JPH01257374A - Mos type nonvolatile semiconductor memory device - Google Patents

Mos type nonvolatile semiconductor memory device

Info

Publication number
JPH01257374A
JPH01257374A JP8641088A JP8641088A JPH01257374A JP H01257374 A JPH01257374 A JP H01257374A JP 8641088 A JP8641088 A JP 8641088A JP 8641088 A JP8641088 A JP 8641088A JP H01257374 A JPH01257374 A JP H01257374A
Authority
JP
Japan
Prior art keywords
insulating film
diffusion layer
gate electrode
diffused layer
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8641088A
Other languages
Japanese (ja)
Other versions
JPH0795570B2 (en
Inventor
Hidetoshi Nakada
中田 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63086410A priority Critical patent/JPH0795570B2/en
Publication of JPH01257374A publication Critical patent/JPH01257374A/en
Publication of JPH0795570B2 publication Critical patent/JPH0795570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To avoid the degradation of the breakdown voltage of the diffused layer of a memory transistor caused by the reduction of the depth of the diffused layer by a method wherein the channel direction dimension of the channel part is determined by the width of a trench only regardless to the depth of the diffused layer. CONSTITUTION:A trench 12 is formed in the channel part of a memory transistor 16 and the channel length is determined by the trench 12. Therefore, the channel direction dimension of the channel part of the memory transistor can be determined by the width of the trench only regardless to the depth of a diffused layer 3. In other words, when the size of the memory transistor is reduced, it is inevitable to reduce the depth of the diffused layer with the conventional constitution but it is not inevitable with this constitution. Therefore, the degradation of the breakdown voltage of the diffused layer accompanying the size reduction of the device can be avoided. Thus, the channel length can be reduced and a large integration scale can be achieved without degrading the breakdown voltage of the diffused layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、浮遊ゲート電極を有するMOS型不揮発性半
導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS type nonvolatile semiconductor memory device having a floating gate electrode.

〔従来の技術〕[Conventional technology]

従来、MO3型不揮発性半導体記憶装置は、第3図(a
)、(b)に示すように、半導体基板1の表面に拡散層
3及びドレイン拡散層3A及びソース拡散層3Bを形成
し、拡散層3及びトレイン拡散層3A及びソース拡散層
3Bの上と半導体基板1の表面上に第1の絶縁膜4を被
着する。トレイン拡散層3Aの上の一部に選択的に第1
の絶縁膜4より薄い第2の絶縁M5を被着する。第2の
絶縁[5を覆い、かつ、ソース拡散層3B上に延在する
浮遊ゲート電極6と、拡散層3とドレイン拡散層3Aに
またがって選択ゲート電極8とを設け、浮遊ゲート電極
6を第3の絶縁膜7で覆い、第3の絶縁膜7の上に制御
ゲート電極9を設ける。このようにして、M OS型不
揮発性半導体記憶装置を製作していた。
Conventionally, an MO3 type nonvolatile semiconductor memory device is shown in FIG.
), (b), a diffusion layer 3, a drain diffusion layer 3A, and a source diffusion layer 3B are formed on the surface of the semiconductor substrate 1, and the diffusion layer 3, the drain diffusion layer 3A, and the source diffusion layer 3B and the semiconductor A first insulating film 4 is deposited on the surface of the substrate 1. A first layer is selectively applied to a portion above the train diffusion layer 3A.
A second insulating film M5 thinner than the insulating film 4 is deposited. A floating gate electrode 6 covering the second insulation [5] and extending over the source diffusion layer 3B, and a selection gate electrode 8 spanning the diffusion layer 3 and the drain diffusion layer 3A are provided. It is covered with a third insulating film 7, and a control gate electrode 9 is provided on the third insulating film 7. In this way, a MOS type nonvolatile semiconductor memory device was manufactured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のMO3型不揮発性半導体記憶装置は、記
憶トランジスタ16のチャネル長lがドレイン拡散層3
Aとソース拡散層3Bとの間隔により決定されている為
、実効のチャネル長りを得る為にはチャネル長lとして
ff=L+2Rを設定しなければならず、2R(拡散層
の深さRの2倍)だけ記憶トランジスタの寸法が大きく
なってしまう。また、記憶トランジスタ16の寸法を小
さくする為には、拡散層の深さRを小さくすれば良い訳
であるが、Rを小さくすると拡散層のブレークダウン電
圧(降伏電圧)が低下し、ある値以下にはRを小さくす
る事は出来ない。即ち、Rを成る値以下にすると降伏電
圧が低下してしまい、記憶トランジスタが動作しなくな
ってしまうという問題を生じる。
In the conventional MO3 type nonvolatile semiconductor memory device described above, the channel length l of the storage transistor 16 is equal to the drain diffusion layer 3.
Since it is determined by the distance between A and the source diffusion layer 3B, in order to obtain the effective channel length, it is necessary to set ff = L + 2R as the channel length l, and 2R (of the depth R of the diffusion layer). (2 times), the size of the storage transistor becomes larger. Furthermore, in order to reduce the dimensions of the storage transistor 16, it is sufficient to reduce the depth R of the diffusion layer, but if R is reduced, the breakdown voltage of the diffusion layer decreases, and a certain value It is not possible to reduce R below. That is, if R is set below a certain value, the breakdown voltage will decrease, causing a problem that the storage transistor will no longer operate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMO3型不揮発性半導体記憶装置は、−導電型
半導体基板に設けられ素子領域を区画する素子分離絶縁
膜と、前記素子領域内に互いに間隔をおいて設けられた
逆導電型の第1乃至第3の拡散層と、前記第2の拡散層
と第3の拡散層との間に側壁を接して設けられた溝と、
前記溝表面及び半導体基板表面に形成された第1の絶縁
膜と、前記第2の拡散層の上の前記第1の絶縁膜の一部
を除去して設けられ前記第1の絶縁膜より薄い第2の絶
縁膜と、前記溝の第1絶縁膜を覆いかつその一方は前記
第3の拡散層上の前記第1の絶縁膜上に延在し他方は前
記第2の絶縁膜を含むように前記第2の拡散層上の第1
の絶縁膜上に延在して形成される浮遊ゲート電極と、前
記浮遊ゲート電極表面に設けられた第3の絶縁膜と、前
記第3の絶縁膜を介して前記浮遊ゲートに対面して設け
られた制御ゲート電極、前記第1の絶縁股上に前記第1
の拡散層と第2の拡散層とにまたがって設けられた選択
ゲート電極とを含んで構成される。
The MO3 type nonvolatile semiconductor memory device of the present invention includes an element isolation insulating film provided on a -conductivity type semiconductor substrate and partitioning an element region, and a first insulating film of opposite conductivity type provided at a distance from each other in the element region. a third diffusion layer; a groove provided between the second diffusion layer and the third diffusion layer with side walls in contact with each other;
A first insulating film formed on the groove surface and the semiconductor substrate surface, and a part of the first insulating film on the second diffusion layer is removed and is thinner than the first insulating film. a second insulating film, covering the first insulating film in the trench, one of which extends over the first insulating film on the third diffusion layer, and the other includes the second insulating film; the first diffusion layer on the second diffusion layer.
a floating gate electrode formed extending over an insulating film; a third insulating film provided on the surface of the floating gate electrode; and a floating gate electrode provided facing the floating gate via the third insulating film. the first control gate electrode on the first insulating crotch;
and a selection gate electrode provided across the diffusion layer and the second diffusion layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)、(b)は本発明の一実施例の平面図及び
A−A′線断面図である。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line A-A' of an embodiment of the present invention.

半導体基板1の表面に半導体基板1と反対導電型の不純
物より成る拡散層3及びドレイン拡散層3A及びソース
拡散層3Bを設ける。ソース拡散層3Bとトレイン拡散
層3Aとの間に満12をその側壁が接するように設ける
。溝12に多結晶シリコンより成る浮遊ゲート電極6を
第1の絶縁膜4を介して埋め込まれ、かつソース拡散層
3Bの上とドレイン拡散層3Aの上の両方に延び、また
第1の絶縁#44及び第1の絶縁膜4の一部の領域を除
去して形成された第1の絶縁膜4より薄い第2の絶縁膜
5上にあるように形成する。浮遊ゲート電極6を覆って
第3の絶縁膜7を設け、この第3の絶縁膜7上に浮遊ゲ
ート電極6を覆って多結晶シリコンより成る制御ゲート
電極9を設ける。
A diffusion layer 3 made of an impurity having a conductivity type opposite to that of the semiconductor substrate 1, a drain diffusion layer 3A, and a source diffusion layer 3B are provided on the surface of the semiconductor substrate 1. A layer 12 is provided between the source diffusion layer 3B and the train diffusion layer 3A so that their side walls are in contact with each other. A floating gate electrode 6 made of polycrystalline silicon is buried in the groove 12 via the first insulating film 4, and extends over both the source diffusion layer 3B and the drain diffusion layer 3A. 44 and a part of the first insulating film 4 are removed to form the second insulating film 5, which is thinner than the first insulating film 4. A third insulating film 7 is provided covering the floating gate electrode 6, and a control gate electrode 9 made of polycrystalline silicon is provided on the third insulating film 7, covering the floating gate electrode 6.

拡散層3とドレイン拡散層3Aにまたがって第1の絶縁
膜4上に多結晶シリコンより成る選択ゲート8を設ける
A selection gate 8 made of polycrystalline silicon is provided on the first insulating film 4, spanning the diffusion layer 3 and the drain diffusion layer 3A.

第2図(a)〜(d)は本発明の一実施例の製造方法を
説明するための工程順に示した半導体チップの断面図で
ある。
FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a manufacturing method according to an embodiment of the present invention.

まず、第2図(a)に示すように、半導体基板1にチャ
ネルストッパー13、素子分離絶縁膜2、絶縁膜14を
通常の方法で形成した後、拡散層3を選択的に形成する
First, as shown in FIG. 2(a), a channel stopper 13, an element isolation insulating film 2, and an insulating film 14 are formed on a semiconductor substrate 1 by a conventional method, and then a diffusion layer 3 is selectively formed.

次に・、第2図(b)に示すように、拡散層3を分割す
る溝12を形成してトレイン拡散層3A及びソース拡散
層3Bを形成する。
Next, as shown in FIG. 2(b), grooves 12 dividing the diffusion layer 3 are formed to form a train diffusion layer 3A and a source diffusion layer 3B.

次に、第2図(c)に示すように、絶縁膜14を除去し
た後、熱酸化法により厚さ50nm程度の第1の絶縁膜
4を形成する。第1の絶縁膜4の一部を除去した後、再
度熱酸化して厚さ10nm程度の第2の絶縁膜5を形成
する。多結晶シリコンより成る浮遊ゲート電極6を形成
する。
Next, as shown in FIG. 2(c), after removing the insulating film 14, a first insulating film 4 having a thickness of about 50 nm is formed by thermal oxidation. After removing a portion of the first insulating film 4, thermal oxidation is performed again to form a second insulating film 5 with a thickness of about 10 nm. A floating gate electrode 6 made of polycrystalline silicon is formed.

次に、第2図((1)に示すように、浮遊ゲート電極6
の上に厚さ50nm程度の第3の絶縁膜7を形成した後
、選択ゲート電極8及び制御ゲート電極りを形成する。
Next, as shown in FIG. 2 ((1), the floating gate electrode 6
After forming a third insulating film 7 with a thickness of about 50 nm thereon, a selection gate electrode 8 and a control gate electrode are formed.

本発明は、以上のように、記憶トランジスタ16のチャ
ネル部に溝12を形成し、この溝により記憶トランジス
タのチャネル長を決定している。この為、本発明では、
記憶トランジスタ16のチャネル部のチャネル方向の寸
法を拡散層の深さと全く関係なく溝の幅だけで決定でき
、従来生じた記憶トランジスタのチャネル長を縮小する
為に拡散層の深さを浅くし、拡散層の深さを浅くしたた
めに拡散層の降伏電圧が低下してしまうと云う様な問題
はない。
As described above, in the present invention, the groove 12 is formed in the channel portion of the storage transistor 16, and the channel length of the storage transistor is determined by this groove. For this reason, in the present invention,
The dimension of the channel portion of the storage transistor 16 in the channel direction can be determined only by the width of the groove, regardless of the depth of the diffusion layer, and the depth of the diffusion layer is made shallow in order to reduce the channel length of the conventional storage transistor. There is no problem that the breakdown voltage of the diffusion layer decreases because the depth of the diffusion layer is made shallow.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、記憶トランジスタのチ
ャネル部分に溝を形成し、溝により記憶トランジスタの
チャネル長を決定している為、記憶トランジスタのチャ
ネル部のチャネル方向の寸法を拡散層の深さと全く関係
なく溝の幅だけで決定できる。即ち、従来に於いては、
記憶トランジスタの縮小化の際には拡散層の深さを浅く
する事が不可欠であったが、本発明では拡散層の深さを
浅くすることは不可欠ではない。従って、従来、装置の
縮小化の際に問題となっていた拡散層の降伏電圧の低下
を回避出来る。このように本発明は拡散層の降伏電圧を
低下させることなく、チャネル長を短かくでき、高密度
集積化が可能になるという効果を有する。
As explained above, in the present invention, a groove is formed in the channel portion of the storage transistor, and the channel length of the storage transistor is determined by the groove. It can be determined only by the width of the groove, regardless of the width. That is, conventionally,
Although it has been essential to reduce the depth of the diffusion layer when downsizing the memory transistor, it is not essential to reduce the depth of the diffusion layer in the present invention. Therefore, a decrease in the breakdown voltage of the diffusion layer, which has conventionally been a problem when downsizing the device, can be avoided. As described above, the present invention has the effect that the channel length can be shortened without lowering the breakdown voltage of the diffusion layer, and high-density integration is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の一実施例の平面図及び
A−A’線断面図、第2図(a)〜(d)は本発明の一
実施例の製造方法を説明するための工程順に示した半導
体チップの断面図、第3図(a)、(b)は従来のMO
3型不揮発性半導体記憶装置の一例の平面図及びB−B
’線断面図である。 1・・・半導体基板、2・・・素子分離絶縁膜、3・・
・拡散層、3A・・・ドレイン拡散層、3B・・・ソー
ス拡散層、4・・・第1の絶縁膜、5・・・第2の絶縁
膜、6・・・浮遊ゲート電極、7・・・第3の絶縁膜、
8・・・選択ゲート電極、9・・・制御ゲート電極、1
0・・・層間絶縁膜、11・・・アルミニウム電極、1
2・・・溝、13・・・チャネルストッパー、14・・
・絶縁膜、15・・・選択トランジスタ、16・・・記
憶トランジスタ。
FIGS. 1(a) and (b) are a plan view and a sectional view taken along the line A-A' of an embodiment of the present invention, and FIGS. 2(a) to (d) illustrate a manufacturing method of an embodiment of the present invention. Cross-sectional views of a semiconductor chip shown in the order of steps for explanation, FIGS. 3(a) and 3(b) are conventional MO
A plan view of an example of a type 3 nonvolatile semiconductor memory device and B-B
' It is a line sectional view. 1... Semiconductor substrate, 2... Element isolation insulating film, 3...
- Diffusion layer, 3A... Drain diffusion layer, 3B... Source diffusion layer, 4... First insulating film, 5... Second insulating film, 6... Floating gate electrode, 7... ...Third insulating film,
8... Selection gate electrode, 9... Control gate electrode, 1
0... Interlayer insulating film, 11... Aluminum electrode, 1
2...Groove, 13...Channel stopper, 14...
- Insulating film, 15... selection transistor, 16... memory transistor.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板に設けられ素子領域を区画する素
子分離絶縁膜と、前記素子領域内に互いに間隔をおいて
設けられた逆導電型の第1乃至第3の拡散層と、前記第
2の拡散層と第3の拡散層との間に側壁を接して設けら
れた溝と、前記溝表面及び半導体基板表面に形成された
第1の絶縁膜と、前記第2の拡散層の上の前記第1の絶
縁膜の一部を除去して設けられ前記第1の絶縁膜より薄
い第2の絶縁膜と、前記溝の第1絶縁膜を覆いかつその
一方は前記第3の拡散層上の前記第1の絶縁膜上に延在
し他方は前記第2の絶縁膜を含むように前記第2の拡散
層上の第1の絶縁膜上に延在して形成される浮遊ゲート
電極と、前記浮遊ゲート電極表面に設けられた第3の絶
縁膜と、前記第3の絶縁膜を介して前記浮遊ゲートに対
面して設けられた制御ゲート電極、前記第1の絶縁膜上
に前記第1の拡散層と第2の拡散層とにまたがって設け
られた選択ゲート電極とを含むことを特徴とするMOS
型不揮発性半導体記憶装置。
an element isolation insulating film provided on a semiconductor substrate of one conductivity type and partitioning an element region; first to third diffusion layers of opposite conductivity types provided at intervals in the element region; a groove provided between the diffusion layer and the third diffusion layer with their sidewalls in contact; a first insulating film formed on the surface of the groove and the surface of the semiconductor substrate; a second insulating film that is provided by removing a part of the first insulating film and is thinner than the first insulating film; and a second insulating film that covers the first insulating film in the groove and one of which is on the third diffusion layer. a floating gate electrode formed to extend on the first insulating film on the second diffusion layer so as to extend on the first insulating film and the other to include the second insulating film; a third insulating film provided on the surface of the floating gate electrode; a control gate electrode provided facing the floating gate via the third insulating film; and a control gate electrode provided on the first insulating film. A MOS comprising a selection gate electrode provided straddling the diffusion layer and the second diffusion layer.
type nonvolatile semiconductor memory device.
JP63086410A 1988-04-07 1988-04-07 Method of manufacturing semiconductor memory device Expired - Lifetime JPH0795570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086410A JPH0795570B2 (en) 1988-04-07 1988-04-07 Method of manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086410A JPH0795570B2 (en) 1988-04-07 1988-04-07 Method of manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH01257374A true JPH01257374A (en) 1989-10-13
JPH0795570B2 JPH0795570B2 (en) 1995-10-11

Family

ID=13886097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086410A Expired - Lifetime JPH0795570B2 (en) 1988-04-07 1988-04-07 Method of manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0795570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685274A (en) * 1992-03-23 1994-03-25 Internatl Business Mach Corp <Ibm> Trench-type eeprom
JP2009283763A (en) * 2008-05-23 2009-12-03 Rohm Co Ltd Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115669A (en) * 1976-03-25 1977-09-28 Toshiba Corp Semiconductor memory device
JPS61187276A (en) * 1985-02-14 1986-08-20 Sharp Corp Nonvolatile semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115669A (en) * 1976-03-25 1977-09-28 Toshiba Corp Semiconductor memory device
JPS61187276A (en) * 1985-02-14 1986-08-20 Sharp Corp Nonvolatile semiconductor memory device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685274A (en) * 1992-03-23 1994-03-25 Internatl Business Mach Corp <Ibm> Trench-type eeprom
JP2009283763A (en) * 2008-05-23 2009-12-03 Rohm Co Ltd Semiconductor device
US8692308B2 (en) 2008-05-23 2014-04-08 Rohm Co., Ltd. Semiconductor device including a floating gate
US8975686B2 (en) 2008-05-23 2015-03-10 Rohm Co., Ltd. Semiconductor device including a floating gate

Also Published As

Publication number Publication date
JPH0795570B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
KR960043227A (en) DRAM (DRAM) cell and manufacturing method thereof
JP3229665B2 (en) Method of manufacturing MOSFET
KR910001873B1 (en) Semiconductor device and the producing method
JP4290921B2 (en) Semiconductor integrated circuit device
US6765252B2 (en) DRAM cell having independent and asymmetric source/drain and method of forming the same
US8928040B2 (en) Semiconductor device including line-type active region and method for manufacturing the same
JPH01257374A (en) Mos type nonvolatile semiconductor memory device
EP1405340B1 (en) Manufacturing method of a non-volatile memory transistor with a select gate adjacent to the control gate/floating-gate stack
JPS6129154B2 (en)
KR0135690B1 (en) Fabrication method of contact in semiconductor device
JPS63207169A (en) Semiconductor storage device and manufacture thereof
JPS6317553A (en) Semiconductor memory storage and its manufacture
JP2778535B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0239473A (en) Semiconductor device having channel on trench groove side wall
JPH03198377A (en) Manufacture of floating gate type eprom device
JPH0237778A (en) Manufacture of semiconductor memory device
JPS6324657A (en) Manufacture of semiconductor memory
JPH0434831B2 (en)
JP3063203B2 (en) Semiconductor memory and manufacturing method thereof
JPH02105576A (en) Field effect transistor
JPS6324659A (en) Mis type semiconductor memory
KR960013512B1 (en) Structure of transistor and the manufacture thereof
JP2815855B2 (en) Nonvolatile semiconductor memory device
JPS61110446A (en) Semiconductor device
JP2607508B2 (en) Semiconductor storage device