JPS61187984A - Apparatus for producing extremely pure demineralized water - Google Patents

Apparatus for producing extremely pure demineralized water

Info

Publication number
JPS61187984A
JPS61187984A JP60026276A JP2627685A JPS61187984A JP S61187984 A JPS61187984 A JP S61187984A JP 60026276 A JP60026276 A JP 60026276A JP 2627685 A JP2627685 A JP 2627685A JP S61187984 A JPS61187984 A JP S61187984A
Authority
JP
Japan
Prior art keywords
evaporator
demineralized water
extremely pure
membrane
polisher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60026276A
Other languages
Japanese (ja)
Other versions
JPH0747157B2 (en
Inventor
Hideaki Kurokawa
秀昭 黒川
Harumi Matsuzaki
松崎 晴美
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60026276A priority Critical patent/JPH0747157B2/en
Publication of JPS61187984A publication Critical patent/JPS61187984A/en
Publication of JPH0747157B2 publication Critical patent/JPH0747157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To miniaturize the titled apparatus for producing extremely pure demineralized water by providing an evaporator at least at the preceding stage of a polisher and an ultrafiltration membrane apparatus. CONSTITUTION:An evaporator 11 consisting of an evaporator part 14 and a condensation part 17 is provided at least at the preceding stage of a polisher and an ultrafiltration membrane apparatus. Namely, a thermal evaporator is furnished in place of the primary demineralized water system consisting of many unit devices in the conventional extremely pure demineralized water producing apparatus and a hydrophobic porous membrane is used as the mist separator 12. Consequently, the primary demineralized water system can be replaced by only the thermal evaporator, the conventional extremely pure demineralized water producing apparatus can be miniaturized. Besides, a pervaporation device using a membrane (e.g., a hydrophobic porous membrane) can be provided as the thermal evaporator to further miniaturize the thermal evaporator. Moreover, since the evaporator is provided at the preceding stage of a high-temp. ultrafiltration membrane apparatus, high-temp. produced water can be obtained, a UV bactericidal lamp need not be used and the apparatus can be further miniaturized.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は1次世代超純水製造プロセスに係り、特に、小
型化の超純水製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a first-generation ultrapure water production process, and particularly to a miniaturized ultrapure water production apparatus.

〔発明の背景〕[Background of the invention]

従来の超純水製造プロセスを第5図に示す、これらのプ
ロセスは、凝集沈殿t >fi過、逆浸透、イオン交換
樹脂脱塩(以上が一凍純水系)、プレフィルタ、ポリシ
ャ、 UV (紫外線殺菌)、限外濾過(以上が二次純
水系)などの多数の要素機器で構成されるため、大型装
置による大容量集中処理方式で超純水が製造されている
。従ってこれらの問題点を示すと次の1りである。
The conventional ultrapure water production process is shown in Figure 5. These processes include coagulation sedimentation t>fi filtration, reverse osmosis, ion exchange resin desalination (all frozen water systems), pre-filter, polisher, UV ( Ultrapure water is produced using a large-capacity, centralized processing method using large-scale equipment, as it consists of a large number of elemental equipment such as ultraviolet sterilization), ultrafiltration (secondary pure water system), etc. Therefore, these problems can be summarized as follows.

(1)プロセス内での水質低下 ′(2)設置面積が大 (3)システムダウン時の補機の製作費が大(4)メイ
ンテナンスが因業 ここで、上記(1)はプロセス内の配管が長いために、
ユースポイントに至る間に再汚染され。
(1) Deterioration of water quality within the process' (2) Large installation area (3) High cost of manufacturing auxiliary equipment when the system goes down (4) Maintenance is a factor Here, (1) above refers to the piping within the process. Because of the long
Re-contaminated on the way to the point of use.

水質が低下するためである。また(4)は、特にイオン
交換樹脂脱塩装置における樹脂再生操作に起因する。
This is because water quality deteriorates. In addition, (4) is particularly caused by the resin regeneration operation in the ion exchange resin desalting device.

以上、装置が大型であるために起こる問題点が多いため
、プロセスの小型化が強く要求されている。なお、関連
する公知技術に、ニラケイ・メカニカル1984.5.
21.P54に記載されているものがある。
As mentioned above, there are many problems caused by the large size of the apparatus, and therefore there is a strong demand for miniaturization of the process. Incidentally, related known techniques include Nirakei Mechanical 1984.5.
21. There are some listed on page 54.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の如き欠点を取り除き、小型化可
能な超純水製造プロセスを提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide an ultrapure water production process that can be downsized.

〔発明の概要〕[Summary of the invention]

本発明では、上記の目的を達成するために次の構成から
成る。
In order to achieve the above object, the present invention includes the following configuration.

すなわち、本発明は従来の超純水製造プロセスにおける
、多数の要素機器から成る一次純水系の代替として、熱
蒸発装置を設置した。また上記熱蒸発装置にミストセパ
レータを取り付け、そのミストセパレータとして疎水性
の多孔質膜を用いた。
That is, the present invention installs a thermal evaporation device as an alternative to a primary pure water system consisting of a large number of component devices in a conventional ultrapure water production process. Furthermore, a mist separator was attached to the thermal evaporator, and a hydrophobic porous membrane was used as the mist separator.

係る特徴より、−次純水系を熱蒸発装置だけに代替する
ことができ、従来の超純水製造プロセスを小型化するこ
とが可能となる。
Due to such features, the sub-pure water system can be replaced with only a thermal evaporator, and the conventional ultrapure water production process can be downsized.

さらに、上記熱蒸発装置として膜(例えば、疎水性多孔
質膜)を用いたパーベーパレーション装置を設置した。
Furthermore, a pervaporation device using a membrane (for example, a hydrophobic porous membrane) was installed as the thermal evaporation device.

係る特徴より、熱蒸発装置をさらに小型化することが可
能となる。
Such features make it possible to further downsize the thermal evaporation device.

また、高温限外濾過膜装置の前段に上記蒸発装置を設け
ることで、高温の生成水を得ることができ、UV殺菌灯
を使用する必要が無くなり、さらに小型化することがで
きる。
Further, by providing the above-mentioned evaporation device before the high-temperature ultrafiltration membrane device, high-temperature generated water can be obtained, there is no need to use a UV germicidal lamp, and the device can be further downsized.

〔発明の実施例〕 以下、本発明の実施例を図を用いて説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る超純水製造プロセス、第2図およ
び第3図は本発明に係る熱蒸発装置、第4図は本発明に
係る超純水(高温)製造プロセスを示す。
FIG. 1 shows an ultrapure water manufacturing process according to the present invention, FIGS. 2 and 3 show a thermal evaporation device according to the invention, and FIG. 4 shows an ultrapure water (high temperature) manufacturing process according to the invention.

第1@に示す超純水製造プロセスは、蒸発装置ポリシャ
、UV装置、限外濾過膜装置とから成る。
The ultrapure water production process shown in #1 consists of an evaporator polisher, a UV device, and an ultrafiltration membrane device.

原水は、蒸発装置で蒸気となり、その蒸気を凝縮させる
ことから、比抵抗10〜18MΩ/aa。
The raw water becomes steam in the evaporator and the steam is condensed, so the specific resistance is 10 to 18 MΩ/aa.

TOC50〜300■/12の一次純水となる。ここで
得られた一次純水は、ポリシャで微量の金属イオンが除
去され、UV装置で殺菌され、最後に限外r過膜装置に
おいて残留懸濁固形物が除去される。
The resulting primary pure water has a TOC of 50 to 300/12. The primary pure water obtained here has trace amounts of metal ions removed in a polisher, sterilized in a UV device, and finally residual suspended solids are removed in an ultrafiltration device.

蒸発装置は、基本的に蒸発部と凝縮部とから成り、原水
は蒸発部で蒸発した後に凝縮部に入り、凝縮水が一次純
水として取り出される。本発明では、従来、凝集沈殿、
濾過、逆浸透、イオン交換樹脂脱塩等の多数の要素機器
から成っていた一次純水系が、上記蒸発装置だけで代替
可能であるため、−次純水系の小型化が可能となり、プ
ロセス全体の小型化につながる。第2図には、本発明に
係る蒸発装置を示す。蒸発装置上1は、蒸発部14と凝
縮部よIの2つより構成される。蒸発装置11に入った
原水は加熱器15によって加熱蒸発し、発生した蒸気1
3はミストセパレーター12によって、ミストが除去さ
れた後、凝縮部上ヱに入る。凝縮部よ工に入った蒸気1
3は冷却器16によって冷却され、凝縮し液体にもどる
The evaporator basically consists of an evaporator section and a condensation section. Raw water is evaporated in the evaporation section and then enters the condensation section, where the condensed water is taken out as primary pure water. In the present invention, conventionally, coagulation and precipitation,
The primary pure water system, which previously consisted of many elemental devices such as filtration, reverse osmosis, and ion-exchange resin desalination, can be replaced with just the evaporator mentioned above, making it possible to downsize the secondary pure water system and simplifying the entire process. Leads to downsizing. FIG. 2 shows an evaporation device according to the invention. The evaporator 1 is composed of two parts: an evaporator section 14 and a condensation section I. The raw water that has entered the evaporator 11 is heated and evaporated by the heater 15, and the generated steam 1
3 enters the upper condensation section after the mist is removed by the mist separator 12. Steam entering the condensing section 1
3 is cooled by the cooler 16, condenses and returns to liquid form.

この凝縮水が超純水製造プロセスの一次純水となる。さ
らに第3図には、疎水性多孔質膜を用いた蒸発装置の実
施例を示す。本装置では、疎水性多孔質膜1と冷却面5
を多数積層することで、原水室2.透過室3.冷却室4
を多数構成している。
This condensed water becomes the primary pure water in the ultrapure water production process. Furthermore, FIG. 3 shows an example of an evaporator using a hydrophobic porous membrane. In this device, a hydrophobic porous membrane 1 and a cooling surface 5 are used.
By stacking many layers, raw water chamber 2. Transmission chamber 3. Cooling room 4
It consists of many.

この蒸発装置においては、原水を加熱器6で加温し、各
原水室2内に送り込まれる。疎水性多孔質II!41に
よって両側が構成されている原水室2に送り込まれた原
水は、疎水性多孔質!I11面で蒸発し、膜内を透過し
た後さらに透過室3内を移動し、冷却面5上で冷やされ
凝縮する。本装置においては、液体は透過しないが気体
は透過する疎水性多孔質膜1を用いることで、水蒸気だ
けを選択的に分離できることから、ミスト飛散による生
成水の汚染等の問題も無く、より一層のコンパクト化が
可能となる0本装置は、1M水を加熱器6で加温し、原
水と冷却面5上の温度差(水蒸気分圧差)をドライビン
グホースとして蒸発が起こるが、温度差以外にも透過室
3内を減圧にすることで、圧力差をドライビングホース
としても良い、また、第1図に示したポリシャはイオン
交換樹脂脱塩装置である。また、同図、限外濾過膜装置
は膜が過装置でも良い。
In this evaporator, raw water is heated by a heater 6 and fed into each raw water chamber 2 . Hydrophobic porous II! The raw water sent into the raw water chamber 2, which is constructed on both sides by 41, is hydrophobic and porous! It evaporates on the I11 surface, passes through the membrane, moves further inside the permeation chamber 3, and is cooled and condensed on the cooling surface 5. In this device, only water vapor can be selectively separated by using a hydrophobic porous membrane 1 that does not allow liquid to pass through, but allows gas to pass through.Therefore, there is no problem of contamination of the produced water due to mist scattering, and it is even more effective. In this device, 1M water is heated with a heater 6, and evaporation occurs using the temperature difference (water vapor partial pressure difference) between the raw water and the cooling surface 5 as a driving hose. By reducing the pressure inside the permeation chamber 3, the pressure difference may be used as a driving hose.The polisher shown in FIG. 1 is an ion exchange resin desalting device. Further, the ultrafiltration membrane device shown in the figure may be a membrane filtration device.

第4図は本発明に係る超純水(高温)製造プロセスを示
す。本プロセスは蒸発装置、ポリシャ。
FIG. 4 shows an ultrapure water (high temperature) production process according to the present invention. This process uses evaporator and polisher.

高温限外濾過膜装置から成る。蒸発装置は第1〜3図で
述べたものと同一である。蒸発装置では。
Consists of a high temperature ultrafiltration membrane device. The evaporator is the same as described in FIGS. 1-3. In the evaporator.

冷却水の温度を調節することにより、希望温度の一次純
水を得ることができる。この高温−次純水はポリシャで
微量金属イオンが除去され、高温限外濾過膜装置で残留
懸濁固形物が除去され、高温の超純水が得られる0本方
式においては、生成水が高温であることから、UV装置
による殺菌が不要となり、さらにコンパクト化すること
ができる。
By adjusting the temperature of the cooling water, primary pure water at a desired temperature can be obtained. Trace metal ions are removed from this high-temperature ultra-pure water using a polisher, and residual suspended solids are removed using a high-temperature ultrafiltration membrane device. Therefore, sterilization using a UV device is not necessary, and further compactness can be achieved.

ここで、ポリシャには高温に耐え得る微粒イオン交換樹
脂(5〜1000μm)あるいは複合吸着剤(Mg、A
ly (O)l)、など)が充填される。同様に、高温
限外諺過膜装置はポリスルホン系等の耐熱性部材で構成
される。
Here, the polisher is a fine particle ion exchange resin (5 to 1000 μm) that can withstand high temperatures or a composite adsorbent (Mg, A
ly (O)l), etc.) are filled. Similarly, high-temperature ultraviolet membrane devices are constructed of heat-resistant materials such as polysulfone.

〔発明の効果〕〔Effect of the invention〕

本発明における超純水製造プロセスによれば、−火線水
系における多数の要素機器を蒸発装置だけに代替できる
ため、小型の超純水製造プロセスが得られ、クリーンル
ームに直結した分散型の超純水製造プロセスが可能とな
る。
According to the ultrapure water production process of the present invention, a large number of elemental equipment in the caustic water system can be replaced with only the evaporator, so a compact ultrapure water production process can be obtained, and a decentralized ultrapure water production process directly connected to the clean room can be achieved. manufacturing process becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超純水製造装置のブロック
図、第2図及び第3図は本発明に係る蒸発装置の構成図
、第4図は本発明に係る超純水(高温)製造装置のブロ
ック図、第5図は従来型の超純水製造装置のブロック図
である。 1・・・疎水性多孔質膜、5・・・冷却面、上よ・・・
蒸発装置、12・・・ミストセパレータ。
FIG. 1 is a block diagram of an ultrapure water production apparatus according to an embodiment of the present invention, FIGS. 2 and 3 are block diagrams of an evaporation apparatus according to the present invention, and FIG. 4 is a block diagram of an ultrapure water production apparatus according to an embodiment of the present invention. FIG. 5 is a block diagram of a conventional ultrapure water production device. 1...Hydrophobic porous membrane, 5...Cooling surface, top...
Evaporation device, 12... mist separator.

Claims (1)

【特許請求の範囲】[Claims] 1、すくなくともポリシヤ及び限外ろ過膜装置の前段に
、蒸発装置を設けたことを特徴とする超純水製造装置。
1. An ultrapure water production device characterized in that an evaporation device is provided at least before a polisher and an ultrafiltration membrane device.
JP60026276A 1985-02-15 1985-02-15 Ultrapure water production system Expired - Lifetime JPH0747157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026276A JPH0747157B2 (en) 1985-02-15 1985-02-15 Ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026276A JPH0747157B2 (en) 1985-02-15 1985-02-15 Ultrapure water production system

Publications (2)

Publication Number Publication Date
JPS61187984A true JPS61187984A (en) 1986-08-21
JPH0747157B2 JPH0747157B2 (en) 1995-05-24

Family

ID=12188759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026276A Expired - Lifetime JPH0747157B2 (en) 1985-02-15 1985-02-15 Ultrapure water production system

Country Status (1)

Country Link
JP (1) JPH0747157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147515A (en) * 1986-07-19 1988-06-20 Nitta Zerachin Kk Production of ultra pure water
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945461A (en) * 1972-09-06 1974-04-30
JPS54104082A (en) * 1978-02-02 1979-08-15 Mitsubishi Rayon Co Ltd Gas filtration
JPS60172390A (en) * 1984-02-17 1985-09-05 Ebara Infilco Co Ltd Manufacture of highly demineralized water
JPS60190298A (en) * 1984-03-09 1985-09-27 Ebara Infilco Co Ltd Preparation of ultra-pure water
JPS60206410A (en) * 1984-03-30 1985-10-18 Nitto Electric Ind Co Ltd Method and apparatus for separating liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945461A (en) * 1972-09-06 1974-04-30
JPS54104082A (en) * 1978-02-02 1979-08-15 Mitsubishi Rayon Co Ltd Gas filtration
JPS60172390A (en) * 1984-02-17 1985-09-05 Ebara Infilco Co Ltd Manufacture of highly demineralized water
JPS60190298A (en) * 1984-03-09 1985-09-27 Ebara Infilco Co Ltd Preparation of ultra-pure water
JPS60206410A (en) * 1984-03-30 1985-10-18 Nitto Electric Ind Co Ltd Method and apparatus for separating liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147515A (en) * 1986-07-19 1988-06-20 Nitta Zerachin Kk Production of ultra pure water
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JPH0747157B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
CN103080013B (en) Vapor compression membrane distillation system and method
CA2375252C (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
US20020053507A1 (en) Device and method for distilling water
JP4045658B2 (en) Pure water production method
JP2016190220A (en) Membrane distillation system and operation method thereof
JPS61187984A (en) Apparatus for producing extremely pure demineralized water
JP6015062B2 (en) Equipment for concentrating radioactive material-containing water using a zeolite membrane
US20150283494A1 (en) Apparatus for the recovery of halogenated hydrocarbons
JP2799995B2 (en) Aseptic water production equipment
JPS6193897A (en) Apparatus for making ultra-pure water
JPS6219299A (en) Water circulating system
JPS63305917A (en) Production of ultrapure water and equipment thereof and method for using ultrapure water
JPH0719596Y2 (en) Aseptic water production equipment
KR200276389Y1 (en) The ultra pure system choiced momentary heating method
JPS60172393A (en) Multistage evaporation-reverse osmosis composite seawater desalination apparatus
GB2608805A (en) Gas block
JPH04176382A (en) Device for producing ultra-pure water from seawater
JPS63147515A (en) Production of ultra pure water
JPH0699165A (en) Ultrapure water manufacturing device
Sapalidis et al. Introduction to Membrane Desalination
WO2019180789A1 (en) Water treatment device and water treatment method
JPH0564703A (en) Condenser
JPH0779994B2 (en) Ultrapure water production method
JPS627402A (en) Apparatus for making pure water
JPS61230703A (en) Simple pure water making apparatus