Published As

Publication number Publication date
JPH065795B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP3860672B2 (en) Transistor manufacturing method and transistor manufactured by the manufacturing method
JPH039631B2 (en)
JPS63308386A (en) Semiconductor device and manufacture thereof
JPH1070281A (en) Semiconductor device and fabrication thereof
JPS6336566A (en) Semiconductor device
JP2729413B2 (en) Semiconductor device
JPS6321351B2 (en)
JP2004071927A (en) Semiconductor device
JPS61188978A (en) Semiconductor device
JPH01264254A (en) Manufacture of laminate type semiconductor device
JP2884723B2 (en) Thin film semiconductor device and method of manufacturing the same
JP2827246B2 (en) Method for manufacturing semiconductor device
KR100305402B1 (en) Manufacturing method of semiconductor device
JPH02271663A (en) Laminated two active layer memory device
JPH0468565A (en) Semiconductor device and manufacture thereof
JP2597750B2 (en) Method for manufacturing semiconductor device
JPH05114734A (en) Semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPH04107832A (en) Manufacture of semiconductor device
JPH0395937A (en) Soi type semiconductor device and manufacture thereof
JPH0548108A (en) Semiconductor device and its manufacture
JP2730334B2 (en) Semiconductor device and manufacturing method thereof
JPH05218421A (en) Manufacture of mis semiconductor device
JPH01264214A (en) Manufacture of semiconductor device
JPH104146A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees