JPH0564703A - Condenser - Google Patents
CondenserInfo
- Publication number
- JPH0564703A JPH0564703A JP22917091A JP22917091A JPH0564703A JP H0564703 A JPH0564703 A JP H0564703A JP 22917091 A JP22917091 A JP 22917091A JP 22917091 A JP22917091 A JP 22917091A JP H0564703 A JPH0564703 A JP H0564703A
- Authority
- JP
- Japan
- Prior art keywords
- condenser
- water
- steam
- heat transfer
- pure water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は蒸気を凝縮して液にする
ための凝縮器に係り、例えば原子力発電所又は火力発電
所で発生する温排水に含まれる熱エネルギーを利用して
温排水を蒸留して純水を製造する純水製造設備における
水蒸気凝縮用として好適に用いられる凝縮器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for condensing steam into a liquid, for example, by using thermal energy contained in warm waste water generated in a nuclear power plant or a thermal power plant to generate warm waste water. The present invention relates to a condenser preferably used for steam condensation in a pure water production facility that produces pure water by distillation.
【0002】[0002]
【従来の技術】原子力発電所では、原子炉1基あたり1
000ton/dayほどの純水を利用している。発電
所に近接して河川が存在する場合には、河川を精製して
純水を製造しているが、近くに多量の淡水が得られない
場合には、海水を淡水化している。この淡水化方式に主
として用いられている方式には、蒸留法や多段フラッシ
ュ蒸留法、イオン交換膜法、逆浸透膜法がある。2. Description of the Related Art At a nuclear power plant, one nuclear reactor has one
Pure water of about 000 ton / day is used. When a river exists near the power plant, the river is purified to produce pure water, but when a large amount of fresh water cannot be obtained nearby, seawater is desalinated. The methods mainly used for the desalination method include a distillation method, a multistage flash distillation method, an ion exchange membrane method, and a reverse osmosis membrane method.
【0003】蒸留法は、海水を加熱して水蒸気に相変化
させて、この水蒸気を凝縮器で凝縮することで淡水化す
るものである。海水に含有する塩類の蒸発温度は水の蒸
発温度に比較して高いので、水蒸気に含まれる塩類の濃
度は海水濃度の1万分の1程度に低減できるので、この
蒸気を凝縮すると塩濃度が低い淡水が得られる。In the distillation method, seawater is heated to change its phase into steam, and the steam is condensed in a condenser to be desalinated. Since the evaporation temperature of salts contained in seawater is higher than the evaporation temperature of water, the concentration of salts contained in water vapor can be reduced to about 1 / 10,000 of the concentration of seawater. Therefore, when this steam is condensed, the salt concentration is low. Fresh water is obtained.
【0004】多段フラッシュ蒸留法は、蒸留法の一種で
あるが、水蒸気の凝縮に用いる冷却水の温度が蒸気を凝
縮する過程で上昇することに着目して、この冷却水とし
て用いる海水を沸騰圧力以下に低下させることにより冷
却水の一部を蒸発させ、更に、この発生した水蒸気を凝
縮させるのに用いた冷却水を、圧力を低下させて蒸発さ
せる。このように蒸発を多段で実施し、各段で発生した
水蒸気は集められて最終的に凝縮器で凝縮され、淡水と
なる。この多段フラッシュ蒸留法は、1段で全量を蒸発
させる方式と比較して、同一量の淡水を得るのに必要な
熱エネルギーを、大幅に減少することができる。The multi-stage flash distillation method, which is a kind of distillation method, focuses on the fact that the temperature of the cooling water used for the condensation of steam rises in the process of condensing the steam, and the seawater used as this cooling water is heated to the boiling pressure. A part of the cooling water is evaporated by lowering it below, and further, the cooling water used for condensing the generated steam is reduced in pressure and evaporated. In this way, evaporation is carried out in multiple stages, and the steam generated in each stage is collected and finally condensed in the condenser to become fresh water. This multi-stage flash distillation method can significantly reduce the thermal energy required to obtain the same amount of fresh water, as compared with a system in which the entire amount is evaporated in one stage.
【0005】[0005]
【発明が解決しようとする課題】蒸留法または多段フラ
ッシュ蒸留法では、以下のような問題が存在する。すな
わち、蒸気を凝縮させる前記凝縮器に必要な伝熱管の面
積は冷却水と蒸気との温度差に反比例して増加する。冷
却材として用いる海水と蒸気との温度差が低いので、前
記凝縮器の大きさが膨大となり、このため純水の製造費
用が高価になる。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The distillation method or the multi-stage flash distillation method has the following problems. That is, the area of the heat transfer tube required for the condenser for condensing the steam increases in inverse proportion to the temperature difference between the cooling water and the steam. Since the temperature difference between the seawater used as the coolant and the steam is low, the size of the condenser becomes enormous, which increases the manufacturing cost of pure water.
【0006】よって、本発明の広義の目的は、同じ大き
さの従来の凝縮器と比較して、伝熱効率が遥かに優れた
凝縮器を提供することにあり、また、より特定的な目的
は、この凝縮器を蒸留法による純水製造設備の凝縮器と
して用いることにより純水製造コストを下げることを可
能にすることにある。Therefore, a broad object of the present invention is to provide a condenser having far superior heat transfer efficiency as compared with a conventional condenser of the same size, and a more specific object is to provide a condenser. By using this condenser as a condenser of a pure water production facility by a distillation method, it is possible to reduce the pure water production cost.
【0007】[0007]
【課題を解決するための手段】上記目的の達成のため、
本発明は、特許請求の範囲の各請求項に記載の凝縮器を
提供するものである。[Means for Solving the Problems] To achieve the above object,
The present invention provides a condenser as claimed in each of the claims.
【0008】[0008]
【作用】一般に伝熱管を有する凝縮器における凝縮熱伝
達では、蒸気と伝熱管との熱伝達率が高いので、熱伝達
は伝熱管の熱伝導で律速される。従来は伝熱管が金属製
であり、海水で冷却する場合には、耐食性の観点から、
金属としては熱伝導率の悪いステンレスを用いる例が多
い。金属伝熱管の場合には、加工性の点から伝熱管の肉
厚は少なくとも数mmと厚くなり、このため凝縮器全体
の熱交換器の形状が大きくなる。これに対して本発明の
如く、有機材製の無孔質中空糸を伝熱管に用いると、加
工性が良いために伝熱管の肉厚を0.1mmほどまで薄
くできる上に、伝熱管の外径を1mm以下にできるため
に、同一体積での伝熱面面積が大きくできる。上記のよ
うに中空糸を凝縮器の伝熱管として用いると、単位体積
当たりの伝熱面積が大きくなる上に、伝熱管の肉厚を薄
くすることができ、伝熱面面積当たりの熱流束が大きい
ので、凝縮器の熱交換器が大幅に小型化できる。In general, in the condensation heat transfer in the condenser having the heat transfer tube, the heat transfer rate between the steam and the heat transfer tube is high, so that the heat transfer is rate-controlled by the heat transfer of the heat transfer tube. Conventionally, the heat transfer tube is made of metal, and when cooling with seawater, from the viewpoint of corrosion resistance,
In many cases, stainless steel, which has poor thermal conductivity, is used as the metal. In the case of a metal heat transfer tube, the wall thickness of the heat transfer tube is as thick as at least several mm from the viewpoint of workability, so that the shape of the heat exchanger of the entire condenser becomes large. On the other hand, when an organic non-porous hollow fiber is used for the heat transfer tube as in the present invention, the wall thickness of the heat transfer tube can be reduced to about 0.1 mm because the workability is good, and the heat transfer tube is Since the outer diameter can be 1 mm or less, the heat transfer surface area can be increased in the same volume. When the hollow fiber is used as the heat transfer tube of the condenser as described above, the heat transfer area per unit volume is increased, and the wall thickness of the heat transfer tube can be reduced, and the heat flux per heat transfer surface area is reduced. Due to its large size, the heat exchanger of the condenser can be significantly downsized.
【0009】[0009]
【実施例】原子力発電所または火力発電所から発生する
温排水の熱エネルギーを利用して純水を生成する装置に
本発明を実施した実施例を図1を用いて以下に説明す
る。原子炉又はボイラーで発生した高温の蒸気は、ター
ビン1を回転させて電気を発生させた後、復水器2によ
り凝縮されて水に戻る。この復水器2に用いる冷却水と
しては、海岸に立地した発電所では、海水が利用されて
いる。この復水器での冷却用に使用されて温度が上昇し
た海水(温排水)が保有する熱エネルギーを利用して純
水の製造を行う。EXAMPLE An example in which the present invention is applied to an apparatus for producing pure water by utilizing thermal energy of hot waste water generated from a nuclear power plant or a thermal power plant will be described below with reference to FIG. The high-temperature steam generated in the reactor or the boiler rotates the turbine 1 to generate electricity, and then is condensed by the condenser 2 to return to water. As cooling water used for the condenser 2, seawater is used at a power station located on the coast. Pure water is produced by using the thermal energy of the seawater (heated wastewater) that has been used for cooling in this condenser and whose temperature has risen.
【0010】先ず、温排水の一部をポンプ3により分岐
して、ノズル4により細かい水滴に分散して減圧室5に
注入して、沸点が温排水の温度以下になるように、雰囲
気圧力を低下させる。熱伝導の速度は球径の2乗に反比
例するので、細かな水滴化をすることで、水滴は中心ま
で雰囲気の飽和圧力に相当する温度に低下する。この温
度低下量に対応する熱エネルギーが放出されて、水滴の
一部が蒸発して水蒸気となる。水滴同志が衝突すると合
体してその球径が大きくなるが、水滴の球径が小さいほ
ど伝熱効果が良いので、水滴同志の衝突はできるだけ少
ない方が良い。そこで、減圧室5の上部に設けるノズル
4は、相互間の距離が同一になるように、三角格子状に
配列する。First, a part of the warm waste water is branched by the pump 3, dispersed into fine water droplets by the nozzle 4 and injected into the decompression chamber 5, and the atmospheric pressure is adjusted so that the boiling point becomes equal to or lower than the temperature of the warm waste water. Lower. Since the speed of heat conduction is inversely proportional to the square of the spherical diameter, by making fine water droplets, the water droplets fall to the center at a temperature corresponding to the saturation pressure of the atmosphere. Thermal energy corresponding to this temperature decrease amount is released, and a part of the water droplets evaporates to become water vapor. When water droplets collide with each other, their spheres become larger in size, but the smaller the sphere diameter of the water droplets, the better the heat transfer effect. Therefore, the nozzles 4 provided in the upper part of the decompression chamber 5 are arranged in a triangular lattice pattern so that the mutual distances are the same.
【0011】温排水の温度と沸騰温度の差が2℃である
とき、ノズル4から流出する水滴の0.37%が蒸気に
相変化する。今、必要な純水量を1000ton/日と
して、これを20時間の運転で生成する場合には、減圧
室5で水滴化すべき水量は毎時約14000tonとな
る。ノズル4の内径を2mmとし吐出圧力を2MPaと
すると、流出量は実験結果より約0.5ton/hとな
るので、必要なノズル4の数は28,000本となる。
これを100mm間隔で三角格子状に配列すると、減圧
室5は約16m角で、高さ3mほどの規模となる。この
様に減圧室5は大型の負圧容器になるので、内部に梁を
設けて外圧に耐える構造とする。梁を用いる代わりに、
複数の減圧室に仕切ることも可能である。When the difference between the temperature of the hot waste water and the boiling temperature is 2 ° C., 0.37% of the water droplets flowing out from the nozzle 4 undergoes a phase change to steam. Now, when the required amount of pure water is 1000 tons / day and this is generated by the operation for 20 hours, the amount of water to be dropletized in the decompression chamber 5 is about 14000 tons per hour. When the inner diameter of the nozzle 4 is 2 mm and the discharge pressure is 2 MPa, the outflow rate is about 0.5 ton / h according to the experimental result, and the number of nozzles 4 required is 28,000.
When these are arranged in a triangular lattice pattern at 100 mm intervals, the decompression chamber 5 has a size of about 16 m square and a height of about 3 m. Since the decompression chamber 5 becomes a large negative pressure container in this manner, a beam is provided inside to withstand external pressure. Instead of using beams
It is also possible to partition into multiple decompression chambers.
【0012】減圧室5で発生した蒸気は水滴除去室6へ
排出され、残りの水滴は減圧室5の下部に溜り、Uシー
ル7を経由して海洋へ放出される。Uシール7部の途中
に逆止弁7′を設けることで、流出量の変動により減圧
室5の液面が周期的に変化して減圧室5内部の圧力が変
動するのを防止する。減圧室5で発生した蒸気は減圧室
5の上部の出口より水滴除去室6に排出される。出口を
上部に設けたのは、蒸気に含有する水滴量をできるだけ
少なくするためである。The steam generated in the decompression chamber 5 is discharged to the water drop removing chamber 6, and the remaining water drops are accumulated in the lower portion of the decompression chamber 5 and discharged to the ocean via the U seal 7. By providing the check valve 7'in the middle of the U-seal 7, it is possible to prevent the pressure inside the decompression chamber 5 from fluctuating because the liquid level of the decompression chamber 5 changes periodically due to the fluctuation of the outflow amount. The steam generated in the decompression chamber 5 is discharged to the water droplet removal chamber 6 from the outlet at the upper part of the decompression chamber 5. The outlet is provided at the upper part in order to reduce the amount of water droplets contained in the steam as much as possible.
【0013】水滴除去室は6は、ポリスルホンやポリテ
トラフロルエチレン(PTFE)、ポリエチレン、ポリ
イミド、ポリアクリロニトリル等の水を弾く性質がある
疎水性で微細な細孔を有する膜(疎水性多孔膜)を用い
て、蒸気から水滴を除去するものである。すなわち、疎
水性多孔膜に水滴を含む蒸気流を接触させると、蒸気は
膜を透過するが、細孔径より球径が大きい水滴は膜を透
過しない。一般に蒸気流内では、小さな水滴同志は衝突
合体して次第に球径が増大するので、球径が1μm以下
の水滴はほとんど存在しない。したがって、細孔質が1
μm以下の膜を用いると、水滴を除去することが可能で
あり、膜を透過した蒸気を凝縮させて得られる処理液
は、そのまま純水として発電所内で使用することができ
る。The water drop removing chamber 6 is a membrane having hydrophobic fine pores (hydrophobic porous membrane) such as polysulfone, polytetrafluoroethylene (PTFE), polyethylene, polyimide, polyacrylonitrile having the property of repelling water. Is used to remove water droplets from steam. That is, when the hydrophobic porous membrane is contacted with a vapor stream containing water droplets, the vapor permeates the membrane, but the water droplets having a spherical diameter larger than the pore diameter do not permeate the membrane. Generally, in a steam flow, small water droplets collide and coalesce into each other, and the sphere diameter gradually increases. Therefore, there are almost no water droplets having a sphere diameter of 1 μm or less. Therefore, the porosity is 1
By using a film having a thickness of less than μm, it is possible to remove water droplets, and the treatment liquid obtained by condensing the vapor that has permeated the film can be used as it is in the power plant as pure water.
【0014】疎水性多孔膜を透過する蒸気流量につい
て、膜前後の圧力差を10kPaで実験した結果を図2
に示す。蒸気流量は膜の細孔径(膜孔径)の2乗に反比
例することを見出した。また、同一の細孔径の膜で実験
すると蒸気流量は膜前後の圧力差に比例することを見出
した。これらの蒸気流量に対する影響因子の定性的な関
係は、円管を流れる粘性流と同一である。この原因は、
細孔径が小さいために細孔壁の面積が大きくなり、細孔
壁と蒸気流との粘性摩擦が流量を左右する支配因子にな
っているためである。したがって、膜素材が蒸気流量へ
およぼす影響、それほど大きくはない。いま、大部分の
水滴が除去できる1μmの細孔径を有する疎水性多孔膜
を用い、膜前後の圧力差を図2の実験より1桁小さい1
kPaとした場合には、蒸気の透過量は毎時約0.02
tonとなる。要求される純水の生成量が毎時50to
n(1000ton/dayに相当)なので、必要な膜
面積は2500m2 となる。Regarding the flow rate of vapor permeating through the hydrophobic porous membrane, the result of an experiment in which the pressure difference before and after the membrane was 10 kPa is shown in FIG.
Shown in. It has been found that the vapor flow rate is inversely proportional to the square of the membrane pore size (membrane pore size). Further, it was found that the steam flow rate was proportional to the pressure difference across the membrane when the experiment was conducted with the membrane having the same pore size. The qualitative relationship of these influencing factors to the steam flow rate is the same as that of the viscous flow through the circular pipe. The cause is
This is because the area of the pore wall is large because the pore diameter is small, and the viscous friction between the pore wall and the vapor flow is a controlling factor that influences the flow rate. Therefore, the influence of the membrane material on the vapor flow rate is not so large. Now, using a hydrophobic porous membrane having a pore size of 1 μm that can remove most of the water droplets, the pressure difference across the membrane is smaller by one digit than the experiment in FIG.
With kPa, the amount of vapor permeation is about 0.02 per hour.
It becomes ton. The required amount of pure water generated is 50to / hour
Since n (corresponding to 1000 ton / day), the required film area is 2500 m 2 .
【0015】このような大きな膜面積を得るためには水
滴除去室6内に設ける膜の構造は図3、図4に示す積層
膜エレメント構造とし、これにより、水滴除去室6を小
型化する。この積層膜エレメントは、PTFE膜よりな
る中空円盤13の中にスペーサ12を挿入し、この円盤
13を中心の円管14に連通する様に多数積み重ねて1
体に結合し、1端を端板15の出口穴16に結合したも
のである。蒸気は水滴除去室6に流入すると、積層膜エ
レメントの外から円盤13の間の間隙に流れ込み、更に
円盤13の膜の外側から内部に透過し、スペーサ12部
分を通って、中心の円管14に流入し、端板15の出口
穴16から流出する。エレメントの円盤13が垂直に設
けられているので、膜面で除去された水滴は膜の疎水性
により弾かれながら、重力により水滴除去室6の下部に
集められる。水滴除去室6では蒸気は上部から注入し、
できるだけ流れを下降流とすることで、膜面を流下する
液膜の移動を加速する。このような積層膜エレメントの
採用により、水滴除去室1m3 当たり面積50m2 の膜
を吸収することが可能となるので、水滴除去室6は8m
角の大きさでよい。In order to obtain such a large film area, the structure of the film provided in the water drop removing chamber 6 is the laminated film element structure shown in FIGS. 3 and 4, whereby the water drop removing chamber 6 is downsized. In this laminated membrane element, a spacer 12 is inserted into a hollow disc 13 made of a PTFE membrane, and a large number of the discs 13 are stacked so as to communicate with a circular pipe 14 at the center.
It is connected to the body and one end is connected to the outlet hole 16 of the end plate 15. When the steam flows into the water droplet removal chamber 6, it flows from the outside of the laminated membrane element into the gap between the disks 13, and further permeates from the outside of the film of the disk 13 to the inside, passes through the spacer 12 portion, and the central circular tube 14 Flow out through the outlet hole 16 of the end plate 15. Since the disk 13 of the element is provided vertically, the water droplets removed on the film surface are repelled by the hydrophobic property of the film, and are collected in the lower part of the water droplet removal chamber 6 by gravity. In the water drop removing chamber 6, steam is injected from above,
By making the flow as downward as possible, the movement of the liquid film flowing down the film surface is accelerated. By adopting such a laminated film element, it is possible to absorb a film having an area of 50 m 2 per 1 m 3 of the water drop removing chamber, so that the water drop removing chamber 6 is 8 m long.
The size of the corner is enough.
【0016】水滴除去室6で分離した水滴は、Uシール
6′を通して元の減圧室5に戻す。また、蒸気は凝縮器
8に移送する。本実施例では水滴除去室6を小型化する
ために積層型の膜エレメントを使用したが、この他にも
スパイラル型や中空糸膜を用いる方式も考えられる。積
層型のエレメントは一定期間毎に薬剤で洗浄した後で、
乾燥空気により乾燥する。The water drops separated in the water drop removing chamber 6 are returned to the original decompression chamber 5 through the U seal 6 '. Further, the vapor is transferred to the condenser 8. In the present embodiment, the laminated membrane element is used to reduce the size of the water droplet removal chamber 6, but a spiral type or a hollow fiber membrane may be used instead. After the laminated element is washed with chemicals at regular intervals,
Dry with dry air.
【0017】凝縮器8は有機材製の無孔質の中空糸の多
数本よりなる中空糸モジュール9を備えている。この無
孔中空糸は例えばポリスルホン、ポリテトラフロルエチ
レン(PTFE)、ポリエチレン、ポリイミド、ポリア
クリロニトリル等の材質で出来ている。各中空糸は内面
を親水化してあることが好ましい。例えば、上記材質の
うちPTFEを除いた中空糸を親水化処理したものを用
いてよい(PTFEは疎水性が非常に強いので親水化に
は適さない。)本実施例では、各中空糸は外径が3m
m、内径が2mmであって、孔の無い親水化されたポリ
スルホン製である。この中空糸を相互間に間隙を設けて
多数本束ねたモジュール9は、上下をフランジで凝縮器
8に固定してある。この中空糸の外部を冷却する海水
は、ステンレス製の網状のフィルターにより固形物を除
去した後、凝縮器8を通る。蒸気は各中空糸の中に上部
より流入し、中空糸を伝熱管として海水により冷却さ
れ、中空糸の内面に凝縮水が液膜を形成する。この凝縮
水は重力と中空糸内部を下降する蒸気流の粘性力によ
り、中空糸膜面を流下して凝縮器下部に溜る。伝熱管と
なる中空糸の肉厚が薄いので、伝熱管と内面側の蒸気と
の凝縮熱伝達率は大きくなり、中空糸外面と海水との層
流熱伝達が伝達の律速過程となる。海水は凝縮器8に下
部から注入し、オーバーフローで上部から流出させる。
これにより、海水側における自然対流効果による伝熱の
促進を図ると共に、中空糸の下部を最も低温にすること
により中空糸の流路方向での温度差を一定にすることで
伝熱効率の向上を図る。凝縮器8の下部は真空ポンプ1
0に接続する。この真空ポンプが減圧室5、水滴除去室
6および凝縮室8よりなる系全体を減圧している。減圧
室5において温排水を減圧したときに、海水に溶存して
いた空気は蒸気に混入して系全体の圧力を上昇させる
が、この空気を真空ポンプ10で排出することで、系内
の圧力を一定に保つ。真空ポンプ10を凝縮器8の下部
に接続することで、凝縮器8は下部の方が圧力が低くで
きる。したがって、仮に凝縮器8内の中空糸内部の全断
面が凝縮水で満たされた場合でも、この圧力差によって
凝縮水は中空糸から排出できる。凝縮器8下部に流下し
た凝縮水は純水であり、ポンプ11により貯蔵タンクに
移送される。The condenser 8 is provided with a hollow fiber module 9 composed of a large number of nonporous hollow fibers made of an organic material. This non-porous hollow fiber is made of a material such as polysulfone, polytetrafluoroethylene (PTFE), polyethylene, polyimide, polyacrylonitrile, or the like. The inner surface of each hollow fiber is preferably hydrophilic. For example, among the above materials, hollow fibers excluding PTFE may be hydrophilized (PTFE is extremely hydrophobic and is not suitable for hydrophilization.) In this example, each hollow fiber is external. Diameter is 3m
m, the inner diameter is 2 mm, and it is made of hydrophilic polysulfone without pores. A module 9 in which a large number of the hollow fibers are bundled with a gap provided therebetween is fixed to the condenser 8 by flanges at the top and bottom. The seawater that cools the outside of the hollow fiber passes through the condenser 8 after removing solids with a stainless mesh filter. The steam flows into each hollow fiber from above, is cooled by seawater using the hollow fiber as a heat transfer tube, and the condensed water forms a liquid film on the inner surface of the hollow fiber. This condensed water flows down the hollow fiber membrane surface and accumulates in the lower part of the condenser due to gravity and the viscous force of the vapor flow descending inside the hollow fiber. Since the wall thickness of the hollow fiber that serves as the heat transfer tube is thin, the condensation heat transfer coefficient between the heat transfer tube and the steam on the inner surface side becomes large, and the laminar flow heat transfer between the outer surface of the hollow fiber and seawater is the rate-determining process of transfer. Seawater is injected into the condenser 8 from the lower part, and overflowed to flow out from the upper part.
This promotes heat transfer due to the natural convection effect on the seawater side, and improves the heat transfer efficiency by keeping the temperature difference in the flow direction of the hollow fiber constant by making the lower part of the hollow fiber the lowest temperature. Try. The lower part of the condenser 8 is the vacuum pump 1
Connect to 0. This vacuum pump reduces the pressure of the entire system including the decompression chamber 5, the water droplet removal chamber 6 and the condensation chamber 8. When the hot waste water is depressurized in the decompression chamber 5, the air dissolved in the seawater is mixed with the steam to raise the pressure of the entire system. However, by exhausting this air with the vacuum pump 10, the pressure in the system is increased. Keep constant. By connecting the vacuum pump 10 to the lower portion of the condenser 8, the lower portion of the condenser 8 can have a lower pressure. Therefore, even if the entire cross section of the hollow fiber inside the condenser 8 is filled with the condensed water, the condensed water can be discharged from the hollow fiber due to this pressure difference. Condensed water that has flowed down to the bottom of the condenser 8 is pure water and is transferred to the storage tank by the pump 11.
【0018】この凝縮器8の寿命は、海水に含まれる微
生物の作用による劣化が支配因子である。そこで、1日
の間に運転を停止している時間に海水の入口を閉鎖し
て、凝縮器8内の海水の塩素濃度が2ppmになるよう
に、塩素ガスを吹き込む。この塩素の殺菌作用により、
膜面における微生物の成長を抑制することができる。本
実施例では小型の凝縮器の採用により、温排水から純水
の製造が可能となり、従来は海洋に放出していた熱エネ
ルギーの有効活用が可能となった。The life of the condenser 8 is governed by deterioration caused by the action of microorganisms contained in seawater. Therefore, the chlorine gas is blown in so that the seawater inlet is closed and the chlorine concentration of the seawater in the condenser 8 becomes 2 ppm while the operation is stopped during one day. By the bactericidal action of this chlorine,
The growth of microorganisms on the film surface can be suppressed. In this embodiment, the use of a small condenser makes it possible to produce pure water from warm waste water, and it is possible to effectively use the thermal energy released to the ocean.
【0019】[0019]
【発明の効果】本発明の凝縮器は、伝熱管として無孔質
の有機材製中空糸を伝熱管として用いるので、伝熱管を
肉薄にでき、且つ単位体積当りで見て伝熱面面積を大き
くできるので、伝熱効率が非常に良い。この凝縮器は、
海水との温度差が低い発電所の温排水からの蒸留法によ
る純水製造設備の水蒸気凝縮器として用いることによ
り、設備の大幅なコスト低減が可能となる。Since the condenser of the present invention uses the non-porous organic material hollow fiber as the heat transfer tube as the heat transfer tube, the heat transfer tube can be made thin and the heat transfer surface area per unit volume can be reduced. Since it can be made large, the heat transfer efficiency is very good. This condenser is
By using it as a steam condenser of a pure water production facility by a distillation method from hot wastewater of a power plant with a low temperature difference from seawater, the cost of the facility can be significantly reduced.
【図1】本発明の凝縮器を用いた温排水からの純水製造
設備の例を示す図。FIG. 1 is a diagram showing an example of a facility for producing pure water from hot waste water using a condenser of the present invention.
【図2】疎水性多孔質膜の蒸気流量の実験結果の図。FIG. 2 is a diagram showing experimental results of vapor flow rate of a hydrophobic porous membrane.
【図3】積層型エレメントの斜視図。FIG. 3 is a perspective view of a laminated element.
【図4】積層型エレメントの断面図。FIG. 4 is a cross-sectional view of a laminated element.
1…タービン 2…復水器 5…減圧室 6…水滴除去室 8…凝縮器 9…中空糸モジ
ュール1 ... Turbine 2 ... Condenser 5 ... Decompression chamber 6 ... Water droplet removal chamber 8 ... Condenser 9 ... Hollow fiber module
───────────────────────────────────────────────────── フロントページの続き (72)発明者 船橋清美 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyomi Funabashi 1168 Moriyama-cho, Hitachi, Hitachi Ibaraki Energy Research Institute
Claims (3)
の無孔質中空糸の多数本を具備し、各中空糸を伝熱管と
して、これを介して、その一方の側に蒸気を、他方の側
に冷却用液を流すように構成したことを特徴とする凝縮
器。1. A multiplicity of organic nonporous hollow fibers, which are arranged with a gap between each other, are provided, and each hollow fiber serves as a heat transfer tube, and steam is passed to one side thereof through the heat transfer tube. A condenser characterized in that the cooling liquid is caused to flow to the other side.
蒸気を各中空糸の内側に、冷却用液を各中空糸の外側に
流す様に構成した請求項1の凝縮器。2. The inner surface of each hollow fiber is hydrophilized,
The condenser according to claim 1, wherein steam is caused to flow inside each hollow fiber and a cooling liquid is caused to flow outside each hollow fiber.
る純水製造設備における水滴除去後の水蒸気である請求
項1または2の凝縮器。3. The condenser according to claim 1, wherein the vapor is steam after removing water droplets in a pure water production facility by a distillation method or a multistage distillation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22917091A JPH0564703A (en) | 1991-09-09 | 1991-09-09 | Condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22917091A JPH0564703A (en) | 1991-09-09 | 1991-09-09 | Condenser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0564703A true JPH0564703A (en) | 1993-03-19 |
Family
ID=16887888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22917091A Pending JPH0564703A (en) | 1991-09-09 | 1991-09-09 | Condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0564703A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100895542B1 (en) * | 2007-07-05 | 2009-05-06 | 안강호 | Condensation particle counter |
WO2009066736A1 (en) * | 2007-11-21 | 2009-05-28 | The Tokyo Electric Power Company, Incorporated | Evaporator and cooling device |
JP2010223576A (en) * | 2009-02-26 | 2010-10-07 | Toray Ind Inc | Hollow fiber membrane type heat exchanger |
-
1991
- 1991-09-09 JP JP22917091A patent/JPH0564703A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100895542B1 (en) * | 2007-07-05 | 2009-05-06 | 안강호 | Condensation particle counter |
WO2009066736A1 (en) * | 2007-11-21 | 2009-05-28 | The Tokyo Electric Power Company, Incorporated | Evaporator and cooling device |
JP2010223576A (en) * | 2009-02-26 | 2010-10-07 | Toray Ind Inc | Hollow fiber membrane type heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alkhudhiri et al. | Membrane distillation—Principles, applications, configurations, design, and implementation | |
US6716355B1 (en) | Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water | |
Ullah et al. | Energy efficiency of direct contact membrane distillation | |
US4620900A (en) | Thermopervaporation apparatus | |
US4953694A (en) | Distilling apparatus | |
AU2009217223B2 (en) | Method for desalinating water | |
JP2011167628A (en) | Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus | |
KR20140133517A (en) | Methods and apparatuses for water purification | |
WO2013078339A2 (en) | Dehumidifier system and method | |
JP5943924B2 (en) | Osmotic pressure driven membrane process and system, and extraction solute recovery method | |
TW202026053A (en) | Methods and apparatuses for water purification | |
Kargari et al. | Water desalination: Solar-assisted membrane distillation | |
KR20170045383A (en) | Method and device for obtaining purified water | |
WO2016143848A1 (en) | Fresh water-generating apparatus | |
JPH0564703A (en) | Condenser | |
JPH09108653A (en) | Seawater desalination device | |
JP3766309B2 (en) | Desalination plant using solar thermal energy | |
Van Gassel et al. | An energy-efficient membrane distillation process | |
RU2337743C2 (en) | Method of liquid distillation | |
US20210230023A1 (en) | Submerged tubular membrane distillation (stmd) method and apparatus for desalination | |
US11306009B2 (en) | Membrane distillation device with bubble column dehumidifier | |
US20240058759A1 (en) | Multi-stage air gap membrane distillation system and process | |
US20240058761A1 (en) | Multi-stage permeate gap membrane distillation system and process | |
US20240058758A1 (en) | Multi-stage direct contact membrane distillation system and process | |
US20240058760A1 (en) | Multi-stage vacuum membrane distillation system and process |