JPS61187276A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPS61187276A
JPS61187276A JP60028102A JP2810285A JPS61187276A JP S61187276 A JPS61187276 A JP S61187276A JP 60028102 A JP60028102 A JP 60028102A JP 2810285 A JP2810285 A JP 2810285A JP S61187276 A JPS61187276 A JP S61187276A
Authority
JP
Japan
Prior art keywords
insulating film
region
floating gate
impurity
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60028102A
Other languages
Japanese (ja)
Other versions
JPH0715975B2 (en
Inventor
Kenichi Tanaka
研一 田中
Hiroshi Ishihara
博 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60028102A priority Critical patent/JPH0715975B2/en
Publication of JPS61187276A publication Critical patent/JPS61187276A/en
Publication of JPH0715975B2 publication Critical patent/JPH0715975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make the titled device to correspond to voltage applied on rewriting work rapidly, and to hold written contents stably by interposing an insulating film displaying current characteristics depending upon the direction of applied voltage between a floating gate and a drain high-concentration impurity region. CONSTITUTION:A LOCOS region 29 and a protective film 21 are formed to a P-type silicon substrate 20, an opening is bored to one part of the protective film 21 and a thin oxide film 22 is shaped through thermal oxidation, and an impurity is introduced to an oxide film 22 section while using a resist 28 as a mask. The concentration distribution of the impurity in the thin insulating film 22 is increased with an approach to an N<+> region 23 formed to the surface of the semiconductor substrate and made the highest in a section brought into contact with the N<+> region 23 by selecting energy on the implantation of ions within the extent of a projection range at that time. A floating gate 24, an insulating film 25, a control gate 26, a gate electrode 27, N<+> regions 23a-23c as a source or a drain, Al wirings, etc. are shaped. Accordingly, memory contents can be rewritten at low voltage, and written contents can be held stably.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、浮遊ゲート及び制御ゲートを有する不揮発
性半導体記憶装置に関し、特に電気的に書換え可能な記
憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a nonvolatile semiconductor memory device having a floating gate and a control gate, and particularly to an electrically rewritable memory device.

〈発明の概要〉 この発明は、半導体基板上に絶縁膜を介して浮遊ゲート
と制御ゲートを設けてなる電気的に書換え可能な不揮発
性メモリ素子において、半導体基板上に形成した薄い絶
縁膜に不純物を導入し、該不純物の絶縁膜中における分
布を、浮遊ゲートに接する側でバリア高さを高くし、半
導体基板のn」一層に接する側でバリア高さを低くして
良好な記憶保持特性をもたせると共に、書込み消去時の
キャリア移動を容易にする。
<Summary of the Invention> The present invention provides an electrically rewritable nonvolatile memory element in which a floating gate and a control gate are provided on a semiconductor substrate with an insulating film interposed therebetween. The distribution of the impurity in the insulating film is changed by increasing the barrier height on the side in contact with the floating gate and lowering the barrier height on the side in contact with the n layer of the semiconductor substrate to obtain good memory retention characteristics. It also makes carrier movement easier during writing and erasing.

〈従来の技術〉 浮遊ゲートを有する電気的に書換え可能な不揮発性メモ
リ素子として第3図に示す断面構造をもつ半導体素子が
知られている。
<Prior Art> A semiconductor device having a cross-sectional structure shown in FIG. 3 is known as an electrically rewritable nonvolatile memory device having a floating gate.

同図は同一半導体基板に、近接させてメモ’J )ラン
ジスタTMと選択トランジスタTsが形成されてなり、
厚い酸化膜によって形成されたL OGO5領域を有す
るp型シリコン基板10に対して、各トランジスタのだ
めのソース、ドレインとなるn+層領域11allb、
llcが形成されている。
In the figure, a transistor TM and a selection transistor Ts are formed on the same semiconductor substrate in close proximity to each other.
On a p-type silicon substrate 10 having an LOGO5 region formed of a thick oxide film, an n+ layer region 11allb, which becomes the source and drain of each transistor, is formed.
llc has been formed.

このような半導体基板IO上を被って絶縁膜が形成され
、メモリトランジスタ部M部分では絶縁膜13上に浮遊
ゲート16が、更に絶縁膜15上に制御ゲート17が順
次積層して形成され、選択トランジス215部分ではゲ
ート絶縁膜14上にゲート電極18が重ねられている。
An insulating film is formed to cover the semiconductor substrate IO, and in the memory transistor section M, a floating gate 16 is formed on the insulating film 13, and a control gate 17 is formed on the insulating film 15 in order. A gate electrode 18 is stacked on the gate insulating film 14 at the transistor 215 portion.

メモリトランジスタTMを構成している上記浮遊ゲート
16及び制御ゲート17は、トランジスタのチャンネル
領域を覆うだけではなくその延長部すがシリコン基板の
ドレイン領域11bの一部をも覆って形成されている。
The floating gate 16 and control gate 17 constituting the memory transistor TM are formed not only to cover the channel region of the transistor, but also to cover a part of the drain region 11b of the silicon substrate.

浮遊ゲート16の延長部分がドレイン領域11bを覆う
部分に介在する絶縁膜12は、データの書込み及び消去
動作を容易にするため予め膜厚が薄く形成されている。
The insulating film 12 interposed in the portion where the extended portion of the floating gate 16 covers the drain region 11b is formed in advance to have a thin film thickness in order to facilitate data writing and erasing operations.

即ち記憶装置へのデータの書換えは、選択トランジスタ
Tsのゲート電極18に高電圧を印加してn層領域11
aとn 領域11b間に導通をもたせた状態で、制御ゲ
ート17或いはドレイン層領域11aに高電圧を印加し
て浮遊ゲート16とn層領域11bの間に電圧を加え、
薄い絶縁膜12に電流を流して浮遊ゲート16にキャリ
アを注入或いは流出せしめて記憶作用を行わせる。
That is, rewriting data to the storage device is performed by applying a high voltage to the gate electrode 18 of the selection transistor Ts to rewrite the data in the n-layer region 11.
With conduction established between the a and n regions 11b, a high voltage is applied to the control gate 17 or the drain layer region 11a, and a voltage is applied between the floating gate 16 and the n layer region 11b.
A current is passed through the thin insulating film 12 to inject or drain carriers into the floating gate 16 to perform a memory function.

〈発明が解決しようとする問題点〉 上記素子構造からなる半導体記憶装置では、記憶内容の
書換え時の高電圧印加時に薄い絶縁膜12に充分な電流
が流れ、その他の時には記憶内容が変化しないように絶
縁膜12の信頼性を確保する必要がある。
<Problems to be Solved by the Invention> In the semiconductor memory device having the above element structure, a sufficient current flows through the thin insulating film 12 when high voltage is applied when rewriting the memory contents, and the memory contents do not change at other times. It is necessary to ensure the reliability of the insulating film 12.

処で薄い絶縁膜12は、半導体基板10に層領域11b
を形成した後に作製され、その膜質は均質に作製される
。しかしこの均質な絶縁膜は電流を流すだめのバリア高
さが高い膜質の場合、記憶保持特性は良いが書込み消去
に高電圧が必要であシ、バリア高さを低くすると記憶保
持特性が悪くなり、適切な絶縁膜を得ることが非常に困
難であった。
Here, the thin insulating film 12 is formed on the semiconductor substrate 10 in the layer region 11b.
The film quality is uniform. However, if this homogeneous insulating film has a high barrier height to allow current to flow, the memory retention characteristics are good, but high voltage is required for writing and erasing, and if the barrier height is lowered, the memory retention characteristics deteriorate. However, it was very difficult to obtain a suitable insulating film.

〈問題点を解決するだめの手段〉 上記従来のメモリ装置における欠点を除去するために、
この発明は、メモリトランジスタ部の浮遊ゲートと半導
体基板間に介在して形成される絶縁膜について、絶縁膜
のバリア高さを浮遊ゲートに接する側で高く、半導体基
板のn+層領域11b接する側で低くして形成する。こ
のようなバリア高さの制御はイオン注入技術による不純
物の導入によって行なう。
<Means to solve the problem> In order to eliminate the drawbacks of the above conventional memory device,
With regard to an insulating film formed interposed between a floating gate of a memory transistor portion and a semiconductor substrate, the barrier height of the insulating film is high on the side in contact with the floating gate and on the side in contact with the n+ layer region 11b of the semiconductor substrate. Form low. Such barrier height control is performed by introducing impurities using ion implantation technology.

〈作用〉 浮遊ゲート下の絶縁膜は、キャリア移動に対するバリア
高さがn+層領域接する側で低く、浮遊ゲートに接する
側で高く形成されているだめ、記安定して保持すること
ができる。
<Function> The insulating film under the floating gate can be stably maintained because the barrier height against carrier movement is low on the side in contact with the n+ layer region and high on the side in contact with the floating gate.

〈実施例〉 第1図(a) 、 (b)及び(c)は本発明による半
導体装置の製造工程を説明するだめの断面図である。
<Example> FIGS. 1(a), 1(b) and 1(c) are cross-sectional views for explaining the manufacturing process of a semiconductor device according to the present invention.

p型シリコン基板20には素子領域を囲んで厚い酸化膜
からなるLOGO5領域29が形成され、はぼ平坦な表
面をなす素子領域上を覆って比較的薄い酸化膜からなる
保護膜21が形成される。該保護膜21は、記憶内容の
書換え時に電流を流すだめの薄い酸化膜を形成するため
、一部に開口が形成され、新だに例えば950℃の熱酸
化によって100〜150Aの膜厚をもつ薄い酸化膜2
2が形成される。
A LOGO5 region 29 made of a thick oxide film is formed on the p-type silicon substrate 20 surrounding the device region, and a protective film 21 made of a relatively thin oxide film is formed to cover the device region having a substantially flat surface. Ru. The protective film 21 is formed with an opening in a part to form a thin oxide film that allows current to flow when rewriting the memory contents, and is newly formed with a film thickness of 100 to 150 A by thermal oxidation at, for example, 950°C. thin oxide film 2
2 is formed.

該薄い酸化膜22及びその周囲を残してレジスト28が
塗布され、該レジスト28をマスクに薄い酸化膜22部
分にイオン注入技術で砒素或いはリンが不純物として導
入される。このイオン注入工程において、酸化膜22中
での不純物の分布を所望の分布に調整するだめ、プロジ
ェクションレンジRPが上記薄い酸化膜22の1乃至5
倍になるエネルギで注入される。該イオン注入によって
レジスト28で覆われない領域に不純物が導入されるが
イオン注入時のエネルギを上記プロジェクションレンジ
の範囲で選ぶことによって、薄い絶縁膜22内での不純
物の濃度分布は半導体基板表面に形成されるn十領域2
3に近づくにつれて高くなり、n 領域23に接する部
分で最も高くなるO 上記イオン注入処理後、イオン注入工程で受iた損傷を
回復させるために熱処理を不活性ガス中で実施し、所望
の不純物濃度分布を形成する。
A resist 28 is applied leaving the thin oxide film 22 and its surroundings, and using the resist 28 as a mask, arsenic or phosphorus is introduced as an impurity into the thin oxide film 22 by ion implantation technology. In this ion implantation process, in order to adjust the impurity distribution in the oxide film 22 to a desired distribution, the projection range RP is set to 1 to 5 of the thin oxide film 22.
Injected with double energy. Impurities are introduced into the region not covered by the resist 28 by the ion implantation, but by selecting the energy during ion implantation within the above projection range, the impurity concentration distribution within the thin insulating film 22 can be adjusted to the surface of the semiconductor substrate. n10 area 2 to be formed
3, and becomes highest in the part in contact with the n region 23. After the above ion implantation process, heat treatment is performed in an inert gas to recover the damage caused in the ion implantation process, and the desired impurity is Forms concentration distribution.

第2図は砒素を不純物とし、Rp/SiO2膜厚22に
設定してイオン注入したときの砒素注入量と酸化膜のバ
リア高さを、n 領域に接する倒曲線A及び浮遊ゲート
であるポリシリコンに接する倒曲線Bについて示す。尚
このような傾向はリンを不純物としてイオン注入した素
子でも確かめられた。
Figure 2 shows the amount of arsenic implanted and the barrier height of the oxide film when ions are implanted using arsenic as an impurity and setting the Rp/SiO2 film thickness to 22. An inverted curve B that is in contact with is shown below. This tendency was also confirmed in devices in which phosphorus was ion-implanted as an impurity.

図から明らかなようにn十領域側はバリア高さが砒素注
入量の増加と共に低下し、書換えは容易に寿ることを示
し、浮遊ゲート側のバリア高さは高い壕まであり、記憶
保持特性にすぐれていることを示す。
As is clear from the figure, the barrier height on the n0 region side decreases as the amount of arsenic implanted increases, indicating that rewriting can be easily performed, and the barrier height on the floating gate side reaches a high trench, indicating that the memory retention characteristics Demonstrate excellence in

上記薄い酸化膜22にイオン注入する工程で半導体領域
形成されたn+領域23は、後の工程で形成されるn十
領域と連続して一体の不純物領域を形成する。
The n+ region 23 formed as a semiconductor region in the step of ion implantation into the thin oxide film 22 forms an integral impurity region continuous with the n+ region formed in a later step.

イオン注入工程を終えた半導体基板は、第1図(b)に
示す如く浮遊ゲートとなるポリシリコン24が形成され
、続いて絶縁膜25及び制御ゲート26゜選択トランジ
スタのゲート電極27が形成される。
After the ion implantation process has been completed, a polysilicon layer 24 is formed on the semiconductor substrate to serve as a floating gate, as shown in FIG. .

また半導体基板にはソース或いはドレインとなるn+領
域23a、2g’b、23cが形成され、従来公知の技
術でコンダクトホール及びAl配線等が形成されて第1
図(c)に示す不揮発性半導体装置を得る。
Further, n+ regions 23a, 2g'b, and 23c, which serve as sources or drains, are formed on the semiconductor substrate, and conduct holes, Al wiring, etc. are formed using conventionally known techniques, and the first
A nonvolatile semiconductor device shown in FIG. 3(c) is obtained.

メモリ素子への書込み、消去を容易にするだめには薄い
酸化膜22中の不純物分布は、基板の層領域側の濃度が
2桁以上高くすることが重要であシ、酸化膜厚とイオン
のプロジェクションレンジRPの比を1:1乃至5の範
囲に設定することによって上記条件を満す不純物分布が
得られる〇〈発明の効果〉 以上本発明によれば、電気的に書換え可能彦不揮発性半
導体装置において、記憶内容の書換えを低電圧で行うこ
とができ、また書込まれた内容は確実に安定して保持す
ることができ、不揮発性半導体記憶装置の取り扱いを容
易にすると共に動作の信頼性を高めることができる。
In order to facilitate writing and erasing into the memory element, it is important for the impurity distribution in the thin oxide film 22 to have a concentration higher than 2 orders of magnitude on the layer region side of the substrate. By setting the ratio of the projection range RP in the range of 1:1 to 5, an impurity distribution that satisfies the above conditions can be obtained. <Effects of the Invention> According to the present invention, an electrically rewritable non-volatile semiconductor In the device, the memory contents can be rewritten with low voltage, and the written contents can be reliably and stably retained, making it easier to handle nonvolatile semiconductor memory devices and improving operational reliability. can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)及び(c)は本発明による一
実施例を説明するだめの断面図、第2図は同実施におけ
る不純物注入量とバリア高さの関係を示す図、第3図は
従来の装置を示す断面図である。 TM:メモリトランジスタ、Ts :選択トランジスタ
、20+p型シリコン基板、21a、21b。 21c:n+領領域22:薄い酸化膜、24:浮遊ゲー
ト、26二制御ゲート。 代理人 弁理士 福 士 愛 彦(他2名)(A、l)
;ン’i、L6..+t 手続補正書 昭和60年12月19日
FIGS. 1(a), (b), and (c) are cross-sectional views for explaining one embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the amount of impurity implanted and the barrier height in the same embodiment, and FIG. FIG. 3 is a sectional view showing a conventional device. TM: memory transistor, Ts: selection transistor, 20+p type silicon substrate, 21a, 21b. 21c: n+ region 22: thin oxide film, 24: floating gate, 26 control gate. Agent Patent attorney Aihiko Fuku (and 2 others) (A, l)
;n'i, L6. .. +t Procedural amendment December 19, 1985

Claims (4)

【特許請求の範囲】[Claims] 1.半導体基板上に絶縁膜を介して浮遊ゲート及び制御
ゲートを積層してなる電気的書換え可能な不揮発性メモ
リ素子を備えてなる記憶装置において、 浮遊ゲートは半導体基板のソース・ドレイン間に形成さ
れたチャネル領域及びドレイン高濃度不純物領域の一部
を覆い、 上記浮遊ゲートとドレイン高濃度不純物領域間に印加電
圧方向に依存した電流特性を示す絶縁膜を介在させてな
ることを特徴とする不揮発性半導体記憶装置。
1. In a memory device comprising an electrically rewritable nonvolatile memory element formed by stacking a floating gate and a control gate on a semiconductor substrate with an insulating film interposed therebetween, the floating gate is formed between the source and drain of the semiconductor substrate. A non-volatile semiconductor characterized by comprising an insulating film covering a part of the channel region and the drain high concentration impurity region and interposing between the floating gate and the drain high concentration impurity region exhibiting current characteristics dependent on the direction of applied voltage. Storage device.
2.前記絶縁膜は、半導体基板上に形成後濃度傾斜させ
て不純物を導入してなることを特徴とする請求の範囲第
1項記載の不揮発性半導体記憶装置。
2. 2. The nonvolatile semiconductor memory device according to claim 1, wherein the insulating film is formed by introducing impurities at a gradient in concentration after being formed on the semiconductor substrate.
3.前記絶縁物はSiO_2からなり、プロジェクショ
ンレンジ(R_p)がSiO_2膜厚の1〜5倍のエネ
ルギで不純物がイオン打込みなれてなることを特徴とす
る請求の範囲第2項記載の不揮発性半導体記憶装置。
3. 3. The nonvolatile semiconductor memory device according to claim 2, wherein the insulator is made of SiO_2, and impurities are ion-implanted with an energy of 1 to 5 times the thickness of the SiO_2 film in a projection range (R_p). .
4.前記不純物はヒ素又はリンであることを特徴とする
請求の範囲第3項記載の不揮発性半導体記憶装置。
4. 4. The nonvolatile semiconductor memory device according to claim 3, wherein said impurity is arsenic or phosphorus.
JP60028102A 1985-02-14 1985-02-14 Nonvolatile semiconductor memory device Expired - Lifetime JPH0715975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028102A JPH0715975B2 (en) 1985-02-14 1985-02-14 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028102A JPH0715975B2 (en) 1985-02-14 1985-02-14 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS61187276A true JPS61187276A (en) 1986-08-20
JPH0715975B2 JPH0715975B2 (en) 1995-02-22

Family

ID=12239436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028102A Expired - Lifetime JPH0715975B2 (en) 1985-02-14 1985-02-14 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0715975B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257374A (en) * 1988-04-07 1989-10-13 Nec Corp Mos type nonvolatile semiconductor memory device
US5066992A (en) * 1989-06-23 1991-11-19 Atmel Corporation Programmable and erasable MOS memory device
KR100558541B1 (en) * 1999-06-10 2006-03-10 삼성전자주식회사 Eeprom Manufacturing Method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414484A (en) * 1977-07-05 1979-02-02 Sumitomo Rubber Ind Method and apparatus for regenerating steel tire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414484A (en) * 1977-07-05 1979-02-02 Sumitomo Rubber Ind Method and apparatus for regenerating steel tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257374A (en) * 1988-04-07 1989-10-13 Nec Corp Mos type nonvolatile semiconductor memory device
US5066992A (en) * 1989-06-23 1991-11-19 Atmel Corporation Programmable and erasable MOS memory device
KR100558541B1 (en) * 1999-06-10 2006-03-10 삼성전자주식회사 Eeprom Manufacturing Method

Also Published As

Publication number Publication date
JPH0715975B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US5153144A (en) Method of making tunnel EEPROM
JPH0581072B2 (en)
US5602048A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH04209573A (en) Semiconductor device, semiconductor memory and manufacture thereof
JPS61187276A (en) Nonvolatile semiconductor memory device
JPS5910074B2 (en) Semiconductor nonvolatile memory device
JPH0132673B2 (en)
JPH0992738A (en) Semiconductor device and fabrication thereof
JPH05226662A (en) Semiconductor storage device
JPH0577188B2 (en)
JPS6029232B2 (en) Non-volatile semiconductor memory device
JPS63144577A (en) Nonvolatile semiconductor storage device
JPH01309381A (en) Nonvolatile semiconductor memory device and its manufacture
JPH07183405A (en) Semiconductor device and formation method
JPS60244073A (en) Manufacture of nonvolatile semiconductor memory device
JPH098154A (en) Semiconductor memory device and its manufacture
JPH03218075A (en) Manufacture of semiconductor storage device
KR0135069B1 (en) Method of manufacturing a semiconductor memory device
JP2729622B2 (en) Method for manufacturing semiconductor memory device
JPH04277681A (en) Electrically erasable and programmable non-voltage semiconductor memory
JPH06163913A (en) Non-volatile semiconductor memory
JPH03273684A (en) Semiconductor storage device and manufacture thereof
US20060054964A1 (en) Semiconductor device and method for fabricating a region thereon
JPH01310577A (en) Semiconductor nonvolatile memory
JPH02191375A (en) Manufacture of semiconductor nonvolatile memory element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term