JPS61187995A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPS61187995A
JPS61187995A JP3000685A JP3000685A JPS61187995A JP S61187995 A JPS61187995 A JP S61187995A JP 3000685 A JP3000685 A JP 3000685A JP 3000685 A JP3000685 A JP 3000685A JP S61187995 A JPS61187995 A JP S61187995A
Authority
JP
Japan
Prior art keywords
tank
denitrification
nitrification
sludge
anaerobic digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3000685A
Other languages
Japanese (ja)
Other versions
JPH0249159B2 (en
Inventor
Seiji Izumi
清司 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3000685A priority Critical patent/JPS61187995A/en
Publication of JPS61187995A publication Critical patent/JPS61187995A/en
Publication of JPH0249159B2 publication Critical patent/JPH0249159B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To suppress the increase in liquid temp. by discharging part of the sludge in an anaerobic digestion tank to the outside of the system according to the degree of increase in the liquid temp. while monitoring the liquid temp. in a biological treatment process including nitrification and denitrification. CONSTITUTION:Part 16 of the sludge in the anaerobic digestion treatment tank 13 for org. sewage is discharged to the outside of the system according to the degree of increase of the liquid temp. while the liquid temp. in the biological treatment state is monitored in a treatment method for the org. sewage in which the anaerobic digestion process in the tank 13 and the biological treatment process including the nitrification and denitrification in the digestion tank 1 and denitrification tanks 3, 6 are operated by being cyclically combined. The control of the increase in the liquid temp. is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性汚水の処理に当たって液温か上昇し過
ぎるのを抑制することのできる制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method capable of suppressing an excessive rise in liquid temperature during treatment of organic wastewater.

〔従来の技術〕[Conventional technology]

有機性汚水に含有される有機物(BOD源)や固型物等
は、散水濾床法や活性汚泥法等の一連の生物学的好気性
処理によって分解され、処理水は河川、湖沼、海等に放
流される。一方、最近有機性汚水中に含まれる栄養塩類
(N 、 P等の塩類)に基因して発生する水質汚濁現
象(例えば赤潮等)が社会問題となっているが、前述の
生物学的処理方法ではこれらの塩類を完全に分解除去で
きる訳ではない、そこで、これらの栄養Jl!!類を多
く含む有機性汚水の処理に適した方法の開発が検討され
た結果、硝化慟脱窒による処理方法が提案されるに至っ
た。
Organic matter (BOD source) and solid matter contained in organic wastewater are decomposed through a series of biological aerobic treatments such as the trickling filter method and activated sludge method, and the treated water is sent to rivers, lakes, oceans, etc. is released into the river. On the other hand, water pollution phenomena (for example, red tide) caused by nutrient salts (salts such as N and P) contained in organic wastewater have recently become a social problem, but the biological treatment method described above is However, it is not possible to completely decompose and remove these salts, so these nutrients Jl! ! As a result of research into developing a method suitable for treating organic wastewater containing a large amount of organic waste, a treatment method using nitrification and denitrification was proposed.

第2図は、上記処理方法の基本的な処理過程を示すフロ
ー図であり、硝化液循環法と呼ばれている。この方法で
は硝化液が循環するため、当該フローの説明はどの過程
から始めようとも同じことであるが便宜上硝化過程から
行なうこととする。
FIG. 2 is a flow diagram showing the basic treatment process of the above treatment method, which is called the nitrification solution circulation method. Since the nitrifying solution is circulated in this method, the explanation of the flow is the same regardless of which process is started, but for the sake of convenience, it will be explained from the nitrifying process.

硝化槽lは、酸素ガス2により好気的雰囲気に保たれて
いる。該硝化槽1内では、原水中のNHa・−Nが以下
に示す硝化反応(1) 、 (2)により硝化されるが
同時に有機性汚水に含まれる有機物の生物学的酸化分解
も進行している。
The nitrification tank 1 is maintained in an aerobic atmosphere with oxygen gas 2. In the nitrification tank 1, NHa/-N in the raw water is nitrified by the nitrification reactions (1) and (2) shown below, but at the same time, biological oxidative decomposition of organic matter contained in the organic wastewater is also progressing. There is.

(亜硝m型) NHa  +  (3/ 2)02 −NO2−+H2
0+2H’   ・・・・・・・・・(1)(硝酸型) NH4+202 + NO3−+H70+2H・ ・・・・・・・・・(2)
第1脱窒槽3には、該硝化槽lから返送される循環液4
とともに原水5が導入される。第1脱窒槽3では以下に
示す脱窒反応(3)  、 (4)が進行する。尚硝化
槽lで処理された処理水のうち上記循環液4以外のもの
は、第2脱窒槽6.再曝気槽7を経て沈澱槽8へ導かれ
る。
(Nitrite m type) NHa + (3/2)02 -NO2- + H2
0+2H' ・・・・・・・・・(1) (Nitric acid type) NH4+202 + NO3-+H70+2H・ ・・・・・・・・・(2)
The first denitrification tank 3 contains circulating fluid 4 returned from the nitrification tank 1.
At the same time, raw water 5 is introduced. In the first denitrification tank 3, denitrification reactions (3) and (4) shown below proceed. Of the treated water treated in the nitrification tank 1, the water other than the circulating fluid 4 is transferred to the second denitrification tank 6. It is led to a settling tank 8 via a reaeration tank 7.

(亜硝酸型) 2NOr+6[H]→ N2 +2H20+20H−・・・・・・・・・(3)
(硝酸型) 2 NO3−+ 10 [H]→ N2 + 4 H20+ 20 H−−・−・・−・・
・(4)脱窒反応(3) 、 (4)における水素供与
体としては原水5または循環液4中に含まれる有機物が
利用され、第1脱窒槽3で処理された流出水は硝化槽l
へ導かれる。尚沈澱槽8で得られた処理水9は必要に応
じて高度処理され、沈澱した汚泥はその一部が余剰汚泥
10として除去され残りが返送汚泥11として第1脱窒
槽3へ導かれる。この様な各プロセスが循環的に繰返さ
れることによって有機性汚水の処理が行なわれる。
(Nitrous acid type) 2NOr+6[H] → N2 +2H20+20H−・・・・・・・・・(3)
(Nitric acid type) 2 NO3−+ 10 [H] → N2 + 4 H20+ 20 H−−・−・・−・・
- Organic matter contained in the raw water 5 or circulating fluid 4 is used as the hydrogen donor in (4) denitrification reactions (3) and (4), and the effluent treated in the first denitrification tank 3 is sent to the nitrification tank 1.
be led to. The treated water 9 obtained in the settling tank 8 is subjected to advanced treatment if necessary, and part of the settled sludge is removed as surplus sludge 10, and the rest is led to the first denitrification tank 3 as return sludge 11. Organic wastewater is treated by cyclically repeating each of these processes.

[発明が解決しようとする問題点] ところで上述した様な従来の有機性汚水の処理方法にお
いては、有機物の好気的生物学的分解が硝化槽で行なわ
れているため液温が上昇してしまい、特に夏季の運転で
は40℃以上にもなる場合がある。このため硝化槽内の
微生物や原生動物の活動が阻害される危険が生じ、これ
を防止する目的で第2図の参照番号12に示すように希
釈水を注水する必要が生じる。しかし希釈水を多量に注
水すれば処理水量の増大によって以後の過程における処
理負荷が増大する。
[Problems to be solved by the invention] By the way, in the conventional organic wastewater treatment method as described above, aerobic biological decomposition of organic matter is carried out in a nitrification tank, which causes the liquid temperature to rise. Especially when driving in the summer, the temperature may reach 40 degrees Celsius or more. Therefore, there is a risk that the activities of microorganisms and protozoa in the nitrification tank will be inhibited, and in order to prevent this, it is necessary to pour dilution water as shown at reference numeral 12 in FIG. 2. However, if a large amount of dilution water is injected, the processing load in subsequent processes will increase due to the increased amount of processed water.

また液温の上昇を抑えるために冷凍機等を使用する場合
もあるが、この場合には維持管理費等が増大するという
問題点がある。
Additionally, a refrigerator or the like may be used to suppress the rise in liquid temperature, but in this case there is a problem that maintenance costs and the like increase.

本発明は上述のような問題点を解消するためになされた
ものであり、その目的は有機性汚水を処理するに当たり
液温の上昇を抑制できる処理方法を提供することにある
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a treatment method that can suppress the rise in liquid temperature when treating organic wastewater.

[問題点を解決するための手段] 上記目的に適う本発明の処理方法とは、有機性汚水の嫌
気性消化過程と硝化・脱窒を含む生物学的処理過程とを
サイクル的に組会わせて運転する有機性汚水の処理方法
であって、生物学的処理過程における液温を看視しつり
液温の上昇度に応じて嫌気性消化槽中の汚泥の一部を系
外に引き抜くことに要旨が存在する。
[Means for Solving the Problems] The treatment method of the present invention that meets the above objectives is a cyclic combination of an anaerobic digestion process of organic wastewater and a biological treatment process including nitrification and denitrification. A method for treating organic sewage that operates in a biological treatment process, in which the liquid temperature is monitored during the biological treatment process, and a portion of the sludge in the anaerobic digestion tank is pulled out of the system according to the degree of rise in liquid temperature. There is a summary in .

[作用] 次に本発明を完成するに至る迄の研究経緯を辿りつつ本
発明の構成および作用効果を説明していく。
[Function] Next, the structure and the function and effect of the present invention will be explained while tracing the research history that led to the completion of the present invention.

前述した如く、硝化・脱窒工程において系の液温か上昇
するのは、硝化槽における有機物の生物学的分解反応熱
によるもの゛である。そこでこのことを念頭に置きつつ
以下説明していく、液温の上昇を抑制するためには有機
物酸化分解を防止することが必要である。すなわち有機
物を何らかの方法で除去すればよいということである。
As mentioned above, the reason why the temperature of the liquid in the system increases in the nitrification/denitrification process is due to the heat of the biological decomposition reaction of organic matter in the nitrification tank. With this in mind, it is necessary to prevent the oxidative decomposition of organic matter in order to suppress the rise in liquid temperature, which will be explained below. In other words, the organic matter should be removed by some method.

そこで本発明者等は、硝化・脱窒過程に入る前に物理的
な方法によって有機物の混入を防止すればよいとの指針
を得た。すなわち有機物が吸着された汚泥を嫌気性消化
槽から引き抜こうとするものであり、従来生物学的処理
によって有機物を除去しようとしていた固定観念から脱
皮することを意味している0本発明はこのような指針を
もとに鋭意研究を重ねた結果完成されたものである。
Therefore, the present inventors obtained a guideline that it is sufficient to prevent the contamination of organic matter by a physical method before starting the nitrification/denitrification process. In other words, the sludge in which organic matter has been adsorbed is extracted from the anaerobic digestion tank, and this means breaking away from the conventional idea of removing organic matter through biological treatment. It was completed as a result of intensive research based on guidelines.

第1図は、本発明のこのような思想を実現した一実施態
様を示すためのフロー図である。この図によりまず概念
的な説明を行ない次いで詳細に説明する。尚第2図に示
した各過程と同一のものについては同一の参照番号を付
すことによりそれらの説明を省略する。嫌気性消化槽1
3では、嫌気性消化過程が進行するとともに混合汚泥が
形成される。この混合汚泥は、嫌気性消化槽13に導入
された原水5中の有機物が活性汚泥に吸着されて形成さ
れたものである。この混合汚泥の一部16を嫌気性消化
槽13から引き抜いた後、その残留液の一部が嫌気性消
化槽流出液14となる。これより以後のサイクルは前述
したので省略するが。
FIG. 1 is a flowchart showing one embodiment of the present invention that realizes this concept. A conceptual explanation will first be given with reference to this figure, and then a detailed explanation will be provided. Incidentally, the same reference numerals are given to the same steps as those shown in FIG. 2, and the explanation thereof will be omitted. Anaerobic digestion tank 1
3, mixed sludge is formed as the anaerobic digestion process progresses. This mixed sludge is formed by adsorbing organic matter in the raw water 5 introduced into the anaerobic digestion tank 13 to activated sludge. After a portion 16 of this mixed sludge is drawn out from the anaerobic digestion tank 13, a portion of the residual liquid becomes the anaerobic digestion tank effluent 14. The subsequent cycles have been described above, so they will be omitted here.

返送汚泥の返送先が、第2図において第1脱窒槽3であ
ったのに対し、嫌気性消化槽13となっているので新し
い参照番号15を付した。
The return destination of the returned sludge was the first denitrification tank 3 in FIG. 2, but it is now the anaerobic digestion tank 13, so a new reference number 15 has been added.

引き続き第1図を用いてより詳細に説明する。This will be explained in more detail with reference to FIG.

本発明の特徴は、前述の如く榎気性消化槽13中の混合
汚泥の一部16を引き抜くことであるが。
The feature of the present invention is that a portion 16 of the mixed sludge in the pneumatic digestion tank 13 is drawn out as described above.

このことにより該混合汚泥中の有機物(原水5中の有機
物)の一部が除去される。従って有機物含有量の小さく
なった陽気性流出液14が第1脱窒槽3.硝化槽1.第
2脱窒槽6等へ導かれることになる。嫌気性流出液14
の有機物含有量が低下しているので、硝化・脱窒過程で
分解される有機物の量も削減され、従って硝化・脱窒過
程で発生する反応熱を少なくすることができ結局液温の
上昇を抑制することができる。従って従来の様に希釈水
を注水したり他の冷却手段を必要とすることかない。ま
た冬季の如く液温の上昇が緩慢な場合あるいは液温を例
えば35°C以上に維持したい場合には、混合汚泥を引
き抜かなくてもよい、尚り記によって引き抜かれる混合
汚泥が多くなりすぎたため脱窒に必要な有機物(水素源
)が不足した場合には、上記引き抜かれた混合汚泥16
にアンモニアドリッピング法を施すことによりC/N比
を高くした処理水を硝化過程へ返送してやるとよい、す
なわち引き抜かれた混合汚泥16の脱水ろ液を石灰凝集
沈殿させて生成される上澄液にアンモニアドリッピング
を行ないNH3を除去した後、該上澄液を硝化過程へ返
送する。このようにアンモニアドリッピング法を施すこ
よにより、処理液のC/N比を硝化に都合のよい値に維
持することが可使となる。またP除去も併せて行なうこ
とができる。また上記引き抜かれた混合汚泥16を脱水
した後の固型分には有機物が含まれているので、肥料と
して使用したりあるいは更に乾燥後焼却材として使用す
る。即ちこの固型分は、従来ならばこれが硝化・脱窒過
程で分解されて熱エネルギーに変換されてしまうのであ
るが1本発明ではこの固型分が前述のように肥料や焼却
材として貯えられる。すなわち本発明によればエネルギ
ー効率の良い有機性汚水の処理が達成できる。また硝化
槽1′:Jへ供給される酸素量を少なくすることができ
るので、該酸素の曝気に必要な経費等の維持管理費も節
減することができる。
As a result, some of the organic matter in the mixed sludge (organic matter in the raw water 5) is removed. Therefore, the aerobic effluent 14 with reduced organic matter content is transferred to the first denitrification tank 3. Nitrification tank 1. It will be guided to the second denitrification tank 6 and the like. Anaerobic effluent 14
Since the organic matter content of the liquid is reduced, the amount of organic matter decomposed during the nitrification/denitrification process is also reduced, and therefore the reaction heat generated during the nitrification/denitrification process can be reduced, which ultimately reduces the rise in liquid temperature. Can be suppressed. Therefore, there is no need to pour dilution water or use other cooling means as in the conventional case. Also, when the liquid temperature rises slowly, such as in winter, or when you want to maintain the liquid temperature above 35°C, it is not necessary to pull out the mixed sludge. When the organic matter (hydrogen source) necessary for denitrification is insufficient, the mixed sludge 16
Treated water with a high C/N ratio by subjecting it to an ammonia dripping method may be returned to the nitrification process. In other words, the supernatant liquid produced by lime coagulation and precipitation of the dehydrated filtrate of the mixed sludge 16 that has been drawn out. After removing NH3 by ammonia dripping, the supernatant liquid is returned to the nitrification process. By applying the ammonia dripping method in this way, it becomes possible to maintain the C/N ratio of the treatment liquid at a value convenient for nitrification. Further, P removal can also be performed at the same time. Further, since the solid content after dewatering the mixed sludge 16 that has been pulled out contains organic matter, it can be used as a fertilizer or, after drying, as an incineration material. In other words, conventionally, this solid content would be decomposed during the nitrification/denitrification process and converted into thermal energy, but in the present invention, this solid content is stored as fertilizer or incineration material as described above. . That is, according to the present invention, energy efficient treatment of organic wastewater can be achieved. Furthermore, since the amount of oxygen supplied to the nitrification tank 1':J can be reduced, maintenance costs such as the cost required for aeration of the oxygen can also be reduced.

本実施態様では混合汚泥を生成するに当たり嫌気性消化
槽13を用いたが、嫌気性撹拌槽を用いればさらに有効
に混合汚泥が形成される。また硝化・脱窒過程を行なう
に当たり、第1脱窒槽3゜硝化槽1.第2脱窒槽6.再
曝気槽7をその記載順序に用いたが、このように限定す
る必要はなく、要するに硝化・脱窒を含む生物学的処理
過程が実現されるものであればよい、また嫌気性消化4
P!13と第1脱窒J7e3の間に沈殿池を設けてここ
から混合汚泥を引き抜いてもよい。
In this embodiment, the anaerobic digestion tank 13 is used to generate the mixed sludge, but the mixed sludge can be formed more effectively if an anaerobic stirring tank is used. In addition, when carrying out the nitrification/denitrification process, the first denitrification tank 3° nitrification tank 1. Second denitrification tank6. Although the re-aeration tank 7 is used in the described order, there is no need to limit it in this way, and in short, it is sufficient to realize a biological treatment process including nitrification and denitrification, and anaerobic digestion 4
P! 13 and the first denitrification J7e3, and the mixed sludge may be pulled out from there.

[実施例] 以下に、本発明の実施例による結果を従来法によるもの
と比較して記載する。
[Example] Below, the results of Examples of the present invention will be described in comparison with those of conventional methods.

第3図は1本発明による処理方法をし尿に適用した際に
該し尿の有するエネルギーの分配割合を従来法による場
合と比較して示す説明図である。
FIG. 3 is an explanatory diagram showing the distribution ratio of energy contained in human waste when the treatment method according to the present invention is applied to human waste in comparison with a conventional method.

し尿は、第3図の参照番号17に示すように90.00
0〜lIO,000Kcan/klノエネルギーを有機
物及び無機物の形で持っている。このエネルギーは生物
学的処理の過程で放出されるエネルギー(上に液温上昇
に使われる)と、汚泥として回収されるエネルギーに分
配される。後者すなわち汚泥として回収されるエネルギ
ーは、従来が第3図の参照番号18で示すように46,
000 Kca立/に文であったのに対して本発明によ
る場合は19で示すように54,800 Kca9.へ
立であった。尚、20は従来法における液温上昇に使わ
れたエネルギー。
Human waste costs 90.00 as shown in reference number 17 in Figure 3.
It has an energy of 0 to 1IO,000 Kcan/kl in the form of organic and inorganic substances. This energy is split between energy released during the biological treatment process (used to raise the temperature of the liquid above) and energy recovered as sludge. The latter, that is, the energy recovered as sludge, is conventionally 46, as indicated by reference numeral 18 in FIG.
000 Kca/min, whereas in the case of the present invention, the cost is 54,800 Kca9. as shown in 19. It was flat. Note that 20 is the energy used to raise the liquid temperature in the conventional method.

21は本発明による液温上昇に使われたエネルギーを示
す。
21 indicates the energy used to raise the liquid temperature according to the present invention.

[発明の効果] 本発明は上記の様に構成されているので、有機性汚水の
処理に当って液温の上昇を制御することができるという
効果がある。
[Effects of the Invention] Since the present invention is configured as described above, it has the effect of being able to control the rise in liquid temperature when treating organic wastewater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施IE様を示すフロー図、第2図
は硝化液循環法の基本的な処理過程を示すフロー図、第
3図は、エネルギー分配割合を本発明による場合と従来
の場合とで比較した説明図である。 l・・・硝化槽     2・・・酸素ガス3・・・第
1脱窒槽   4・・・循環液5・・・原水     
 6・・・第2脱窒槽13・・・嫌気性消化槽
Fig. 1 is a flow diagram showing one embodiment of the present invention, Fig. 2 is a flow chart showing the basic processing process of the nitrification liquid circulation method, and Fig. 3 shows the energy distribution ratio in the case of the present invention and the conventional method. FIG. l...Nitrification tank 2...Oxygen gas 3...First denitrification tank 4...Circulating fluid 5...Raw water
6...Second denitrification tank 13...Anaerobic digestion tank

Claims (1)

【特許請求の範囲】[Claims] 有機性汚水の嫌気性消化過程と硝化・脱窒を含む生物学
的処理過程とをサイクル的に組合わせて運転する有機性
汚水の処理方法であって、生物学的処理過程における液
温を看視しつつ液温の上昇度に応じて嫌気性消化処理槽
中の汚泥の一部を系外に引き抜くことを特徴とする有機
性汚水の処理方法。
This is a method for treating organic wastewater that operates by cyclically combining the anaerobic digestion process of organic wastewater with a biological treatment process including nitrification and denitrification, and the temperature of the liquid during the biological treatment process is monitored. A method for treating organic sewage characterized by drawing out a portion of sludge in an anaerobic digestion tank to the outside of the system according to the degree of rise in liquid temperature.
JP3000685A 1985-02-18 1985-02-18 Treatment of organic sewage Granted JPS61187995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3000685A JPS61187995A (en) 1985-02-18 1985-02-18 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3000685A JPS61187995A (en) 1985-02-18 1985-02-18 Treatment of organic sewage

Publications (2)

Publication Number Publication Date
JPS61187995A true JPS61187995A (en) 1986-08-21
JPH0249159B2 JPH0249159B2 (en) 1990-10-29

Family

ID=12291798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3000685A Granted JPS61187995A (en) 1985-02-18 1985-02-18 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPS61187995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397951A (en) * 1986-10-14 1988-04-28 Konica Corp Silver halide photographic sensitive material which permits quick processing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922472B (en) * 2014-04-14 2016-03-02 北京工业大学 The device and method of the denitrogenation of a kind of A/O process strengthening and biological deodorizing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127148A (en) * 1978-03-24 1979-10-02 Ebara Infilco Co Ltd Method of disposing raw sewage system sewage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127148A (en) * 1978-03-24 1979-10-02 Ebara Infilco Co Ltd Method of disposing raw sewage system sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397951A (en) * 1986-10-14 1988-04-28 Konica Corp Silver halide photographic sensitive material which permits quick processing

Also Published As

Publication number Publication date
JPH0249159B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
JP4610977B2 (en) Method and apparatus for treating sludge return water
JP2000015288A (en) Waste water treatment method and apparatus
KR850005378A (en) Active sludge
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
JPS60206494A (en) Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JPS61187995A (en) Treatment of organic sewage
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JP2000061494A (en) Biological treatment of ammonia nitrogen
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JPS59115793A (en) Treatment of organic sewage
KR100321680B1 (en) Advance wastewater treatment method by wastewater passage alternation
JPS6174698A (en) Waste water treatment
KR101177423B1 (en) The Sludge Reduction Plant and Biological Treatment Process using metal Catalyst
KR100462578B1 (en) The purification method of an organic waste water with high density
JPS60129194A (en) Treatment of sewage
JPH10249386A (en) Treatment of nitrogen-containing waste water
KR102225883B1 (en) Partial Nitritation Methods of Sewage Using Autotrophic microorganism immobilized in Bead
JPS6014997A (en) Treatment of organic filthy water
KR100504150B1 (en) Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor
JPH10165981A (en) Apparatus for treating ammonia-containing waste water
JP2002273476A (en) Treatment of waste water containing high-concentration nitrogen
KR200194165Y1 (en) Waste water disposal plant
JPS62286596A (en) Biological treatment of nitrogen-containing waste water
JPH10328695A (en) Method for removing nitrogen from waste water