KR101184787B1 - Membrane filtration using heatpump - Google Patents

Membrane filtration using heatpump Download PDF

Info

Publication number
KR101184787B1
KR101184787B1 KR1020120039125A KR20120039125A KR101184787B1 KR 101184787 B1 KR101184787 B1 KR 101184787B1 KR 1020120039125 A KR1020120039125 A KR 1020120039125A KR 20120039125 A KR20120039125 A KR 20120039125A KR 101184787 B1 KR101184787 B1 KR 101184787B1
Authority
KR
South Korea
Prior art keywords
fresh water
distillation
water
heat pump
membrane
Prior art date
Application number
KR1020120039125A
Other languages
Korean (ko)
Inventor
김경성
Original Assignee
김경성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김경성 filed Critical 김경성
Priority to KR1020120039125A priority Critical patent/KR101184787B1/en
Application granted granted Critical
Publication of KR101184787B1 publication Critical patent/KR101184787B1/en
Priority to PCT/KR2013/003043 priority patent/WO2013157776A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/368Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A membrane filtering apparatus using a heat pump is provided to increase the efficiency of desalination without a separate cooling process by using water of low temperatures from the heat pump as the coolant of a membrane distillation filtering apparatus. CONSTITUTION: A membrane filtering apparatus includes a heat pump(100), a forward osmosis membrane filtering unit(200), an absorbing tank(300), a high temperature tank(400), a distillation type membrane filtering unit(500), a fresh water outlet(540), and a circulating pipe(600). The heat pump absorbs heat from feed water. The forward osmosis membrane desalinates the feed water, and the desalinated water is combined with the induction solution in the absorbing tank. The diluted solution is stored in the absorbing tank, and then is heated and stored at high temperatures in the high temperature tank. The membrane distillation filtering unit separates the fresh water from the diluted solution. The fresh water is obtained at the fresh water outlet. The circulating pipe circulates the induction solution to the absorbing tank. [Reference numerals] (AA) Feed water inlet; (BB) Discharging fresh water

Description

히트펌프를 이용한 막여과 장치{Membrane filtration using heatpump}Membrane filtration using heatpump}

본 발명은 히트펌프를 이용한 막여과 장치에 관한 것으로, 구체적으로는 정삼투법(FO)과 막증류법(MD)을 이용하여 해수나 하수처리방류수 등과 같은 유입원수로부터 담수를 효율적으로 생산하고 별도 구비된 히트펌프로 유입원수의 열에너지를 이용하여 증류 막여과장치의 효율을 높여 에너지 소요량을 절감할 수 있는 히트펌프를 이용한 막여과 장치에 관한 것이다.
The present invention relates to a membrane filtration device using a heat pump, and specifically, to produce fresh water efficiently from separate inflow water such as seawater or sewage treatment effluent using forward osmosis (FO) and membrane distillation (MD). The present invention relates to a membrane filtration device using a heat pump that can reduce the energy requirement by increasing the efficiency of the distillation membrane filtration device using the heat energy of the inflow source water.

일반적으로 해수 또는 하수처리방류수와 같은 오염수 등으로부터 우리가 사용할 수 있는 음용수 또는 산업용수로 사용하기 위한 담수화에 대한 연구가 꾸준히 진행되어 왔다.
In general, research on desalination for use as drinking water or industrial water that can be used from contaminated water such as seawater or sewage treatment effluent has been steadily progressed.

현재까지 원수를 담수화하는 방법에 있어서 역삼투법(RO; Reverse Osmosis), To date, in the desalination of raw water, reverse osmosis (RO),

정삼투법(FO; Foward Osmosis), 증발법, 전기투석법 등이 있지만 국내외적으로는 담수생산 효율이 높은 역삼투법(RO) 방식을 많이 이용하고 있는 실정이다.
There are foward osmosis (FO), evaporation, and electrodialysis, but there are many domestic and foreign reverse osmosis (RO) methods with high freshwater production efficiency.

그러나 역삼투법(RO)을 이용한 방식은 해수담수화의 경우 표준해수의 삼투압(25기압)보다 큰 40~60기압정도의 압력을 유지해야 하는 등 전력소모가 크다는 점과 여기에 사용되는 반투막의 교체비용과 같은 운전유지비용이 커짐에 따라 담수의 생산단가가 높아지는 문제점이 있다.
However, the method using the reverse osmosis method (RO) has a high power consumption in case of seawater desalination, such as maintaining the pressure of about 40 to 60 atmospheres higher than the standard osmosis (25 atmospheres) of the standard seawater, and the cost of replacing the semi-permeable membrane As the same operation maintenance cost increases, there is a problem in that the production cost of fresh water increases.

상기와 같은 문제점을 해결하기 위해 정삼투법(FO; Foward Osmosis)과 막증류법(MD; Membrane Distillation)을 이용한 담수방법이 최근에 관심을 받고 있다. In order to solve the above problems, a desalination method using forward osmosis (FO) and membrane distillation (MD) has recently been attracting attention.

상기 정삼투법(FO)은 역삼투법(RO)과는 달리 인위적인 압력을 가하지 않고 반투막을 사이에 두고 고농도의 유도용액과 비교적 저농도의 유입원수가 접하게 되면서 삼투작용으로 유입원수의 담수를 유도용액으로 흡수시킨 후 유도용액과 담수를 분리시켜 생산하는 방법이다.
The reverse osmosis method (FO), unlike reverse osmosis (RO), the high concentration of the induction solution and the relatively low concentration of the incoming source water contact with the semi-permeable membrane without applying artificial pressure to absorb the fresh water of the incoming water as the induction solution by osmosis. After separating the induced solution and fresh water is produced.

상기 막증류법(MD)은 높은 온도의 원수와 낮은 온도의 냉각수가 분리막을 사이에두고 증발 및 응축과정을 통해 담수를 생산하는 방법으로써, 원수와 냉각수를 직접 접촉하는 DCMD(Direct contact MD)법, 공기 간극에 의해 막으로부터 응축 표면이 떨어져 있는 AGMD(Air gap MD)법, 냉각수 대신 차가운 비활성 기체를 흘려보내는 SGMD(Sweep gas MD)법, 냉각수쪽에 진공상태를 걸어 효율을 높이는 VMD (Vacuum MD)법 등이 있다.
The membrane distillation method (MD) is a method of producing fresh water through evaporation and condensation with raw water of high temperature and low temperature of cooling water between membranes, and a direct contact MD (DCMD) method for directly contacting raw water and cooling water. AGMD (Air gap MD) method, which condensation surface is separated from the membrane by air gap, SGMD (Sweep gas MD) method, which flows cold inert gas instead of cooling water, and VMD (Vacuum MD) method, which increases efficiency by applying vacuum to the cooling water. Etc.

상기와 같은 방법들을 이용한 종래기술로는 등록특허 제10-1020316호(막증류 방식을 이용한 정삼투 담수화 방법)은 희석 유도용액 챔버; 상기 희석 유도용액 챔버로부터 유체가 유입되며, 상기 유입된 유체로부터 가스와 담수가 분리되는 제 1 멤브레인 컨택터; 상기 분리된 가스가 재농축되도록 유입되어 그 내부에 유동하는 유체에 녹을 수 있는 제 2 멤브레인 컨택터; 및 상기 제 1 멤브레인 컨택터와 상기 제 2 멤브레인 컨택터와 연동하는 진공 펌프를 포함하는 담수 분리기 및 상기 담수 분리기를 포함하는 구성으로 이루어지고 있다.
As a prior art using the above methods, Patent No. 10-1020316 (forward osmosis desalination method using a membrane distillation method) is a dilution induction solution chamber; A first membrane contactor in which fluid is introduced from the dilution inducing solution chamber, and gas and fresh water are separated from the introduced fluid; A second membrane contactor which is introduced to re-concentrate the separated gas and is dissolved in a fluid flowing therein; And a freshwater separator including a vacuum pump interlocked with the first membrane contactor and the second membrane contactor, and the freshwater separator.

그러나 상기 기술은 제 1 멤브레인 컨택터로 공급되는 유체를 가열하기 위한 히터가 구비되는데 이에 따른 전력소모가 커지는 문제점과 정삼투 분리기 외에 적어도 2개이상의 멤브레인 컨택터와 진공펌프를 구비함에 따라 설비의 복잡성과 비용문제를 안고 있다.
However, the above-described technology is provided with a heater for heating the fluid supplied to the first membrane contactor, which increases the power consumption and complexity of the facility by providing at least two membrane contactors and a vacuum pump in addition to the forward osmosis separator. There is a problem with money.

현재까지 정삼투법(FO)을 이용한 담수 방법은 유도용액에 따라 담수능력이 좌우될 정도로 유도용액에 대한 의존도가 높고 유도용액으로부터 담수를 분리하는데 에너지가 많이 소모되며 유도용액의 회수 또한 쉽지않다.
Until now, the freshwater method using forward osmosis (FO) has high dependence on the induction solution to the extent that the fresh water capacity depends on the induction solution.

또한 막증류법(MD)을 이용한 담수 방법은 원수가 막에 응축될 수 있게 일정온도 이상이 되도록 별도 가열부재로 가열하는데 이에 따른 전력소모 문제와 별도 냉각수를 구비해야 되는 문제점이 있다. In addition, the freshwater method using the membrane distillation method (MD) has a problem in that power consumption and separate cooling water are required to be heated by a separate heating member so that the raw water can be condensed on the membrane by a predetermined temperature or more.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로,SUMMARY OF THE INVENTION The present invention has been made to solve the above problems,

정삼투법(FO)과 막증류법(MD)을 이용하여 원수로부터 담수를 효과적으로 분리하고 해수, 하수처리방류수 등과 같은 유입원수로부터 히트펌프를 이용하여 열에너지를 흡수하여 유도용액으로 열을 방출하여 온도를 높임으로써 가열전력을 절감하는데 목적이 있다.
Efficient separation of freshwater from raw water using forward osmosis (FO) and membrane distillation (MD) and absorption of heat energy from inflow water such as seawater and sewage treatment effluent using heat pump to release heat to induction solution The purpose is to reduce the heating power by increasing.

또한 히트펌프를 통해 열을 빼앗긴 저온의 유입원수를 증류 막여과장치의 냉각수로 사용함으로써 별도의 냉각공정 없이 담수화 효율을 높일 수 있는 히트펌프를 이용한 막여과 장치를 제공함에 목적이 있다.
In addition, it is an object of the present invention to provide a membrane filtration device using a heat pump that can increase the desalination efficiency without a separate cooling process by using the low temperature inlet source water taken through the heat pump as the cooling water of the distillation membrane filter device.

또한 흡수탱크부내의 유도용액과 담수가 희석되어 히트펌프의 응축기, 고온탱크부, 증류부 그리고 다시 흡수탱크부로 재순환 공급되도록 함으로써 유도용액의 열손실을 최소화하고 증류 막여과장치의 분리막이 쉽게 오염되지 않고 수명이 오래 지속될 수 있도록 하는데 목적이 있다.
In addition, the induction solution and fresh water in the absorption tank are diluted so that it is recycled to the condenser, the high temperature tank, the distillation unit and the absorption tank unit of the heat pump to minimize the heat loss of the induction solution and the membrane of the distillation membrane filter is not easily contaminated. Its purpose is to ensure a long lifespan.

삭제delete

본 발명은 원수유입부의 공급관에서 일측으로 분기되는 제1유입관로상에 설치되어 제1유입관로를 통해 유입되는 원수를 증발기, 압축기,응축기, 팽창밸브로 이루어진 구성에 의해 원수의 열을 흡수하고 외부로 배출하는 히트펌프와, 상기 원수유입부의 공급관에서 타측으로 분기 되는 제2유입관로상에 설치되어 제2유입관로를 통해 일측으로 유입되고 정삼투막을 거쳐 담수가 분리되도록 하고 담수는 흡수탱크부의 유도용액과 합류되도록 하는 정삼투 막여과장치와, 상기 정삼투 막여과 장치와 연통관로로 연결되어 유입되는 담수와 유도용액이 희석되어 저장이 이루어지도록 하는 흡수탱크부와, 상기 흡수탱크부에 저장된 담수와 유도용액이 응축기를 거쳐 가열된 다음 고온으로 저장이 이루어지도록 하는 고온탱크부와, 상기 고온탱크부에 저장된 고온의 담수와 유도용액이 공급되어 증류부, 분리막, 냉각부으로 이루어진 구성에 의해 담수 분리가 이루어지는 증류 막여과장치와, 상기 증류 막여과장치 일측에 설치되어 증류 막여과장치에서 증류분리된 담수의 배출이 이루어지도록 한 담수배출부와, 상기 증류 막여과장치에 설치된 증류부로 배출되는 유도용액은 회수관로를 통해 흡수탱크부로 재순환 공급되도록 한 것을 특징으로 한다.

상기 히트펌프의 증발기에서 배출되는 저온의 원수는 냉각수관로를 통해 증류 막여과장치의 냉각부로 공급되게 한 것을 더 포함하여서 됨을 특징으로 한다.
The present invention is installed on the first inlet pipe branch branched to one side from the supply pipe of the raw water inlet portion to absorb the heat of the raw water by the configuration consisting of the evaporator, compressor, condenser, expansion valve to the raw water flowing through the first inlet pipe Installed on the second inlet pipe branch which is branched to the other side from the supply pipe of the raw water inlet part and flows into one side through the second inlet pipe and separates the fresh water through the forward osmosis membrane, and the fresh water is induced in the absorption tank part. Forward osmosis membrane filtration device to be combined with the solution, the absorption tank unit is connected to the forward osmosis membrane filtration device and the communication tube to dilute the fresh water and the induction solution to be stored, and the fresh water stored in the absorption tank unit And a high temperature tank unit for heating the induction solution through a condenser and storing the same at a high temperature, and stored in the high temperature tank unit. The fresh water and the induction solution of the hot water is supplied to the distillation membrane filter device for the separation of fresh water by distillation unit, separation membrane, the configuration consisting of the cooling unit, and the distilled membrane filter device installed on one side of the distillation membrane filter device The fresh water discharge unit and the induction solution discharged to the distillation unit installed in the distillation membrane filter device are recycled to the absorption tank unit through a recovery pipe.

The raw water of low temperature discharged from the evaporator of the heat pump is characterized in that it further comprises to be supplied to the cooling unit of the distillation membrane filter through the cooling water pipe.

상기 히트펌프의 응축기와 고온탱크부를 연결하는 공급관로에 가열부재가 설치되어 고온탱크부로 유입되는 담수와 유도용액의 온도를 조절할 수 있도록 한 것을 특징으로 한다.
The heating member is installed in the supply line connecting the condenser and the high temperature tank of the heat pump, characterized in that to control the temperature of fresh water and induction solution flowing into the high temperature tank.

상기와 같은 구성으로 이루어지는 본 발명은,The present invention having the above configuration,

정삼투(FO)과 막증류법(MD)을 이용하여 원수로부터 담수를 효과적으로 분리하고 해수, 하수처리방류수 등과 같은 유입원수로부터 히트펌프를 이용, 열을 흡수하여 유도용액의 온도를 높임으로써 가열전력이 절감되는 효과가 있다.Efficient separation of freshwater from raw water using forward osmosis (FO) and membrane distillation (MD), and heating power by increasing the temperature of the induction solution by absorbing heat from inflow water such as seawater and sewage treatment effluent. There is a saving effect.

또한 히트펌프를 통해 열을 빼앗긴 저온의 원수를 증류 막여과장치의 냉각수로 사용함으로써 별도의 냉각공정이 없이 담수화효율을 높이는 효과가 있다.
In addition, by using the low-temperature raw water deprived of heat through the heat pump as the cooling water of the distillation membrane filter device, there is an effect of increasing the desalination efficiency without a separate cooling process.

또한 흡수탱크부내의 유도용액과 담수가 희석되어 히트펌프의 응축기, 고온탱크부, 증류부 그리고 다시 흡수탱크부로 재순환 공급되도록 함으로써 유도용액의 열손실을 최소화하고 증류 막여과장치의 분리막이 쉽게 오염되지 않고 수명이 지속되어 분리막 교체비용이 절감되는 효과가 있다.
In addition, the induction solution and fresh water in the absorption tank are diluted so that it is recycled to the condenser, the high temperature tank, the distillation unit and the absorption tank unit of the heat pump to minimize the heat loss of the induction solution and the membrane of the distillation membrane filter is not easily contaminated. It lasts for a long time and reduces the cost of replacing the membrane.

도 1은 본 발명에 따른 히트펌프를 이용한 막여과 장치의 구성도.
도 2는 본 발명에 따른 히트펌프를 이용한 막여과 장치의 또 다른 실시예를 나타낸 구성도.
1 is a block diagram of a membrane filtration device using a heat pump according to the present invention.
Figure 2 is a block diagram showing another embodiment of a membrane filtration device using a heat pump according to the present invention.

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 그리고 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명은 도 1에서 도시한 바와 같이,
원수유입부의 공급관(A)에서 일측으로 분기되는 제1유입관로(1)상에 설치되어 제1유입관로(1)를 통해 유입되는 원수를 증발기(110), 압축기(120),응축기(130), 팽창밸브(140)로 이루어진 구성에 의해 원수의 열을 흡수하고 외부로 배출하는 히트펌프(100)와,
상기 원수유입부의 공급관(A)에서 타측으로 분기 되는 제2유입관로(2)상에 설치되어 제2유입관로(2)를 통해 일측으로 유입되고 정삼투막을 거쳐 담수가 분리되도록 하고 담수는 흡수탱크부(300)의 유도용액과 합류되도록 하는 정삼투 막여과장치(200)와,
상기 정삼투 막여과 장치(200)와 연통관로(250)로 연결되어 유입되는 담수와 유도용액이 희석되어 저장이 이루어지도록 하는 흡수탱크부(300)와,
상기 흡수탱크부(300)에 저장된 담수와 유도용액이 응축기(130)를 거쳐 가열된 다음 고온으로 저장이 이루어지도록 하는 고온탱크부(400)와,
상기 고온탱크부(400)에 저장된 고온의 담수와 유도용액이 공급되어 증류부(510), 분리막(520), 냉각부(530)으로 이루어진 구성에 의해 담수 분리가 이루어지는 증류 막여과장치(500)와,
상기 증류 막여과장치(500) 일측에 설치되어 증류 막여과장치(500)에서 증류분리된 담수의 배출이 이루어지도록 한 담수배출부(540)와,
상기 증류 막여과장치(500)에 설치된 증류부(510)로 배출되는 유도용액은 회수관로(600)를 통해 흡수탱크부(300)로 재순환 공급되도록 하는 구성으로 이루어진다.
As shown in Figure 1, the present invention,
Evaporator 110, compressor 120, condenser 130 is installed on the first inlet pipe (1) branched to the one side from the supply pipe (A) of the raw water inlet flows through the first inlet pipe (1) The heat pump 100 for absorbing the heat of the raw water by the configuration consisting of the expansion valve 140 and discharged to the outside,
It is installed on the second inlet pipe (2) branched to the other side from the supply pipe (A) of the raw water inlet part is introduced to one side through the second inlet pipe (2) to separate the fresh water through the forward osmosis membrane and the fresh water absorption tank Forward osmosis membrane filtration device 200 to be joined with the induction solution of the part 300,
The absorption tank unit 300 is connected to the forward osmosis membrane filtration device 200 and the communication pipe 250 to allow the fresh water and the induced solution to be diluted and stored.
High temperature tank unit 400 and the fresh water and induction solution stored in the absorption tank 300 is heated through the condenser 130 and then stored at a high temperature;
Distillation membrane filtration device 500 in which the fresh water and the induction solution stored in the high temperature tank unit 400 are supplied to remove fresh water by the distillation unit 510, the separation membrane 520, and the cooling unit 530. Wow,
A fresh water discharge part 540 installed at one side of the distillation membrane filter device 500 to discharge the fresh water distilled from the distillation membrane filter device 500;
The induction solution discharged to the distillation unit 510 installed in the distillation membrane filter device 500 is configured to be recycled and supplied to the absorption tank unit 300 through the recovery pipe line 600.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명의 원수유입부로 유입되는 원수는 해수, 기수(brackish water), 하수처리방류수 등을 예로 들 수 있다.
Raw water flowing into the raw water inlet of the present invention includes seawater, brackish water, sewage treatment effluent.

본 발명의 히트펌프(100)는 상기 제1유입관로(1)를 통해 공급되는 원수는 증발기(110), 압축기(120), 응축기(130), 팽창밸브(140), 등으로 구성된 통상적인 히트펌프(100)의 순환 사이클에 의해 원수의 열 교환이 이루어지고 이 과정을 거친 저온의 원수는 배출된다.In the heat pump 100 of the present invention, the raw water supplied through the first inlet pipe 1 includes a conventional heat consisting of an evaporator 110, a compressor 120, a condenser 130, an expansion valve 140, and the like. The heat exchange of the raw water is performed by the circulation cycle of the pump 100, and the raw water of the low temperature which has passed through this process is discharged.

이때 배출되는 저온의 원수는 도 2에 도시된 바와 같이 수질상태에 따라 외부로 배출시키지 않고 냉각수 관로(531)를 통해 증류 막여과장치(500)의 냉각부(530)로 공급되어 냉각수로 사용됨으로써 별도의 냉각공정이 없이 담수화효율을 높이는 효과가 있다.
At this time, the low-temperature raw water discharged is supplied to the cooling unit 530 of the distillation membrane filter 500 through the cooling water pipe 531 without being discharged to the outside according to the water quality as shown in FIG. There is an effect of increasing the desalination efficiency without a separate cooling process.

본 발명의 정삼투 막여과장치(200)는 상기 제2유입관로(2)에 설치되되 정삼투막을 사이에 두고 일측에는 제2유입관로(2)를 통해 원수가 유입되고 타측에는 흡수탱크부(300)와 연결된 연통관로(250)를 통해 유도용액이 유입되어 채워진다.

상기 정삼투 막여과장치(200)는 삼투압에의해 일측에 유입된 원수가 타측에 유입된 유도용액으로 담수만 분리되어 타측의 유도용액과 섞이게 되고 담수와 유도용액은 연통관로(250)를 통해 흡수탱크부(300)의 고농도의 유도용액으로 흡수되어 담수가 유입된다.

이와 같이 제2유입관로(2)에 설치되어 원수를 1차적으로 여과하여 흡수탱크부(300)로 공급되도록 함으로써 증류 막여과장치(500)의 분리막(520)의 막폐색을 방지하고 기타 이물질로부터 분리막(520)의 수명을 높이는 효과가 있다.
The forward osmosis membrane filtration device 200 of the present invention is installed in the second inflow pipe (2) with the forward osmosis membrane therebetween, on one side the raw water flows through the second inflow pipe (2) and the other side absorption tank portion ( Induction solution is introduced through the communication pipe line 250 connected to 300 is filled.

The forward osmosis membrane filtration device 200 is separated from the fresh water into the induction solution introduced into the other side by the osmotic pressure into the induction solution is mixed with the induction solution of the other side and the fresh water and the induction solution is absorbed through the communication pipe (250) Fresh water is absorbed into the high concentration induction solution of the tank unit 300.

As such, it is installed in the second inlet pipe 2 so that the raw water is first filtered to be supplied to the absorption tank 300 to prevent the membrane from blocking the separator 520 of the distillation membrane filter 500 and from other foreign substances. There is an effect of increasing the life of the separator 520.

본 발명의 흡수탱크부(300)는 상기 증류 막여과장치(500)에서 담수가 증발, 응축과정을 거쳐 처리되고 증류부(510)에서 배출되는 담수가 분리된 상태의 고농도 유도용액은 회수관로(600)를 통해 흡수탱크부(300)로 재유입되는데 정삼투 막여과장치를 통해 분리된 담수는 연통관로(250)를 통해 고농도의 유도용액이 저장되어 있는 흡수탱크부(300)로 유입되어 섞이게 된다.

상기 흡수탱크부(300)에 저장된 담수와 유도용액은 히트펌프(100)의 응축기(130)를 거치면서 온도가 상승하는데 이때 가열된 담수와 유도용액의 온도는 40~ 60˚C가 바람직하다.
Absorption tank portion 300 of the present invention is a high concentration induction solution of the fresh water is treated in the distillation membrane filtration device 500 through the evaporation, condensation process and discharged from the distillation unit 510 is a recovery pipe ( Re-introduced into the absorption tank unit 300 through 600) and the fresh water separated through the forward osmosis membrane filtration device is introduced into the absorption tank unit 300 where the high concentration of induction solution is stored through the communication pipe 250 and mixed. do.

The fresh water and the induction solution stored in the absorption tank 300, the temperature rises while passing through the condenser 130 of the heat pump 100, the temperature of the heated fresh water and induction solution is preferably 40 ~ 60 ° C.

삭제delete

상기 히트펌프(100)의 응축기(130)와 고온탱크부(400)를 연결하는 공급관로(410)에 가열부재(450)가 설치되어 고온탱크부(400)로 유입되는 담수와 유도용액의 온도를 조절하는데 이는 히트펌프(100)를 통해 얻어지는 열원이 부족할 경우에 사용될 수 있고, 고온탱크부(400)에 유입되는 담수와 유도용액의 온도를 한 번 더 가열함으로써 효율적인 담수 생산이 가능하다.
The heating member 450 is installed in the supply line 410 connecting the condenser 130 and the high temperature tank 400 of the heat pump 100 to the temperature of fresh water and induction solution introduced into the high temperature tank 400. This may be used when the heat source obtained through the heat pump 100 is insufficient, by heating the temperature of fresh water and the induction solution introduced into the high temperature tank 400 once more it is possible to produce efficient fresh water.

본 발명의 증류 막여과장치(500)는 일반적으로 주지되어 있는 막증류법(MD; Membrane Distillation)을 이용한 담수처리의 구성으로써 분리막(520)을 사이에 두고 한쪽은 가열된 높은 온도의 담수와 유도용액이 증류부(510)에 유입되고 다른 한쪽은 낮은 온도의 냉각수가 유입되는 냉각부(530)가 구비됨으로써 분리막(520) 표면의 미세기공을 통해 가열된 담수와 유도용액 중에 담수가 증발?투과하여 응축되면서 담수를 분리시켜 생산하는 방법으로써 DCMD(Direct contact MD)법, AGMD(Air gap MD)법, SGMD(Sweep gas MD)법, VMD (Vacuum MD)법 등을 포함하는 구성이다.
The distillation membrane filter device 500 of the present invention is a desalination treatment using membrane distillation (MD), which is generally known. The cooling unit 530 is introduced into the distillation unit 510 and the other side is provided with a cooling unit 530 through which low temperature cooling water is introduced. Thus, fresh water is evaporated and permeated into fresh water and induction solution heated through the micropores on the surface of the separator 520. As a method of producing fresh water by condensation, it includes a DCMD (Direct contact MD) method, an AGMD (Air gap MD) method, a SGMD (Sweep gas MD) method, and a VMD (Vacuum MD) method.

상기 증류 막여과장치(500)에서 분리된 담수는 담수배출관로(540)를 통해 배출되고 증류부(510)를 통과한 유도용액은 외부로 배출되지 않고 회수관로(600)를 통해 흡수탱크부(300)로 재유입되어 유도용액에 가열된 열을 낭비 없이 재사용하고 높은 농도의 유도용액을 공급함으로써 정삼투 막여과장치(200)를 통해 삼투압 작용으로 원수로부터 담수가 용이하게 분리될 수 있도록 하기 위함이다.
The fresh water separated from the distillation membrane filter 500 is discharged through the freshwater discharge pipe 540 and the induction solution passing through the distillation unit 510 is not discharged to the outside, but is absorbed through the recovery pipe line 600. Re-introduced to 300) to reuse the heated heat in the induction solution without waste and to supply a high concentration of the induction solution to facilitate the separation of fresh water from raw water by osmotic pressure through the forward osmosis membrane filtration device 200. to be.

아래에는 원수가 유입되어 담수로 분리되는 일련의 과정을 설명한다.
Below is a description of a series of processes in which raw water enters and is separated into fresh water.

도 1에 도시한 바와 같이, As shown in FIG. 1,

원수유입부를 통해서 들어온 원수는 분기된 제1유입관로(1)를 통해 히트펌프(100)로 공급되고 열 교환이 이루어진 뒤 원수는 다시 배출된다.
The raw water introduced through the raw water inlet is supplied to the heat pump 100 through the branched first inlet pipe 1, and the raw water is discharged again after heat exchange.

상기 흡수탱크부(300)에는 제2 유입관로(2)를 통해 유입되는 원수보다 상대적으로 고농도의 유도용액이 있으며 상기 원수유입부에서 분기된 제2유입관로(2)를 통해 유입되는 원수는 정삼투 막여과장치(200)의 정삼투막을 통해 삼투압 작용으로 담수분리가 이루어지고 연통관로(250)를 통해 흡수탱크부(300)의 고농도의 유도용액 쪽으로 담수가 흡수된다.
The absorption tank 300 has a relatively high concentration of induction solution than the raw water flowing through the second inlet pipe (2) and the raw water flowing through the second inlet pipe (2) branched from the raw water inlet is positive. Desalination is performed by osmotic pressure through the osmotic membrane of the osmosis membrane filtration device 200, and the freshwater is absorbed toward the high concentration induction solution of the absorption tank unit 300 through the communication pipe 250.

삭제delete

위와 같이 흡수탱크부(300)에 담수가 공급되면 담수가 희석된 유도용액은 히트펌프(100)의 응축기(130)를 거쳐 가열된 다음 고온탱크부(400)에 저장된다.When fresh water is supplied to the absorption tank unit 300 as described above, the induction solution in which the fresh water is diluted is heated through the condenser 130 of the heat pump 100 and then stored in the high temperature tank unit 400.

상기 고온탱크부(400)에 유입되는 담수와 유도용액의 적정온도는 원활한 막 증류를 위해 40~60˚C가 바람직하며 이를 유지하기 위해 히트펌프(100)의 응축기(130)와 필요에 따라 고온탱크부(400)를 연결하는 공급관로(410)에 가열부재(450)를 설치하여 고온탱크부(400)로 유입되는 담수와 유도용액의 온도를 조절할 수 있다.
The proper temperature of the fresh water and the induction solution introduced into the high temperature tank unit 400 is preferably 40 ~ 60 ° C for smooth membrane distillation, in order to maintain the condenser 130 of the heat pump 100 and the high temperature as necessary By installing the heating member 450 in the supply line 410 connecting the tank 400, it is possible to control the temperature of fresh water and induction solution introduced into the high temperature tank 400.

상기 고온탱크부(400)에 저장된 고온의 담수와 유도용액은 증류 막여과장치(500)의 증류부(510)에 공급하여 담수를 분리한다.
The high temperature fresh water and the induction solution stored in the high temperature tank unit 400 are supplied to the distillation unit 510 of the distillation membrane filter device 500 to separate the fresh water.

상기 증류 막여과장치(500)는 분리막(520)을 사이에 두고 한쪽은 가열된 높은 온도의 담수와 유도용액이 증류부(510)에 유입되고 다른 한쪽은 낮은 온도의 냉각수가 유입되는 냉각부(530)가 구비됨으로써 분리막(520) 표면의 미세기공을 통해 가열된 담수와 유도용액 중 담수의 증기가 투과하여 응축, 분리되어 담수가 생산, 담수배출관로(540)를 통해 배출된다.
The distillation membrane filter 500 has a separator 520 therebetween, one side of the cooling unit to which the heated high temperature fresh water and induction solution flow into the distillation unit 510 and the other side the cooling water of low temperature ( 530 is provided, the fresh water heated through the micropores on the surface of the separation membrane 520 is condensed and separated by the vapor of fresh water in the induction solution, the fresh water is produced, discharged through the fresh water discharge pipe 540.

상기 냉각부(530)에 유입되는 냉각수는 별도로 구비되어 공급하거나 도 2에 도시된 바와 같이 히트펌프(100)를 통해 배출되는 저온의 원수가 냉각수관로(531)를 통해 유입되어 사용될 수 있다.
Cooling water flowing into the cooling unit 530 may be separately provided and supplied or the raw water of low temperature discharged through the heat pump 100 may be introduced and used through the cooling water pipe 531 as illustrated in FIG. 2.

이상에서 본 발명은 상기 실시예를 참고하여 설명하였지만 본 발명의 기술사상범위 내에서 다양한 변형실시가 가능함은 물론이다.In the above, the present invention has been described with reference to the above embodiment, but various modifications are possible within the technical scope of the present invention.

A : 공급관
1 : 제1유입관로 2 : 제2유입관로
100 : 히트펌프 110 : 증발기
120 : 압축기 130 : 응축기
140 : 팽창밸브 200 : 정삼투 막여과장치
250 : 연통관로 300 : 흡수탱크부 400 : 고온탱크부 410 : 공급관로 450 : 가열부재 500 : 증류 막여과장치 510 : 증류부 520 : 분리막 530 : 냉각부 531 : 냉각수관로 540 : 담수배출부 600 : 회수관로
A: supply pipe
1: 1st inflow line 2: 2nd inflow line
100: heat pump 110: evaporator
120: compressor 130: condenser
140: expansion valve 200: forward osmosis membrane filtration device
250: communication pipe 300: absorption tank 400: high temperature tank 410: supply pipe 450: heating member 500: distillation membrane filter 510: distillation unit 520: membrane 530: cooling unit 531: cooling water pipe 540: fresh water discharge unit 600: Recovery pipeline

Claims (3)

원수유입부의 공급관(A)에서 일측으로 분기되는 제1유입관로(1)상에 설치되어 제1유입관로(1)를 통해 유입되는 원수를 증발기(110), 압축기(120),응축기(130), 팽창밸브(140)로 이루어진 구성에 의해 원수의 열을 흡수하고 외부로 배출하는 히트펌프(100)와,
상기 원수유입부의 공급관(A)에서 타측으로 분기 되는 제2유입관로(2)상에 설치되어 제2유입관로(2)를 통해 일측으로 유입되고 정삼투막을 거쳐 담수가 분리되도록 하고 담수는 흡수탱크부(300)의 유도용액과 합류되도록 하는 정삼투 막여과장치(200)와,
상기 정삼투 막여과 장치(200)와 연통관로(250)로 연결되어 유입되는 담수와 유도용액이 희석되어 저장이 이루어지도록 하는 흡수탱크부(300)와,
상기 흡수탱크부(300)에 저장된 담수와 유도용액이 응축기(130)를 거쳐 가열된 다음 고온으로 저장이 이루어지도록 하는 고온탱크부(400)와,
상기 고온탱크부(400)에 저장된 고온의 담수와 유도용액이 공급되어 증류부(510), 분리막(520), 냉각부(530)으로 이루어진 구성에 의해 담수 분리가 이루어지는 증류 막여과장치(500)와,
상기 증류 막여과장치(500) 일측에 설치되어 증류 막여과장치(500)에서 증류분리된 담수의 배출이 이루어지도록 한 담수배출부(540)와,
상기 증류 막여과장치(500)에 설치된 증류부(510)로 배출되는 유도용액은 회수관로(600)를 통해 흡수탱크부(300)로 재순환 공급되도록 한 것을 특징으로 하는 히트펌프를 이용한 막여과 장치.
Evaporator 110, compressor 120, condenser 130 is installed on the first inlet pipe (1) branched to the one side from the supply pipe (A) of the raw water inlet flows through the first inlet pipe (1) The heat pump 100 for absorbing the heat of the raw water by the configuration consisting of the expansion valve 140 and discharged to the outside,
It is installed on the second inlet pipe (2) branched to the other side from the supply pipe (A) of the raw water inlet part is introduced to one side through the second inlet pipe (2) to separate the fresh water through the forward osmosis membrane and the fresh water absorption tank Forward osmosis membrane filtration device 200 to be joined with the induction solution of the part 300,
The absorption tank unit 300 is connected to the forward osmosis membrane filtration device 200 and the communication pipe 250 to allow the fresh water and the induced solution to be diluted and stored.
High temperature tank unit 400 and the fresh water and induction solution stored in the absorption tank 300 is heated through the condenser 130 and then stored at a high temperature;
Distillation membrane filtration device 500 in which the fresh water and the induction solution stored in the high temperature tank unit 400 are supplied to remove fresh water by the distillation unit 510, the separation membrane 520, and the cooling unit 530. Wow,
A fresh water discharge part 540 installed at one side of the distillation membrane filter device 500 to discharge the fresh water distilled from the distillation membrane filter device 500;
Membrane filter using a heat pump, characterized in that the induction solution discharged to the distillation unit 510 installed in the distillation membrane filter device 500 is recycled to the absorption tank unit 300 through a recovery pipe 600 .
제 1항에 있어서,
상기 히트펌프(100)의 증발기(110)에서 배출되는 저온의 원수는 냉각수관로(531)를 통해 증류 막여과장치(500)의 냉각부(530)로 공급되게 한 것을 더 포함하여서 됨을 특징으로 하는 히트펌프를 이용한 막여과 장치.
The method of claim 1,
The low temperature raw water discharged from the evaporator 110 of the heat pump 100 is further characterized in that it is to be supplied to the cooling unit 530 of the distillation membrane filter 500 through the cooling water pipe 531. Membrane filtration device using heat pump.
제 1항에 있어서,
상기 히트펌프(100)의 응축기(130)와 고온탱크부(400)를 연결하는 공급관로(410)에 가열부재(450)가 설치되어 고온탱크부(400)로 유입되는 담수와 유도용액의 온도를 조절할 수 있도록 한 것을 특징으로 하는 히트펌프를 이용한 막여과 장치.



The method of claim 1,
The heating member 450 is installed in the supply line 410 connecting the condenser 130 and the high temperature tank 400 of the heat pump 100 to the temperature of fresh water and induction solution introduced into the high temperature tank 400. Membrane filtration device using a heat pump, characterized in that to adjust.



KR1020120039125A 2012-04-16 2012-04-16 Membrane filtration using heatpump KR101184787B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120039125A KR101184787B1 (en) 2012-04-16 2012-04-16 Membrane filtration using heatpump
PCT/KR2013/003043 WO2013157776A1 (en) 2012-04-16 2013-04-11 Membrane filtering apparatus using heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120039125A KR101184787B1 (en) 2012-04-16 2012-04-16 Membrane filtration using heatpump

Publications (1)

Publication Number Publication Date
KR101184787B1 true KR101184787B1 (en) 2012-09-20

Family

ID=47113936

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120039125A KR101184787B1 (en) 2012-04-16 2012-04-16 Membrane filtration using heatpump

Country Status (2)

Country Link
KR (1) KR101184787B1 (en)
WO (1) WO2013157776A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609621A (en) * 2013-11-01 2015-05-13 中国石油化工股份有限公司 High-salt waste water treatment method
KR101564758B1 (en) 2014-03-03 2015-11-02 한국과학기술연구원 Membrane Distillation Module
WO2017217611A1 (en) * 2016-06-15 2017-12-21 베니트엠 주식회사 Recovery method for ammonium bicarbonate solution
KR101971244B1 (en) * 2018-07-20 2019-04-22 베니트엠 주식회사 Forward osmosis performance improved membrane apparatus and method of separating solution using the same
KR20190056040A (en) 2017-11-16 2019-05-24 한국과학기술연구원 Wearable membrane distillation apparatus using body heat as a heat source
US10596521B2 (en) 2018-03-27 2020-03-24 King Fahd University Of Petroleum And Minerals Water gap membrane distillation module with a circulating line
US11052349B2 (en) 2019-09-16 2021-07-06 Korea Institute Of Science And Technology Apparatus for membrane distillation using solar absorber and heat pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY197372A (en) * 2014-08-25 2023-06-14 Univ Malaysia Sabah A water extraction and energy production system and a method of using thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320798A (en) 2005-05-17 2006-11-30 Kochi Univ Method of producing highly concentrated brine and condensing system of seawater
KR101110341B1 (en) 2011-06-08 2012-02-15 한국기계연구원 Method for desalination using forward osmotic and system for desalination using thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155596A2 (en) * 2008-06-20 2009-12-23 Yale University Forward osmosis separation processes
US8029671B2 (en) * 2006-06-13 2011-10-04 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Combined membrane-distillation-forward-osmosis systems and methods of use
GB0621247D0 (en) * 2006-10-25 2006-12-06 Univ Surrey Separation process
US8021549B2 (en) * 2007-10-02 2011-09-20 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing potable water from seawater using forward osmosis
US8021553B2 (en) * 2008-12-18 2011-09-20 Nrgtek, Inc. Systems and methods for forward osmosis fluid purification using cloud point extraction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320798A (en) 2005-05-17 2006-11-30 Kochi Univ Method of producing highly concentrated brine and condensing system of seawater
KR101110341B1 (en) 2011-06-08 2012-02-15 한국기계연구원 Method for desalination using forward osmotic and system for desalination using thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609621A (en) * 2013-11-01 2015-05-13 中国石油化工股份有限公司 High-salt waste water treatment method
KR101564758B1 (en) 2014-03-03 2015-11-02 한국과학기술연구원 Membrane Distillation Module
WO2017217611A1 (en) * 2016-06-15 2017-12-21 베니트엠 주식회사 Recovery method for ammonium bicarbonate solution
US10682609B2 (en) 2016-06-15 2020-06-16 Benit M Co, Ltd Recovery method for ammonium bicarbonate solution
KR20190056040A (en) 2017-11-16 2019-05-24 한국과학기술연구원 Wearable membrane distillation apparatus using body heat as a heat source
KR102011309B1 (en) * 2017-11-16 2019-10-21 한국과학기술연구원 Wearable membrane distillation apparatus using body heat as a heat source
US10596521B2 (en) 2018-03-27 2020-03-24 King Fahd University Of Petroleum And Minerals Water gap membrane distillation module with a circulating line
US11712661B2 (en) 2018-03-27 2023-08-01 King Fahd University Of Petroleum And Minerals Multistage membrane distillation system for distilled water production
KR101971244B1 (en) * 2018-07-20 2019-04-22 베니트엠 주식회사 Forward osmosis performance improved membrane apparatus and method of separating solution using the same
CN110732245A (en) * 2018-07-20 2020-01-31 贝内特M有限公司 Membrane device with improved forward osmosis performance and method for separating solution using the same
TWI714147B (en) * 2018-07-20 2020-12-21 南韓商貝內特M有限公司 Forward osmosis performance improved membrane apparatus and method of separating solution using the same
AU2019306733B2 (en) * 2018-07-20 2021-07-15 Benit M Co., Ltd. Membrane apparatus having improved forward osmosis performance and method for separating solution using same
US11090609B2 (en) 2018-07-20 2021-08-17 Benit M Co., Ltd. Forward osmosis performance improved membrane apparatus and method of separating solution using the same
WO2020017729A1 (en) * 2018-07-20 2020-01-23 베니트엠 주식회사 Membrane apparatus having improved forward osmosis performance and method for separating solution using same
US11052349B2 (en) 2019-09-16 2021-07-06 Korea Institute Of Science And Technology Apparatus for membrane distillation using solar absorber and heat pump

Also Published As

Publication number Publication date
WO2013157776A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
KR101184787B1 (en) Membrane filtration using heatpump
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
KR101791621B1 (en) Apparatus of membrane distillation desalination and concentrating extraction from seawater using heat pump
JP5575015B2 (en) Fresh water production system
KR101398352B1 (en) Thermal desalination
US20130112603A1 (en) Forward osmotic desalination device using membrane distillation method
US20150232348A1 (en) Water desalination and brine volume reduction process
CN105523676A (en) High-salt wastewater zero-discharge evaporation crystallization salt substance-division method
CN105000737A (en) Industrial sewage treatment system and sewage treatment method
CN102774994B (en) Combination membrane Separation and Recovery brine waste technique
WO2013121547A1 (en) Seawater desalination system
US20180028977A1 (en) Osmotically and thermally isolated forward osmosis-membrane distillation (fo-md) integrated module for water treatment applications
CN109052796A (en) A kind of high-COD waste water treatment zero draining technique with high salt and device
CN104529035A (en) High-concentration organic wastewater zero-discharge treatment system and method
WO2016106049A1 (en) Enhanced brine concentration with osmotically driven membrane systems and processes
CN105198141A (en) High-temperature high-salinity wastewater zero-discharging method
CN104803532A (en) Seawater desalting device adopting membrane type humidification and dehumidification and seawater desalting method
CN105198142A (en) High-salinity wastewater zero-discharging method
KR101541820B1 (en) Non-Dischargeable Convergence Seawater Distillation Apparatus Using Non-Used Energy
WO2017066534A1 (en) Hybrid cooling and desalination system
KR101344784B1 (en) Seawater desalination method and apparatus combining forward osmosis, precipitation and reverse osmosis
KR101394517B1 (en) Apparatus for desalinating the seawater
KR20130017933A (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
CN210635842U (en) Reverse osmosis concentrated water concentration and reduction device
KR20130104620A (en) Composite desalination device

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee