JP2016190220A - Membrane distillation system and operation method thereof - Google Patents

Membrane distillation system and operation method thereof Download PDF

Info

Publication number
JP2016190220A
JP2016190220A JP2015072846A JP2015072846A JP2016190220A JP 2016190220 A JP2016190220 A JP 2016190220A JP 2015072846 A JP2015072846 A JP 2015072846A JP 2015072846 A JP2015072846 A JP 2015072846A JP 2016190220 A JP2016190220 A JP 2016190220A
Authority
JP
Japan
Prior art keywords
water
membrane
gas phase
phase part
membrane distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015072846A
Other languages
Japanese (ja)
Inventor
一人 長田
Kazuto Osada
一人 長田
新井 裕之
Hiroyuki Arai
裕之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2015072846A priority Critical patent/JP2016190220A/en
Publication of JP2016190220A publication Critical patent/JP2016190220A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane distillation system which has a compact and simplified structure and an operation method thereof.SOLUTION: A membrane distillation system 100 comprises: a membrane distillation device 10 comprising a hydrophobic porous hollow fiber membrane 1; and a flushing mechanism 6. The membrane distillation device 10 comprises: a first liquid phase part where raw water flows; a first gas phase part; an evaporation part; a second liquid phase part where cooling water flows; a second gas phase part; a condensation part formed of a coolant; and a third gas phase part 32. The shortest distance between the hydrophobic porous hollow fiber membrane 1 of the evaporation part and the coolant of the condensation part is equal to or more than 10 mm, and the pressure on the first gas phase part, on the second gas phase part and on the third gas phase part may be equal to or more than 1 kPa and equal to or less than saturation vapor pressure of the water at raw water temperature.SELECTED DRAWING: Figure 2

Description

本発明は、膜蒸留システムおよびその運転方法に関する。   The present invention relates to a membrane distillation system and a method for operating the same.

膜蒸留法は、水蒸気のみを透過する疎水性多孔質膜を用い、加温された原水(高温水)から、飽和水蒸気圧差により疎水性多孔質膜を通過した水蒸気を凝縮させ、蒸留水を得る方法である。膜蒸留法は、原水に圧力をかけ逆浸透膜で濾過して精製水を得る逆浸透法と比べ、高圧を必要とせず、動力エネルギーを低減することができる。また、膜蒸留法により得られる蒸留水は、塩分などの不揮発性の溶質分離性能が極めて高く、高純度の水を得ることが可能となる。   The membrane distillation method uses a hydrophobic porous membrane that only permeates water vapor, and condenses the water vapor that has passed through the hydrophobic porous membrane due to a saturated water vapor pressure difference from heated raw water (high temperature water) to obtain distilled water. Is the method. Membrane distillation does not require high pressure and can reduce kinetic energy compared to reverse osmosis in which pressure is applied to raw water and filtered through a reverse osmosis membrane to obtain purified water. In addition, distilled water obtained by membrane distillation method has extremely high performance for separating non-volatile solutes such as salinity, and high-purity water can be obtained.

主な膜蒸留法の原理を図1に示す。図1において、(a)は、高温水側からの水蒸気を、疎水性多孔質膜1’を通じ生成した蒸留水として直接低温水に取り込むDCMD法(Direct Contact Membrane Distillation)である。(b)は、疎水性多孔質膜1’とコンデンサー2’との間にエアギャップ3’を設け、コンデンサー2’(例えば、伝熱性が高いアルミやステンレスなどの金属製の冷却板など)の面上に高温水側からの水蒸気を凝縮させ蒸留水を得るAGMD法(Air Gap Membrane Distillation)である。(c)は、疎水性多孔質膜1’の蒸留側に真空ギャップを設け、高温水側からの水蒸気を外部まで移動させ蒸留水を得るVMD法(Vacuum Membrane Distillation)である。(d)は、疎水性多孔質膜1’の蒸留側にスイーピングガスを流し、高温水側からの水蒸気を外部まで移動させ蒸留水を得るSGMD法(Sweeping Gas Membrane Distillation)である。   The principle of the main membrane distillation method is shown in FIG. In FIG. 1, (a) is a DCMD method (Direct Contact Membrane Distillation) in which water vapor from the high temperature water side is directly taken into low temperature water as distilled water generated through the hydrophobic porous membrane 1 '. (B) shows that an air gap 3 'is provided between the hydrophobic porous membrane 1' and the condenser 2 ', and the condenser 2' (for example, a cooling plate made of metal such as aluminum or stainless steel having high heat conductivity). This is an AGMD method (Air Gap Membrane Distillation) in which water vapor from the high temperature water side is condensed on the surface to obtain distilled water. (C) is a VMD method (vacuum membrane distribution) in which a vacuum gap is provided on the distillation side of the hydrophobic porous membrane 1 ′ and water vapor from the high temperature water side is moved to the outside to obtain distilled water. (D) is an SGMD method (Sweeping Gas Membrane Distillation) in which a sweeping gas is allowed to flow to the distillation side of the hydrophobic porous membrane 1 ′ and water vapor from the high temperature water side is moved to the outside to obtain distilled water.

DCMD法は膜を介して高温水と冷却水(低温水)とが流れる簡単な装置によって構成されるものであり、水蒸気の移動距離が膜厚と等しく、移動抵抗も小さいため膜単位面積あたりの蒸留水量(Flux)を高くできるが、生成した蒸留水を冷却水中から取り出さなければならない。また、高温水と冷却水が膜を介して直接接しているため熱交換による熱損失が生じ、水蒸気が移動するための駆動力となる蒸気圧差が小さくなり、結果として造水にかかる熱エネルギー効率が低くなるデメリットもある。   The DCMD method is configured by a simple device in which high-temperature water and cooling water (low-temperature water) flow through a membrane, and the movement distance of water vapor is equal to the film thickness and the movement resistance is small, so the per unit area of the membrane Although the amount of distilled water (Flux) can be increased, the produced distilled water must be taken out of the cooling water. In addition, since high-temperature water and cooling water are in direct contact with each other through a membrane, heat loss occurs due to heat exchange, and the difference in vapor pressure, which is the driving force for the movement of water vapor, is reduced, resulting in thermal energy efficiency for water production There is also a disadvantage that becomes lower.

一方、AGMD法を主とするギャップ式膜蒸留は、水蒸気が膜に加えエアギャップ3’も移動するため移動抵抗が大きく、Fluxが小さくなる傾向があるが、蒸留水を直接取り出せるというメリットがある。また、高温水と冷却水が膜を介して直接接していないため熱損失を最小限に抑えられ、熱エネルギー効率が高く、造水コストを低くすることができる。   On the other hand, the gap-type membrane distillation mainly using the AGMD method has a merit that distilled water can be directly taken out although the movement resistance is large and the flux tends to be small because the air gap 3 'moves in addition to the membrane. . Moreover, since the high-temperature water and the cooling water are not in direct contact with each other through the membrane, heat loss can be minimized, the thermal energy efficiency is high, and the water production cost can be reduced.

また、膜蒸留法においても他の膜分離法と同様に、原水などの膜供給水中に存在する分離対象物などによって生じるファウリングの問題がある。ファウリングは、原水など膜供給水中に存在する分離対象物質などが膜表面や細孔内に付着、堆積する現象のことを指す。ファウリングの主な構成物質としてシリカ、アルミニウム、鉄、カルシウム、マンガンなどの無機物と天然有機物(natural organicmatter:NOM)と微生物の代謝産物に起因する有機物が挙げられる。膜蒸留法では膜表面が汚れると、水蒸気の蒸発面が汚れによって閉塞し、機能低下を引き起こす。特に原水に対する精製水の回収率を高めようとして原水濃度が高くなる場合や、原水系の濃縮を目的とする運転条件では、膜閉塞が生じやすく透水性能低下が問題となる。
これまでファウリングへの対策として、以下のような検討がなされている。
In addition, the membrane distillation method has a fouling problem caused by a separation target existing in membrane supply water such as raw water, as in other membrane separation methods. Fouling refers to a phenomenon in which a substance to be separated existing in a membrane supply water such as raw water adheres to and accumulates on the membrane surface or pores. The main constituents of fouling include inorganic substances such as silica, aluminum, iron, calcium, and manganese, natural organic substances (NOM), and organic substances resulting from microbial metabolites. In the membrane distillation method, when the membrane surface is contaminated, the evaporation surface of the water vapor is blocked by the contamination, resulting in functional deterioration. In particular, when the concentration of the raw water increases to increase the recovery rate of purified water relative to the raw water, or under operating conditions for the purpose of concentrating the raw water system, membrane clogging is likely to occur, resulting in a problem of reduced water permeability.
The following studies have been made as countermeasures against fouling.

特許文献1には、疎水性多孔質膜を有機物を分解する薬剤で洗浄し、乾燥する疎水性多孔質膜の再生方法が開示されている。
特許文献2には、膜蒸留装置に化学的処理、もしくは、生物的処理による前処理を施す膜蒸留システムが開示されている。
Patent Document 1 discloses a method for regenerating a hydrophobic porous membrane in which the hydrophobic porous membrane is washed with a chemical that decomposes organic substances and dried.
Patent Document 2 discloses a membrane distillation system in which a membrane distillation apparatus is pretreated by chemical treatment or biological treatment.

特開平5−192543号公報JP-A-5-192543 特開2010−75808号公報JP 2010-75808 A

今後の純水製造、及び水処理領域における膜蒸留技術の利用拡大に向けて、ファウリングに対する安定した水処理能力とコンパクト性を兼ね備えた膜蒸留システムが求められている。
前記のようにファウリングに対する方策として、有機物を分解する薬剤を用いて膜を洗浄する方法、化学的処理または生物的処理でファウリングの原因物質を除去する方法が存在する。しかし、前処理設備の設置や乾燥機が必要となり、システムが大型化する問題があった。
一方で、浄水処理に広く用いられている精密ろ過膜、限外ろ過膜など分離膜の洗浄方法として逆洗が知られているが、膜蒸留法の疎水性多孔質膜に適用することは困難である。膜蒸留法の疎水性多孔質膜は、乾燥状態で使用するため、膜内を洗浄液で通液するためには高い圧力をかける必要があり、しかも洗浄後に膜を乾燥して再生させる作業も必要であることから、非常に手間とコストがかかる。
本発明は、上記課題を解決するため、コンパクトかつ簡易な構成の洗浄システムおよびその運転方法を提供することを目的とする。
In order to expand the use of membrane distillation technology in the future of pure water production and water treatment areas, membrane distillation systems that have both stable water treatment capacity and compactness against fouling are required.
As described above, as a countermeasure against fouling, there are a method of cleaning a film using a chemical that decomposes organic matter, and a method of removing a substance causing fouling by chemical treatment or biological treatment. However, installation of pretreatment equipment and a dryer are required, and there is a problem that the system becomes large.
On the other hand, backwashing is known as a washing method for separation membranes such as microfiltration membranes and ultrafiltration membranes widely used in water purification treatment, but it is difficult to apply to hydrophobic porous membranes of membrane distillation method It is. Since the hydrophobic porous membrane of membrane distillation method is used in a dry state, it is necessary to apply high pressure to pass the inside of the membrane with a cleaning liquid, and also to dry and regenerate the membrane after cleaning. Therefore, it is very troublesome and costly.
In order to solve the above problems, an object of the present invention is to provide a cleaning system having a compact and simple configuration and an operation method thereof.

本発明者らは、膜蒸留法における膜表面に付着した汚れが、水に圧力をかけてろ過するろ過膜に付着した汚れよりも圧密の影響が小さいことに着目し、逆洗や前処理を施さなくとも洗浄水をフラッシングすることで容易に付着した汚れを除去できることを見出し、本発明を完成した。   The present inventors pay attention to the fact that dirt attached to the membrane surface in the membrane distillation method is less affected by compaction than dirt attached to a filtration membrane that is filtered by applying pressure to water. The present invention was completed by finding that the adhered dirt can be easily removed by flushing the washing water without applying it.

すなわち、本発明は以下のとおりである。
(1)
疎水性多孔膜を備えた膜蒸留装置、および前記疎水性多孔膜をフラッシングするフラッシング機構を有することを特徴とする膜蒸留システム。
(2)
(1)に記載の膜蒸留装置が、原水が流れる第1の液相部と、第1の気相部と、前記第1の液相部と前記第1の気相部を隔てる前記疎水性多孔中空糸膜からなる蒸発部と、冷却水が流れる第2の液相部と、第2の気相部と、前記第2の液相部と前記第2の気相部を隔てる冷却体からなる凝縮部と、前記第1の気相部と前記第2の気相部を連結する第3の気相部と、を備え、前記蒸発部の疎水性多孔中空糸膜と前記凝縮部の冷却体との最短距離が10mm以上であり、かつ、前記第1の気相部、前記第2の気相部および前記第3の気相部の圧力を1kPa以上であってかつ原水温度の水の飽和蒸気圧以下の間で用いる、膜蒸留システム。
(3)
(1)に記載の膜蒸留システムの運転方法であって、原水を前記疎水性多孔中空糸膜に透過させて膜蒸留をおこなう膜蒸留工程と、前記疎水性多孔中空糸膜に洗浄水を供給し、フラッシングするフラッシング工程と、を繰り返すことを特徴とする膜蒸留システムの運転方法。
(4)
(3)の前記洗浄水として、原水、または原水よりも導電率の低い水を用いることを特徴とする膜蒸留システムの運転方法。
That is, the present invention is as follows.
(1)
A membrane distillation system comprising a membrane distillation apparatus provided with a hydrophobic porous membrane, and a flushing mechanism for flushing the hydrophobic porous membrane.
(2)
The membrane distillation apparatus according to (1), wherein the first liquid phase part through which raw water flows, the first gas phase part, the first liquid phase part and the first gas phase part are separated from each other. From an evaporation section made of a porous hollow fiber membrane, a second liquid phase section through which cooling water flows, a second gas phase section, and a cooling body that separates the second liquid phase section and the second gas phase section A condensing part, and a third gas phase part connecting the first gas phase part and the second gas phase part, the hydrophobic porous hollow fiber membrane of the evaporation part and the cooling of the condensation part The shortest distance to the body is 10 mm or more, and the pressures of the first gas phase part, the second gas phase part and the third gas phase part are 1 kPa or more and the raw water temperature water Membrane distillation system used between below saturated vapor pressure.
(3)
A method for operating the membrane distillation system according to (1), wherein a membrane distillation step in which raw water is permeated through the hydrophobic porous hollow fiber membrane and membrane distillation is performed, and washing water is supplied to the hydrophobic porous hollow fiber membrane And a flushing step for flushing, and a method for operating the membrane distillation system.
(4)
(3) The operation method of the membrane distillation system characterized by using raw water or water having lower conductivity than the raw water as the washing water.

本発明によれば、コンパクトかつ簡易な構成の膜蒸留システムおよびその運転方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the membrane distillation system of a compact and simple structure and its operating method can be provided.

膜蒸留法の模式図を示し、(a)は、DCMD法(Direct Contact Membrane Distillation)であり、(b)は、AGMD法(Air Gap Membrane Distillation)であり、(c)は、VMD法(Vacuum Membrane Distillation)であり、(d)は、SGMD法(Sweeping Gas Membrane Distillation)である。The schematic diagram of a membrane distillation method is shown, (a) is DCMD method (Direct Contact Membrane Distillation), (b) is AGMD method (Air Gap Membrane Distillation), (c) is VMD method (Vacuum) (D) is an SGMD method (Sweeping Gas Membrane Distribution). 本発明の膜蒸留システムの模式図を示す。The schematic diagram of the membrane distillation system of this invention is shown. 膜蒸留装置を拡大して示す図である。It is a figure which expands and shows a membrane distillation apparatus.

以下、本発明を実施するための形態(以下、本実施形態という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

疎水性多孔中空糸膜1は、従来公知の方法により製造され、主たる構成成分としての疎水性高分子からなる多孔中空糸膜であればその具体例は特に限定されない。
疎水性高分子とは、水に対する親和性が低い高分子であり、例えば、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等が挙げられる。
主たる構成成分としての疎水性高分子とは、疎水性多孔中空糸膜1を構成する成分において、疎水性高分子を90質量%以上含むことをいい、膜の強度の観点で、95質量%以上であることが好ましく、99質量%以上であることがより好ましい。
The hydrophobic porous hollow fiber membrane 1 is not particularly limited as long as it is produced by a conventionally known method and is a porous hollow fiber membrane made of a hydrophobic polymer as a main constituent component.
The hydrophobic polymer is a polymer having a low affinity for water, and examples thereof include polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, and polytetrafluoroethylene.
The hydrophobic polymer as the main constituent component means that the component constituting the hydrophobic porous hollow fiber membrane 1 contains 90% by mass or more of the hydrophobic polymer, and 95% by mass or more from the viewpoint of the strength of the membrane. It is preferable that it is 99 mass% or more.

疎水性多孔中空糸膜1の製造方法としては、冷却することにより相分離を起こし多孔質層を形成させる熱誘起相分離法、非溶剤と接触させることで相分離を起こし多孔質層を形成させる乾湿式法(非溶媒相分離法)の何れも好適に用いることができる。   The method for producing the hydrophobic porous hollow fiber membrane 1 includes a heat-induced phase separation method in which a phase separation is caused by cooling to form a porous layer, and a phase separation is caused by contact with a non-solvent to form a porous layer. Any of the dry and wet methods (non-solvent phase separation method) can be suitably used.

本実施形態において用いられる疎水性多孔中空糸膜1は、膜蒸留としての透水性能の観点で、平均孔径が0.2μm以上が好ましく、0.5μm以上がより好ましい。なお、平均孔径は高くなりすぎると、膜表面の撥水性が低下し、水が膜内に侵入してしまうウェッティング現象が起こり、性能低下につながるため10μm以下であることが好ましい。   The hydrophobic porous hollow fiber membrane 1 used in the present embodiment has an average pore diameter of preferably 0.2 μm or more, and more preferably 0.5 μm or more, from the viewpoint of water permeability as membrane distillation. If the average pore diameter is too high, the water repellency of the film surface decreases, and a wetting phenomenon in which water penetrates into the film occurs, leading to performance degradation.

本実施形態において用いられる疎水性多孔中空糸膜1は、膜蒸留としての透水性能と膜の機械的強度の観点で、膜厚が10μm〜500μmの間であることが好ましく、15μm〜300μmの間であることがより好ましく、特に20μm〜150μmの間であることが特に好ましい。膜厚が大きくなりすぎると水蒸気の透過抵抗が高く、透水性能低下につながるため500μm未満であることが好ましく、膜厚が小さくなりすぎると減圧下使用において膜が変形したり、流路が閉塞され易くなるため10μm以上であることが好ましい。   The hydrophobic porous hollow fiber membrane 1 used in the present embodiment preferably has a film thickness of 10 μm to 500 μm, preferably 15 μm to 300 μm, from the viewpoint of water permeability as membrane distillation and mechanical strength of the membrane. It is more preferable that it is between 20 μm and 150 μm. If the film thickness is too large, the water vapor transmission resistance is high, leading to a decrease in water permeability performance. Therefore, it is preferably less than 500 μm. If the film thickness is too small, the film may be deformed or the flow path may be blocked when used under reduced pressure. Since it becomes easy, it is preferable that it is 10 micrometers or more.

本実施形態において用いられる疎水性多孔中空糸膜1は、膜蒸留としての透水性能の観点で、空隙率が60%以上であることが好ましく、70%以上であることがより好ましい。なお、空隙率は高くなりすぎると膜の機械的強度が低下し、減圧下使用における漏水につながるため90%未満であることが好ましい。   The hydrophobic porous hollow fiber membrane 1 used in the present embodiment preferably has a porosity of 60% or more, and more preferably 70% or more, from the viewpoint of water permeability as membrane distillation. In addition, since the mechanical strength of a film | membrane will fall when the porosity becomes high too much and it will lead to the water leak in use under pressure reduction, it is preferable that it is less than 90%.

本実施形態の膜蒸留装置10は、原水が流れる第1の液相部11と、第1の気相部12と、第1の液相部11と第1の気相部12を隔てる疎水性多孔中空糸膜1からなる蒸発部14と、冷却水が流れる第2の液相部21と、第2の気相部22と、第2の液相部21と第2の気相部22を隔てる冷却体25からなる凝縮部24と、蒸発部14の第1の気相部12と凝縮部24の第2の気相部22を連結する第3の気相部32と、を備え、
蒸発部14の疎水性多孔中空糸膜1と凝縮部24の冷却体25との最短距離が10mm以上であり、かつ、気相部12,22,32の圧力を1kPa以上原水温度の水の飽和蒸気圧以下の間で用いる、膜蒸留装置である。
The membrane distillation apparatus 10 of the present embodiment has a first liquid phase part 11 through which raw water flows, a first gas phase part 12, and a hydrophobic property that separates the first liquid phase part 11 and the first gas phase part 12. The evaporation section 14 made of the porous hollow fiber membrane 1, the second liquid phase section 21 through which cooling water flows, the second gas phase section 22, the second liquid phase section 21 and the second gas phase section 22 are connected. A condensing unit 24 composed of a cooling body 25 that separates, and a third gas phase unit 32 connecting the first gas phase unit 12 of the evaporation unit 14 and the second gas phase unit 22 of the condensing unit 24,
The shortest distance between the hydrophobic porous hollow fiber membrane 1 of the evaporation unit 14 and the cooling body 25 of the condensing unit 24 is 10 mm or more, and the pressure of the gas phase units 12, 22, 32 is 1 kPa or more. It is a membrane distillation apparatus used between the vapor pressure and below.

本実施形態の膜蒸留装置10は、蒸発部14と、凝縮部24と、第3の気相部32を備える。
蒸発部14は、疎水性多孔中空糸膜1からなる。より具体的に説明すると、蒸発部14は、例えば、疎水性多孔中空糸膜1を束ねて円筒状の樹脂製、あるいは金属製の容器18に収納し、中空糸の端部において、中空糸同士の隙間及び、中空糸と容器18の隙間を固定用樹脂(ポッティング樹脂)で充填・固定して形成される。疎水性多孔中空糸膜1の端部は開口しており、容器18の上下両端には通水口16a(17a)を有するヘッド部16(17)が装着されている。また、容器18の側面には凝縮部24と連結するための連結口(図示省略)を備えている。連結口の数は特に限定されず、単独でも複数でもよい。
The membrane distillation apparatus 10 of this embodiment includes an evaporation unit 14, a condensing unit 24, and a third gas phase unit 32.
The evaporation unit 14 is made of the hydrophobic porous hollow fiber membrane 1. More specifically, the evaporating unit 14 bundles, for example, the hydrophobic porous hollow fiber membranes 1 and stores them in a cylindrical resin or metal container 18, and at the end of the hollow fiber, the hollow fibers are connected to each other. The gap between the hollow fiber and the container 18 is filled and fixed with a fixing resin (potting resin). The end of the hydrophobic porous hollow fiber membrane 1 is open, and a head portion 16 (17) having a water flow port 16a (17a) is attached to the upper and lower ends of the container 18. In addition, a connection port (not shown) for connecting to the condensing unit 24 is provided on the side surface of the container 18. The number of connection ports is not particularly limited, and may be single or plural.

蒸発部14内に設けられる疎水性多孔中空糸膜1の中空内腔が、原水が流れる第1の液相部11となる。疎水性多孔中空糸膜1の外膜側が、蒸発部14を構成する容器18内において第1の気相部12となる。
疎水性多孔中空糸膜1の中空内腔に通液された原水は、水蒸気として疎水性多孔中空糸膜1の膜壁を通過して、第1の気相部12へと移動する。その際、膜壁を移動することができない塩分などの不揮発性の溶質は疎水性多孔中空糸膜1により分離される。
The hollow lumen of the hydrophobic porous hollow fiber membrane 1 provided in the evaporation part 14 becomes the first liquid phase part 11 through which raw water flows. The outer membrane side of the hydrophobic porous hollow fiber membrane 1 becomes the first gas phase portion 12 in the container 18 constituting the evaporation portion 14.
The raw water passed through the hollow lumen of the hydrophobic porous hollow fiber membrane 1 passes through the membrane wall of the hydrophobic porous hollow fiber membrane 1 as water vapor and moves to the first gas phase portion 12. At that time, non-volatile solutes such as salt that cannot move on the membrane wall are separated by the hydrophobic porous hollow fiber membrane 1.

本実施形態において、原水とは、何らかの目的で精製、あるいは濃縮を必要とする水であり、例えば、水道水、工業用水、河川水、井水、湖沼水、海水、産業廃水(食品工場、化学工場、電子産業工場、製薬工場、清掃工場等の工場からの廃水)、石油や天然ガス生産時に排出される随伴水等が挙げられる。   In this embodiment, the raw water is water that needs to be purified or concentrated for some purpose. For example, tap water, industrial water, river water, well water, lake water, seawater, industrial wastewater (food factories, chemical water) Waste water from factories such as factories, electronics industry factories, pharmaceutical factories, and cleaning factories), and associated water discharged during the production of oil and natural gas.

原水は、透水性能の観点で、水温が、50℃以上であることが好ましく、80℃以上であることがより好ましい。
原水の水温は、熱交換器やヒーターなどの熱源の活用により制御してもよいが、太陽熱の利用や産業プロセスなどの排熱を活用して制御することは、加熱に要する熱エネルギーコストが不要、又は低減できるためより好ましい。
The raw water has a water temperature of preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of water permeability.
The water temperature of the raw water may be controlled by using heat sources such as heat exchangers and heaters, but using solar heat or exhaust heat from industrial processes, etc., does not require the heat energy cost required for heating. Or more preferable because it can be reduced.

凝縮部24は、冷却体25からなる。より具体的に説明すると、凝縮部24は、例えば、冷却体25を円筒状の樹脂製、あるいは金属製の容器28に収納し、冷却体25の端部において冷却体25同士の隙間及び、冷却体25と容器28の隙間を固定用樹脂(ポッティング樹脂)で充填・固定して形成される。冷却体25の端部は開口しており、容器28の上下両端には通水口26a(27a)を有するヘッド部26(27)が装着されている。また、容器の側面には蒸発部14と連結するための連結口を備えている。連結口の数は特に限定されず、単独でも複数でもよい。
冷却体25の形状は中空状でも平板状でもよいが、中空管を好適に用いることができる。
The condensing unit 24 includes a cooling body 25. More specifically, the condensing unit 24 stores, for example, the cooling body 25 in a cylindrical resin or metal container 28, and a gap between the cooling bodies 25 at the end of the cooling body 25 and the cooling The gap between the body 25 and the container 28 is formed by filling and fixing with a fixing resin (potting resin). An end portion of the cooling body 25 is open, and a head portion 26 (27) having a water passage 26a (27a) is attached to both upper and lower ends of the container 28. Further, a connecting port for connecting to the evaporation unit 14 is provided on the side surface of the container. The number of connection ports is not particularly limited, and may be single or plural.
The shape of the cooling body 25 may be hollow or flat, but a hollow tube can be used preferably.

冷却体25は、凝縮部24内に設けられ、冷却体25の内部領域が、冷却水が流れる第2の液相部21となる。冷却体25の外部領域が、凝縮部24を構成する容器28内において第2の気相部22となる。
疎水性多孔中空糸膜1の中空内腔に通液された原水は、水蒸気として疎水性多孔中空糸膜1の膜壁を通過して、第1の気相部12へと移動し、第3の気相部32を抜け、第2の気相部22において、冷却体25により冷却され、蒸留水となる。
冷却体25を有する凝縮部24は採水容器26と配管29で接続されており、蒸留水は凝縮部24から排出され、採水容器26に集められる。
The cooling body 25 is provided in the condensing part 24, and the internal area | region of the cooling body 25 becomes the 2nd liquid phase part 21 through which cooling water flows. The external region of the cooling body 25 becomes the second gas phase unit 22 in the container 28 constituting the condensing unit 24.
The raw water that has been passed through the hollow lumen of the hydrophobic porous hollow fiber membrane 1 passes through the membrane wall of the hydrophobic porous hollow fiber membrane 1 as water vapor, moves to the first gas phase portion 12, and the third water The second gas phase portion 22 is cooled by the cooling body 25 and becomes distilled water.
The condensing unit 24 having the cooling body 25 is connected to the water sampling container 26 by a pipe 29, and distilled water is discharged from the condensing unit 24 and collected in the water sampling container 26.

本実施形態において、冷却水は、冷却体25の内部空間である第2の液相部21を流れ、水蒸気を冷却することができる液体であれば特に限定されないが、例えば、水道水、工業用水、河川水、井水、湖沼水、海水、産業廃水(食品工場、化学工場、電子産業工場、製薬工場、清掃工場等の工場からの廃水)、石油や天然ガス生産時に排出される随伴水等が挙げられる。本実施形態においては、原水として使用する水を、冷却水として用いてもよい。   In the present embodiment, the cooling water is not particularly limited as long as it is a liquid that can flow through the second liquid phase portion 21 that is the internal space of the cooling body 25 and cool the water vapor. For example, tap water, industrial water , River water, well water, lake water, seawater, industrial wastewater (wastewater from food factories, chemical factories, electronics industry factories, pharmaceutical factories, cleaning factories, etc.), accompanying water discharged during oil and natural gas production, etc. Is mentioned. In the present embodiment, water used as raw water may be used as cooling water.

冷却水は、凝縮効率の観点で、水温が、30℃以下であることが好ましく、20℃以下であることがより好ましい。
冷却水の水温は、熱交換器やヒーターなどの熱源の活用により制御してもよい。
From the viewpoint of condensation efficiency, the cooling water preferably has a water temperature of 30 ° C. or lower, and more preferably 20 ° C. or lower.
The water temperature of the cooling water may be controlled by utilizing a heat source such as a heat exchanger or a heater.

本実施形態において、それぞれ独立した容器18,28としての蒸発部14と凝縮部4とを備え、第3の気相部32は、蒸発部14と凝縮部24とを連結するように備えることが好ましいが、蒸発部14と凝縮部24とが、同一容器内に存在した一体型の膜蒸留装置であってもよい。   In the present embodiment, the evaporator 14 and the condenser 4 are provided as independent containers 18 and 28, respectively, and the third gas phase part 32 is provided so as to connect the evaporator 14 and the condenser 24. Although preferable, the evaporation unit 14 and the condensing unit 24 may be an integrated membrane distillation apparatus in the same container.

第3の気相部32は第1の気相部12と第2の気相部22を連結する連結口により連結されている。第3の気相部32の容積は水蒸気透過の観点から大きいほうが好ましい。連結口の数は特に限定されず、単独でも複数でもよい。連結部の形状は円筒状でも角状でもよい。連結部の部材は特に限定されず、樹脂や金属を利用することができるが、連結部で水蒸気が凝縮しないよう高断熱性の材料を利用してもよく、必要に応じて断熱加工を施してもよい。   The third gas phase part 32 is connected by a connection port that connects the first gas phase part 12 and the second gas phase part 22. The volume of the third gas phase portion 32 is preferably large from the viewpoint of water vapor transmission. The number of connection ports is not particularly limited, and may be single or plural. The shape of the connecting portion may be cylindrical or square. The member of the connecting portion is not particularly limited, and resin or metal can be used, but a highly heat-insulating material may be used so that water vapor does not condense at the connecting portion, and heat treatment is performed as necessary. Also good.

第3の気相部32は、蒸発部14の疎水性多孔中空糸膜1と凝縮部24の冷却体25との最短距離が10mm以上となるように設けられる。
ここで、疎水性多孔中空糸膜1と冷却体25との最短距離とは、直線距離として、疎水性多孔中空糸膜1と冷却体25のそれぞれの外周部で最も近い距離を意味する。
最短距離を10mm以上とすることにより、蒸発部14と凝縮部24の設計を容易にすることができ、最短距離は、30mm以上であってもよい。
本実施形態においては、最短距離を10mm以上とすることで、蒸発部14と凝縮部24の設計を容易にすることができるが、気相部12,22,32の圧力を1kPa以上原水温度の水の飽和蒸気圧以下の間に制御して膜蒸留を行うことにより、高真空やスイープガスを要せず、コンパクトであるにも関わらず、疎水性多孔中空糸膜1を用いていることによる高Fluxを実現しうる膜蒸留装置とすることができる。
The third gas phase part 32 is provided so that the shortest distance between the hydrophobic porous hollow fiber membrane 1 of the evaporation part 14 and the cooling body 25 of the condensation part 24 is 10 mm or more.
Here, the shortest distance between the hydrophobic porous hollow fiber membrane 1 and the cooling body 25 means the closest distance between the outer peripheral portions of the hydrophobic porous hollow fiber membrane 1 and the cooling body 25 as a linear distance.
By setting the shortest distance to 10 mm or more, the evaporating unit 14 and the condensing unit 24 can be easily designed, and the shortest distance may be 30 mm or more.
In this embodiment, the shortest distance is 10 mm or more, so that the design of the evaporation unit 14 and the condensation unit 24 can be facilitated, but the pressure of the gas phase units 12, 22, and 32 is 1 kPa or more of the raw water temperature. By performing membrane distillation while controlling it to below the saturated vapor pressure of water, high vacuum and sweep gas are not required, and the use of the hydrophobic porous hollow fiber membrane 1 despite being compact It can be set as the membrane distillation apparatus which can implement | achieve high Flux.

本実施形態においては、気相部12,22,32は、連続した空間をなし、気相部12,22,32の圧力は、1kPa以上原水温度の水の飽和蒸気圧以下の間に制御される。
圧力を、1kPa以上とすることにより、気相部12,22,32の圧力を減圧する減圧装置(図示省略)の減圧に要する消費エネルギーを抑えることができ、原水温度の水の飽和蒸気圧以下とすることにより、高い透水性能を実現することができる。
消費エネルギーの観点で、該圧力は、1kPa以上であることが好ましく、10kPa以上であることがより好ましい。
透水性能の観点で、該圧力は、原水温度の水の飽和蒸気圧以下であることが好ましく、原水温度の水の飽和蒸気圧より10kPa以下の圧力(原水温度の水の飽和蒸気圧との差が10kPa以上)であることがより好ましい。
In this embodiment, the gas phase parts 12, 22, and 32 form a continuous space, and the pressure of the gas phase parts 12, 22, and 32 is controlled to be between 1 kPa and the saturated vapor pressure of water at the raw water temperature. The
By setting the pressure to 1 kPa or more, it is possible to suppress energy consumption required for depressurization of a decompression device (not shown) that depressurizes the pressure of the gas phase parts 12, 22, 32, and below the saturated vapor pressure of water at the raw water temperature. By doing so, high water permeability can be realized.
From the viewpoint of energy consumption, the pressure is preferably 1 kPa or more, and more preferably 10 kPa or more.
From the viewpoint of water permeability, the pressure is preferably equal to or lower than the saturated vapor pressure of water at the raw water temperature, and is 10 kPa or lower than the saturated vapor pressure of water at the raw water temperature (difference from the saturated vapor pressure of water at the raw water temperature). Is more preferably 10 kPa or more).

気相部12,22,32の圧力を減圧する減圧装置41として、ダイアフラム真空ポンプ、ドライポンプ、油回転真空ポンプ、エジェクタ、アスピレーター等が挙げられる。
圧力を制御する方法として、例えば、真空レギュレーターやリークバルブを用いる方法、電子式真空コントローラーと電磁弁を用いる方法等が挙げられる。
Examples of the pressure reducing device 41 for reducing the pressure in the gas phase sections 12, 22, and 32 include a diaphragm vacuum pump, a dry pump, an oil rotary vacuum pump, an ejector, and an aspirator.
Examples of the method for controlling the pressure include a method using a vacuum regulator and a leak valve, and a method using an electronic vacuum controller and an electromagnetic valve.

本実施形態の膜蒸留システム100を図2に例示して説明する。図2に示すように、膜蒸留システム100は、膜蒸留装置10、蒸発部14、凝縮部24、気相部12,22,32を備え、採水容器26、減圧装置41、圧力調整器42などから構成される。例えば、原水は、熱交換器やヒーターなどの熱源(図示省略)によって加熱され、高温水として原水タンク(図示省略)に貯蔵される。原水タンク中の高温水は送液ポンプ(図示省略)によって蒸発部14内の疎水性多孔中空糸膜1に通液され、疎水性多孔中空糸膜1を通過する際に、その一部が疎水性多孔中空糸膜1から水蒸気として通過して、第1の気相部12へと移動する。水蒸気は、減圧装置41により1kPa以上原水温度の水の飽和蒸気圧以下の間に第2の気相部22が制御されていることにより、第3の気相部32を通り、凝縮部24の第2の気相部22へと移動する。通過した水蒸気は凝縮部24内の冷却体25の内腔を対向する冷却水によって凝縮部24の冷却体25上で凝縮され蒸留水が得られる。冷却水は、冷却タンク(図示省略)から送液ポンプ(図示省略)によって冷却体25中を通液される。冷却体25上で凝縮され得られた蒸留水は、採水容器26に集められる。第2の気相部22は、減圧装置41および圧力調整器42によって圧力が一定に調整されている。   A membrane distillation system 100 of this embodiment will be described with reference to FIG. As shown in FIG. 2, the membrane distillation system 100 includes a membrane distillation apparatus 10, an evaporation unit 14, a condensing unit 24, and gas phase units 12, 22, and 32, and a water collection container 26, a decompression device 41, and a pressure regulator 42. Etc. For example, raw water is heated by a heat source (not shown) such as a heat exchanger or a heater, and stored as high-temperature water in a raw water tank (not shown). The high-temperature water in the raw water tank is passed through the hydrophobic porous hollow fiber membrane 1 in the evaporation section 14 by a liquid feed pump (not shown), and when passing through the hydrophobic porous hollow fiber membrane 1, a part of it is hydrophobic. The porous porous fiber membrane 1 passes as water vapor and moves to the first gas phase portion 12. The water vapor passes through the third gas phase part 32 and is stored in the condensing part 24 when the second gas phase part 22 is controlled by the decompression device 41 while the pressure is not less than the saturated vapor pressure of water at the raw water temperature. Move to the second gas phase unit 22. The water vapor that has passed is condensed on the cooling body 25 of the condensing unit 24 by the cooling water facing the lumen of the cooling body 25 in the condensing unit 24 to obtain distilled water. The cooling water is passed through the cooling body 25 from a cooling tank (not shown) by a liquid feed pump (not shown). Distilled water obtained by condensation on the cooling body 25 is collected in a water collection container 26. The pressure of the second gas phase unit 22 is adjusted to be constant by the decompression device 41 and the pressure regulator 42.

本実施形態のフラッシング機構6は、疎水性多孔中空糸膜1をフラッシングした後の洗浄水を排出する洗浄水排出ライン61と、前記洗浄水排出ライン61の途中に設置された開閉弁62と、を含む。
洗浄水排出ライン61は、膜蒸留装置10の洗浄水出口に接続している。
開閉弁62としては、電磁弁など、浄水システムで通常使用される弁を使用できる。開閉弁62は制御部(図示省略)からの制御指令に基づいて開閉が制御され、洗浄水の排出および停止を切り替える。なお、開閉弁62は手動で開閉して、洗浄水の排出および停止を切り替えることもできる。
以下、本発明の膜蒸留システム100の運転方法の一例について、図2に示す膜蒸留システム100を用い、操作に従って説明する。
膜蒸留工程では、原水排出ライン57の開閉弁58を開、開閉弁62を閉とする。原水供給ライン51から供給される原水は、膜蒸留装置10の原水入口から蒸発部14に流入し、蒸発部14内の疎水性多孔中空糸膜1を通じて原水出口から排出される。その際、膜を透過した水蒸気が凝縮部24へ移動し、冷却体25上で凝縮され、精製水となる。原水中に含まれるイオン成分など不揮発性物質は膜を透過できないため精製水から除去される。精製水は精製水出口から排出される。排出された精製水は浄水として供給される。
ついで、所定時間膜蒸留工程を行った後、または所定量の原水を透過した後、以下のようにして膜蒸留装置10の疎水性多孔中空糸膜1をフラッシング(膜洗浄)する。
フラッシング工程では、洗浄水排出ライン61の開閉弁62を開、原水排出ライン57の開閉弁58を閉とする。フラッシング工程では、上述したように開閉弁58と開閉弁62の開閉を切り替えて、図2に示すように洗浄水を原水供給ライン51から膜蒸留装置10に供給しつつ、膜蒸留装置10からの排出(すなわち、原水のドレン)を停止すると共に、疎水性多孔中空糸膜1をフラッシングして洗浄水を排出する。
洗浄水は膜蒸留装置10の原水入口から流入し、膜蒸留装置10内の疎水性多孔中空糸膜1内を通過する。この際、中空糸膜内面がフラッシングされることで、膜表面に付着した汚れ等が原水によって洗い流される。
汚れを含んだ原水は、洗浄水となって洗浄水出口から排出される。洗浄水は洗浄水排出ライン61を通り、系外に排出される。
本実施形態の洗浄水は、原水をそのまま洗浄水として使用することができるが、原水より導電率が低い水を用いた場合は、無機物など汚れ成分が溶解しやすく、高い除去効果が得られるため好ましい。このような観点からも精製水の一部を洗浄水と使用しても良い。
フラッシング工程が終了した後は、そのまま膜蒸留工程に移行できる。
本発明の膜蒸留システム100の運転方法においては、膜蒸留工程からフラッシング工程への切り替え(すなわち、各開閉弁58,62の開閉)を制御する手段は特に制限されず、手動にて切り替えてもよいし、膜蒸留システム100に自動制御手段(制御部)を設け、自動制御にて切り替えてもよい。
フラッシングはラインの増設など軽微な設備変更ですむため、フラッシングにより透水性能を回復する本発明の膜蒸留システム100はコンパクトでかつ簡易な構成にできる。
The flushing mechanism 6 of the present embodiment includes a washing water discharge line 61 that discharges washing water after flushing the hydrophobic porous hollow fiber membrane 1, an on-off valve 62 installed in the middle of the washing water discharge line 61, including.
The washing water discharge line 61 is connected to the washing water outlet of the membrane distillation apparatus 10.
As the on-off valve 62, a valve normally used in a water purification system such as an electromagnetic valve can be used. The on-off valve 62 is controlled to open and close based on a control command from a control unit (not shown), and switches between discharge and stop of cleaning water. The on-off valve 62 can be manually opened and closed to switch between discharge and stop of the washing water.
Hereinafter, an example of the operation method of the membrane distillation system 100 of the present invention will be described according to the operation using the membrane distillation system 100 shown in FIG.
In the membrane distillation step, the on-off valve 58 of the raw water discharge line 57 is opened and the on-off valve 62 is closed. The raw water supplied from the raw water supply line 51 flows into the evaporator 14 from the raw water inlet of the membrane distillation apparatus 10 and is discharged from the raw water outlet through the hydrophobic porous hollow fiber membrane 1 in the evaporator 14. At that time, water vapor that has passed through the membrane moves to the condensing unit 24, is condensed on the cooling body 25, and becomes purified water. Nonvolatile substances such as ionic components contained in the raw water cannot be permeated through the membrane and are removed from the purified water. Purified water is discharged from the purified water outlet. The discharged purified water is supplied as purified water.
Next, after performing the membrane distillation step for a predetermined time or after passing a predetermined amount of raw water, the hydrophobic porous hollow fiber membrane 1 of the membrane distillation apparatus 10 is flushed (membrane washed) as follows.
In the flushing step, the opening / closing valve 62 of the cleaning water discharge line 61 is opened, and the opening / closing valve 58 of the raw water discharge line 57 is closed. In the flushing step, the opening / closing valve 58 and the opening / closing valve 62 are switched as described above, and the washing water is supplied from the raw water supply line 51 to the membrane distillation apparatus 10 as shown in FIG. The discharge (that is, the drain of the raw water) is stopped, and the hydrophobic porous hollow fiber membrane 1 is flushed to discharge the washing water.
The washing water flows from the raw water inlet of the membrane distillation apparatus 10 and passes through the hydrophobic porous hollow fiber membrane 1 in the membrane distillation apparatus 10. At this time, the inner surface of the hollow fiber membrane is flushed, so that dirt or the like adhering to the membrane surface is washed away by the raw water.
The raw water containing dirt becomes washing water and is discharged from the washing water outlet. The washing water passes through the washing water discharge line 61 and is discharged out of the system.
The cleaning water of the present embodiment can use raw water as it is as cleaning water, but when water having lower conductivity than the raw water is used, dirt components such as inorganic substances are easily dissolved and a high removal effect is obtained. preferable. From this point of view, a part of purified water may be used as washing water.
After the flushing process is completed, the process can be directly transferred to the membrane distillation process.
In the operation method of the membrane distillation system 100 of the present invention, the means for controlling the switching from the membrane distillation process to the flushing process (that is, the opening / closing of the on-off valves 58 and 62) is not particularly limited. Alternatively, the membrane distillation system 100 may be provided with an automatic control means (control unit) and switched by automatic control.
Since the flushing requires only minor equipment changes such as the addition of a line, the membrane distillation system 100 of the present invention that restores the water permeability by flushing can be made compact and simple.

以下、本発明の構成と効果を具体的に示す実施例等について説明するが、本実施形態は以下の実施例により何ら限定されるものではない。   Hereinafter, examples and the like that specifically illustrate the configuration and effects of the present invention will be described. However, the present embodiment is not limited to the following examples.

(実施例)
図2に示す膜蒸留システム100を用い、水道水の精製を行った。フラッシングに用いる洗浄水には膜蒸留工程で得られた精製水を、開閉弁58,62には、電磁弁を使用した。
PVDF製の多孔中空糸膜(外径1.22mm、内径0.66mm、平均孔径0.27μm)を用いた。中空糸膜20本を内径20mmのポリスルホン製のケースに収納した蒸発モジュール(蒸発部14)と、内径1mm、外径2mmのステンレス管20本を蒸発部14で用いたものと同一のケースに収納した凝縮モジュール(凝縮部24)を作製し、蒸発部14内の中空糸膜外表と凝縮部24内のステンレス管外表の最短距離が30mmになるよう蒸発部14と凝縮部24を連結した(図2、図3参照)。凝縮部24の取出口は採水容器26と配管で連結しており、図2に示すように採水容器からは系内の圧力を調整するため、真空ポンプと真空制御装置を配置した。
蒸発部14の中空糸膜の内腔に、65℃の水道水を600mL/minの流量で流し、凝縮部24のステンレス管の内腔には30℃の水道水を600mL/minの流量で流して冷却し、モジュール系内の圧力が10kPaになるよう真空ポンプで調整し、膜蒸留工程を行った。
膜蒸留システムの運転を開始し、30分後に採水容器に溜まる水を採取したところ、Flux45kg/m2/hを示した。得られた水の導電率は1.0μS/cmであった。そして、運転開始から25時間後からFluxが徐々に低下し、15kg/m2/hに低下したところで、フラッシング工程に切り替えた(すなわち、各開閉弁58,62の開閉を切り替えた)。そして、フラッシングした後、再び膜蒸留工程に移行させ、水道水の精製を行った。
その結果、Fluxは45kg/m2/hに回復することが認められた。
(比較例)
実施例1の運転方法においてフラッシング工程を行わなわなかった以外は、同様の方法で行った。運転開始から25時間後からFluxが徐々に低下し、15kg/m2/hに低下したあとも低下し続け、やがて蒸留は停止してしまった。
(Example)
Tap water was purified using the membrane distillation system 100 shown in FIG. Purified water obtained in the membrane distillation process was used as the washing water used for flushing, and electromagnetic valves were used as the on-off valves 58 and 62.
A PVDF porous hollow fiber membrane (outer diameter 1.22 mm, inner diameter 0.66 mm, average pore diameter 0.27 μm) was used. An evaporation module (evaporation part 14) containing 20 hollow fiber membranes in a polysulfone case with an inner diameter of 20 mm and 20 stainless steel tubes with an inner diameter of 1 mm and an outer diameter of 2 mm are accommodated in the same case as that used in the evaporation part 14. The condensation module (condensation part 24) was prepared, and the evaporation part 14 and the condensation part 24 were connected so that the shortest distance between the outer surface of the hollow fiber membrane in the evaporation part 14 and the outer surface of the stainless steel tube in the condensation part 24 was 30 mm (see FIG. 2, see FIG. The outlet of the condensing unit 24 is connected to the water sampling container 26 by piping, and a vacuum pump and a vacuum control device are arranged from the water sampling container to adjust the pressure in the system as shown in FIG.
65 ° C. tap water is allowed to flow through the lumen of the hollow fiber membrane of the evaporator 14 at a flow rate of 600 mL / min, and 30 ° C. tap water is allowed to flow through the lumen of the stainless steel tube of the condenser 24 at a flow rate of 600 mL / min. Then, the pressure in the module system was adjusted to 10 kPa with a vacuum pump, and the membrane distillation step was performed.
The operation of the membrane distillation system was started, and water collected in the water collection container after 30 minutes was collected. As a result, it was found that the flux was 45 kg / m 2 / h. The conductivity of the water obtained was 1.0 μS / cm. Then, after 25 hours from the start of operation, when the flux gradually decreased to 15 kg / m 2 / h, the flushing process was switched (that is, the opening / closing of the on-off valves 58 and 62 was switched). And after flushing, it changed to the membrane distillation process again and refine | purified tap water.
As a result, it was confirmed that the flux recovered to 45 kg / m 2 / h.
(Comparative example)
The same operation was performed except that the flushing step was not performed in the operation method of Example 1. After 25 hours from the start of operation, the flux gradually decreased and continued to decrease even after dropping to 15 kg / m 2 / h, and the distillation stopped eventually.

本発明によれば、コンパクトかつ簡易な構成の膜蒸留システムおよびその運転方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the membrane distillation system of a compact and simple structure and its operating method can be provided.

1 疎水性多孔中空糸膜
6 フラッシング機構
10 膜蒸留装置
11 第1の液相部
12 第1の気相部
14 蒸発部
21 第2の液相部
22 第2の気相部
24 凝縮部
25 冷却体
32 第3の気相部
100 膜蒸留システム
DESCRIPTION OF SYMBOLS 1 Hydrophobic porous hollow fiber membrane 6 Flushing mechanism 10 Membrane distillation apparatus 11 1st liquid phase part 12 1st gas phase part 14 Evaporation part 21 2nd liquid phase part 22 2nd gas phase part 24 Condensing part 25 Cooling Body 32 third gas phase section 100 membrane distillation system

Claims (4)

疎水性多孔中空糸膜を備えた膜蒸留装置、および前記疎水性多孔中空糸膜をフラッシングするフラッシング機構を有することを特徴とする膜蒸留システム。   A membrane distillation system comprising a membrane distillation apparatus provided with a hydrophobic porous hollow fiber membrane, and a flushing mechanism for flushing the hydrophobic porous hollow fiber membrane. 前記膜蒸留装置が、原水が流れる第1の液相部と、第1の気相部と、前記第1の液相部と前記第1の気相部を隔てる前記疎水性多孔中空糸膜からなる蒸発部と、冷却水が流れる第2の液相部と、第2の気相部と、前記第2の液相部と前記第2の気相部を隔てる冷却体からなる凝縮部と、前記第1の気相部と前記第2の気相部を連結する第3の気相部と、を備え、
前記蒸発部の疎水性多孔中空糸膜と前記凝縮部の冷却体との最短距離が10mm以上であり、かつ、
前記第1の気相部、前記第2の気相部および前記第3の気相部の圧力を1kPa以上であってかつ原水温度の水の飽和蒸気圧以下の間で用いる、請求項1に記載の膜蒸留システム。
The membrane distillation apparatus includes a first liquid phase part through which raw water flows, a first gas phase part, and the hydrophobic porous hollow fiber membrane separating the first liquid phase part and the first gas phase part. An evaporating part, a second liquid phase part through which cooling water flows, a second gas phase part, a condensing part comprising a cooling body separating the second liquid phase part and the second gas phase part, A third gas phase part connecting the first gas phase part and the second gas phase part,
The shortest distance between the hydrophobic porous hollow fiber membrane of the evaporating part and the cooling body of the condensing part is 10 mm or more, and
The pressure of the first gas phase part, the second gas phase part, and the third gas phase part is used between 1 kPa and a saturated vapor pressure of water at a raw water temperature. The membrane distillation system described.
請求項1に記載の膜蒸留システムの運転方法であって、
原水を前記疎水性多孔中空糸膜に透過させて膜蒸留をおこなう膜蒸留工程と、前記疎水性多孔中空糸膜に洗浄水を供給し、フラッシングするフラッシング工程と、を繰り返すことを特徴とする膜蒸留システムの運転方法。
A method for operating the membrane distillation system according to claim 1,
A membrane characterized by repeating a membrane distillation step in which raw water permeates through the hydrophobic porous hollow fiber membrane to perform membrane distillation, and a flushing step in which washing water is supplied to the hydrophobic porous hollow fiber membrane and flushed. How to operate the distillation system.
前記洗浄水として、原水、または原水よりも導電率の低い水を用いることを特徴とする請求項3に記載の膜蒸留システムの運転方法。   The operation method of the membrane distillation system according to claim 3, wherein raw water or water having lower conductivity than raw water is used as the washing water.
JP2015072846A 2015-03-31 2015-03-31 Membrane distillation system and operation method thereof Pending JP2016190220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072846A JP2016190220A (en) 2015-03-31 2015-03-31 Membrane distillation system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072846A JP2016190220A (en) 2015-03-31 2015-03-31 Membrane distillation system and operation method thereof

Publications (1)

Publication Number Publication Date
JP2016190220A true JP2016190220A (en) 2016-11-10

Family

ID=57245129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072846A Pending JP2016190220A (en) 2015-03-31 2015-03-31 Membrane distillation system and operation method thereof

Country Status (1)

Country Link
JP (1) JP2016190220A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067100A (en) * 2017-12-29 2018-05-25 北京中科瑞升资源环境技术有限公司 Rolled film distillation equipment and use its membrane distillation system
KR20180084384A (en) * 2017-01-17 2018-07-25 국민대학교산학협력단 Apparatus and Method for Cleaning Membrane
WO2018174279A1 (en) * 2017-03-24 2018-09-27 旭化成株式会社 Porous membrane for membrane distillation, and method for operating membrane distillation module
WO2020111158A1 (en) * 2018-11-27 2020-06-04 旭化成株式会社 Membrane distillation module and membrane distillation apparatus
CN111252860A (en) * 2020-03-07 2020-06-09 山西大学 Negative pressure type membrane distillation device and method based on siphon circulation
JP2020121278A (en) * 2019-01-31 2020-08-13 オルガノ株式会社 Water treatment method and water treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316006A (en) * 1986-07-04 1988-01-23 Sasakura Eng Co Ltd Method for operating pervaporization distiller
JPH0924249A (en) * 1995-07-14 1997-01-28 Hitachi Ltd Membrane evaporator and membrane distillation method
JP2010005615A (en) * 2008-05-28 2010-01-14 Asahi Kasei Chemicals Corp Filtering method using hollow fiber membrane module
JP2011167628A (en) * 2010-02-18 2011-09-01 Sumitomo Electric Ind Ltd Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
WO2016006670A1 (en) * 2014-07-10 2016-01-14 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316006A (en) * 1986-07-04 1988-01-23 Sasakura Eng Co Ltd Method for operating pervaporization distiller
JPH0924249A (en) * 1995-07-14 1997-01-28 Hitachi Ltd Membrane evaporator and membrane distillation method
JP2010005615A (en) * 2008-05-28 2010-01-14 Asahi Kasei Chemicals Corp Filtering method using hollow fiber membrane module
JP2011167628A (en) * 2010-02-18 2011-09-01 Sumitomo Electric Ind Ltd Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
WO2016006670A1 (en) * 2014-07-10 2016-01-14 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180084384A (en) * 2017-01-17 2018-07-25 국민대학교산학협력단 Apparatus and Method for Cleaning Membrane
KR102392274B1 (en) * 2017-01-17 2022-05-02 국민대학교 산학협력단 Apparatus and Method for Cleaning Membrane
EP3603777A4 (en) * 2017-03-24 2021-05-05 Asahi Kasei Kabushiki Kaisha Porous membrane for membrane distillation, and method for operating membrane distillation module
WO2018174279A1 (en) * 2017-03-24 2018-09-27 旭化成株式会社 Porous membrane for membrane distillation, and method for operating membrane distillation module
JPWO2018174279A1 (en) * 2017-03-24 2019-11-07 旭化成株式会社 Method of operating porous membrane for membrane distillation and module for membrane distillation
US11352270B2 (en) 2017-03-24 2022-06-07 Asahi Kasei Kabushiki Kaisha Porous membrane for membrane distillation, and method for operating membrane distillation module
TWI712448B (en) * 2017-03-24 2020-12-11 日商旭化成股份有限公司 Operation method of porous membrane for membrane distillation and module for membrane distillation
CN108067100A (en) * 2017-12-29 2018-05-25 北京中科瑞升资源环境技术有限公司 Rolled film distillation equipment and use its membrane distillation system
CN113164873A (en) * 2018-11-27 2021-07-23 旭化成株式会社 Membrane distillation assembly and membrane distillation device
WO2020111158A1 (en) * 2018-11-27 2020-06-04 旭化成株式会社 Membrane distillation module and membrane distillation apparatus
CN113164873B (en) * 2018-11-27 2023-10-03 旭化成株式会社 Membrane distillation assembly and membrane distillation device
JP2020121278A (en) * 2019-01-31 2020-08-13 オルガノ株式会社 Water treatment method and water treatment device
JP7116691B2 (en) 2019-01-31 2022-08-10 オルガノ株式会社 Water treatment method and water treatment equipment
CN111252860A (en) * 2020-03-07 2020-06-09 山西大学 Negative pressure type membrane distillation device and method based on siphon circulation

Similar Documents

Publication Publication Date Title
JP2016190220A (en) Membrane distillation system and operation method thereof
Aliyu et al. Membrane desalination technologies in water treatment: A review
JP5036822B2 (en) Membrane distillation method for liquid purification
CN110461452B (en) Porous membrane for membrane distillation and method for operating module for membrane distillation
US20130112603A1 (en) Forward osmotic desalination device using membrane distillation method
JP6724124B2 (en) Membrane device having improved forward osmosis performance and solution separation method using the same
KR101184787B1 (en) Membrane filtration using heatpump
JP2011200770A (en) Porous membrane for membrane distillation, module for membrane distillation, and membrane distillation type water production system
CN203990317U (en) The stifled energy-saving film distiller of a kind of normal pressure anti-soil
Gryta Water desalination using membrane distillation with acidic stabilization of scaling layer thickness
Baghbanzadeh et al. Membrane distillation
KR101394517B1 (en) Apparatus for desalinating the seawater
US20130292334A1 (en) Water desalination mechanism
US9480950B2 (en) Separation membrane for membrane distillation
JP5779369B2 (en) Membrane cleaning and regeneration method in zeolite membrane dehydration equipment
KR101656569B1 (en) Apparatus for manufacturing energy
CN104147932A (en) Normal-pressure pollution and plugging resistant energy-saving membrane distiller
US20240058760A1 (en) Multi-stage vacuum membrane distillation system and process
US20240058757A1 (en) Multi-stage sweeping gas membrane distillation system and process
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
US20240058761A1 (en) Multi-stage permeate gap membrane distillation system and process
US20240058759A1 (en) Multi-stage air gap membrane distillation system and process
WO2023037772A1 (en) Water treatment system
Alkhudhiri et al. * King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
US20210260532A1 (en) Membrane distillation module and multi-effect process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190320