JPS6116746B2 - - Google Patents

Info

Publication number
JPS6116746B2
JPS6116746B2 JP53089929A JP8992978A JPS6116746B2 JP S6116746 B2 JPS6116746 B2 JP S6116746B2 JP 53089929 A JP53089929 A JP 53089929A JP 8992978 A JP8992978 A JP 8992978A JP S6116746 B2 JPS6116746 B2 JP S6116746B2
Authority
JP
Japan
Prior art keywords
phosphor
silicon nitride
firing container
firing
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53089929A
Other languages
Japanese (ja)
Other versions
JPS5520207A (en
Inventor
Shoji Okada
Yoshitaka Takayama
Nobuo Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8992978A priority Critical patent/JPS5520207A/en
Publication of JPS5520207A publication Critical patent/JPS5520207A/en
Publication of JPS6116746B2 publication Critical patent/JPS6116746B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Ceramic Products (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は螢光体焼成容器に関する。さらに祥し
くは臨界熱衝撃温度差(以下ΔTcと略記する)
400℃以上であり、螢光体と反応しない窒化ケイ
素を主成分とする材料よりなることを特徴とする
螢光体焼成容器に関するものである。 螢光体は、ハロゲン化物系、硫化物系、例えば
ZnS:Ag,ZnS:;Cu・A,Y2O2S:Eu,
Gd2O2S:Tb,(Y・Gd)2O2S:Tb等、ケイ酸塩
系例えばYPVSiO4:Eu,ZnSiO3:Mn,
Y2SiO5:Ce・Tb等、リン酸塩系、タングステン
酸塩系例えばCaWO4等、酸素酸塩素系およびそ
れらの混合系例えば3Ca(PO42・Ca(F・C
):Sb・Mn,SrO・SrF2・2B2O3:Mn等が挙
がられる。 これらの螢光体の製造は母体、融剤、付活剤等
を焼成容器中で焼成して行なわれており、この焼
成条件は螢光体の種類によつて異なるが通常約
800〜1300℃で1〜6時間程度で徐熱徐冷あるい
は急熱急冷により行なわれている。この螢光体焼
成容器としては、アルミナあるいは石英のルツ
ボ、トレイ等が用いられているが、アルミナの場
合には耐熱衝撃性が小さいため、また石英は1000
℃以上では結晶化して劣化するため、いずれも1
個あるいは数回用いただけで使用不能になつてし
まつていた。また、高温に耐え、耐熱衝撃性が良
好な合金もあるが、これは螢光体と反応してしま
うため焼成容器に用いることは困難である。 本発明は上記従来技術の欠点を克服した螢光体
焼成容器を提供することを目的とするものであつ
て本発明者等は鋭意研究した結果、高温に耐え、
耐熱衝撃性が優れ、螢光体と反応しない窒化ケイ
素を主成分とする材料からなる螢光体焼成容器の
開発に成功し、本発明を完成するに至つた。 本発明の螢光体焼成容器は、窒化ケイ素を主成
分とする材料を成形し、焼結することにより製造
される。 この窒化ケイ素を主成分とする材料は、窒化ケ
イ素自体では焼結性が悪いため窒化ケイ素粉末に
イツトリア、アルミナ、周期律表a族元素の酸
化物、マグネシア等適当な添加物を添加して調製
されるが、鉄系金属、マンガン、チタン、他の重
金属等は螢光体の特性を低下させるので好ましく
ない。この材料を通常の方法により例えばルツボ
あるいはトレイに成形した後要すれば熱処理し、
次いで焼結することにより本発明の螢光体焼成容
器が得られる。焼結は1500℃〜1900℃の常圧焼結
でもよいが150〜600Kg/cm2、1400〜1850℃でホツ
トプレス焼結するとさらに好ましい。 本発明の螢光体焼成容器は酸化イツトリウムお
よび酸化アルミニウムを含有し、臨界熱衝撃温度
差が400℃以上であり、しかも螢光体と反応しな
い窒化ケイ素を主成分とする材料よりなる螢光体
焼成容器であつて、 該焼成容器が、均一な肉適を有するホツトプレ
ス焼結体であることを特徴とするものであり、こ
のような構成を有する理由を以下に示す。 (1) 窒化ケイ素自体は熱膨張係数が小さいためΔ
Tcは高いが、焼結を促進させるために添加物
を加える必要がありこの添加物が多くなるとΔ
Tcは低下するため添加剤を極力少なくするこ
と。 (2) 添加物を極力少なくとするという理由によつ
て普通焼結よりもホツトプレス焼結すること。 (3) 添加物として焼結促進効果の高いY2O3を用
いる (4) 窒化ケイ素焼結体の構成層は一般にβ−
Si3N4相であるが、ΔTcがさらに高いβ′−
Si3N4相を得るために添加物としてA2O3を用
いること。 (5) 急激な加熱冷却により、容器の表面と内部と
の熱膨張の差を少なく、かつ局部的な熱応力を
生ぜしめないために、焼結体の肉厚を薄く均一
にすること。 このようにして得られた本発明の螢光体焼成容
器は、後述する螢光体の焼成条件に適合するよう
に、高温に耐え、ΔTc400℃の耐熱衝撃性を有
し、螢光体と反応しない耐食性を有するものであ
る。 本発明の螢光体焼成容器は上記特性を有するた
め、母体、融剤、付活剤を焼成して螢光体を得る
場合にこの容器を用いるとアルミナ、石英等を用
いた場合にして格段に優れた耐久性を有し、反復
して使用することができる。 以下製造例および実施例を掲げて本発明をさら
に詳細に説明する。 製造例 1 α型窒化ケイ素粉末(東芝セラミツクス社製)
にイツトリア5重量%、アルミナ2重量%を添加
して窒化ケイ素質粉末材料を調節した。この粉末
材料を700Kg/cm2で成形した後、窒素雰囲気中、
1700℃で熱処理して種々の形状の予備成形体を得
た。 この予備成形体を300Kg/cm2、1750℃でホツト
プレス焼結して窒化ケイ素質焼結体の容器を得
た。 実施例 1 製造例1で得られた種々のΔTcを有する容器
を用いて、母体、融剤、付加剤を種々の条件で焼
成して螢光体を得た。この操作を最高10回まで行
なつた。また、比較のためアルミナルツボ、石英
ルツボ、石英トレイ等を用いてそれらが使用不能
になるまで行なつた。結果を第1表に示す。
The present invention relates to a phosphor firing container. Furthermore, critical thermal shock temperature difference (hereinafter abbreviated as ΔTc)
The present invention relates to a phosphor firing container characterized in that the temperature is 400°C or higher and is made of a material whose main component is silicon nitride, which does not react with the phosphor. The phosphor may be a halide-based, sulfide-based, e.g.
ZnS:Ag, ZnS: ;Cu・A, Y 2 O 2 S: Eu,
Gd 2 O 2 S: Tb, (Y・Gd) 2 O 2 S: Tb, etc., silicate systems such as YPVSiO 4 : Eu, ZnSiO 3 : Mn,
Y 2 SiO 5 : Ce・Tb etc., phosphate type, tungstate type e.g. CaWO 4 etc., oxygen acid chlorine type and mixtures thereof e.g. 3Ca(PO 4 ) 2・Ca(F・C
): Sb・Mn, SrO・SrF 2・2B 2 O 3 : Mn, etc. These phosphors are manufactured by firing the base material, flux, activator, etc. in a firing container, and the firing conditions vary depending on the type of phosphor, but usually about
It is carried out by slow heating and slow cooling or rapid heating and cooling at 800 to 1300°C for about 1 to 6 hours. Alumina or quartz crucibles, trays, etc. are used as the phosphor firing container, but alumina has low thermal shock resistance, and quartz
At temperatures above ℃, it crystallizes and deteriorates, so both
They became unusable after being used only once or a few times. There are also alloys that can withstand high temperatures and have good thermal shock resistance, but they react with the phosphor, making it difficult to use them in firing containers. The purpose of the present invention is to provide a phosphor firing container that overcomes the drawbacks of the prior art, and as a result of intensive research, the present inventors have found that it can withstand high temperatures,
We have succeeded in developing a phosphor firing container made of a material whose main component is silicon nitride, which has excellent thermal shock resistance and does not react with the phosphor, and have completed the present invention. The phosphor firing container of the present invention is manufactured by molding and sintering a material whose main component is silicon nitride. This material whose main component is silicon nitride is prepared by adding appropriate additives such as yttoria, alumina, oxides of group A elements of the periodic table, magnesia, etc. to silicon nitride powder, since silicon nitride itself has poor sinterability. However, iron-based metals, manganese, titanium, and other heavy metals are not preferred because they deteriorate the characteristics of the phosphor. This material is formed into, for example, a crucible or a tray by a conventional method, and then heat treated if necessary.
Then, by sintering, a phosphor firing container of the present invention is obtained. The sintering may be carried out by normal pressure sintering at 1500°C to 1900°C, but hot press sintering at 150 to 600 kg/cm 2 and 1400 to 1850°C is more preferable. The phosphor firing container of the present invention contains a phosphor made of a material containing yttrium oxide and aluminum oxide, which has a critical thermal shock temperature difference of 400°C or more, and which does not react with the phosphor and whose main component is silicon nitride. The firing container is characterized in that it is a hot-pressed sintered body having a uniform thickness, and the reason for having such a configuration will be described below. (1) Silicon nitride itself has a small coefficient of thermal expansion, so Δ
Although Tc is high, it is necessary to add additives to promote sintering, and when this additive increases, ∆
Since Tc will decrease, use as little additive as possible. (2) Hot press sintering is preferred over normal sintering in order to minimize additives. (3) Use Y 2 O 3 as an additive, which has a high effect of promoting sintering. (4) The constituent layers of silicon nitride sintered bodies are generally β-
Si 3 N 4 phase, but β′− with higher ΔTc
Using A 2 O 3 as an additive to obtain the Si 3 N 4 phase. (5) The thickness of the sintered body must be made thin and uniform in order to reduce the difference in thermal expansion between the surface and inside of the container and to prevent local thermal stress from occurring due to rapid heating and cooling. The thus obtained phosphor firing container of the present invention can withstand high temperatures, has a thermal shock resistance of ΔTc of 400°C, and reacts with the phosphor to meet the phosphor firing conditions described below. It has excellent corrosion resistance. Since the phosphor firing container of the present invention has the above-mentioned characteristics, when using this container to obtain a phosphor by firing a matrix, a flux, and an activator, it is much more effective than when using alumina, quartz, etc. It has excellent durability and can be used repeatedly. The present invention will be explained in further detail below with reference to Production Examples and Examples. Production example 1 α-type silicon nitride powder (manufactured by Toshiba Ceramics)
A silicon nitride powder material was prepared by adding 5% by weight of ittria and 2% by weight of alumina. After molding this powder material at 700Kg/ cm2 , in a nitrogen atmosphere,
Preforms of various shapes were obtained by heat treatment at 1700°C. This preform was hot press sintered at 300 kg/cm 2 at 1750° C. to obtain a container made of silicon nitride sintered body. Example 1 Using containers having various ΔTc obtained in Production Example 1, the matrix, flux, and additive were fired under various conditions to obtain phosphors. This operation was repeated up to 10 times. For comparison, experiments were conducted using an aluminium crucible, a quartz crucible, a quartz tray, etc. until they became unusable. The results are shown in Table 1.

【表】 以上の実施例から明らかなように本発明の螢光
体焼成容器は従来の容器よりはるかに耐久性があ
ることが明らかである。
[Table] As is clear from the above examples, it is clear that the phosphor firing containers of the present invention are much more durable than conventional containers.

Claims (1)

【特許請求の範囲】 1 酸化イツトリウムおよび酸化アルミニウムを
含有し、臨界熱衝撃温度差が400℃以上であり、
しかも螢光体と反応しない窒化ケイ素を主成分と
する材料よりなる螢光体焼成容器であつて、 該焼成容器が、均一な肉厚を有するホツトプレ
ス焼結体であることを特徴とする螢光体焼成容
器。
[Claims] 1. Contains yttrium oxide and aluminum oxide, and has a critical thermal shock temperature difference of 400°C or more,
Moreover, the phosphor firing container is made of a material mainly composed of silicon nitride that does not react with the phosphor, and the firing container is a hot-pressed sintered body having a uniform wall thickness. Body firing container.
JP8992978A 1978-07-25 1978-07-25 Fluorescent firing container Granted JPS5520207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8992978A JPS5520207A (en) 1978-07-25 1978-07-25 Fluorescent firing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8992978A JPS5520207A (en) 1978-07-25 1978-07-25 Fluorescent firing container

Publications (2)

Publication Number Publication Date
JPS5520207A JPS5520207A (en) 1980-02-13
JPS6116746B2 true JPS6116746B2 (en) 1986-05-01

Family

ID=13984380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8992978A Granted JPS5520207A (en) 1978-07-25 1978-07-25 Fluorescent firing container

Country Status (1)

Country Link
JP (1) JPS5520207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11625553B2 (en) 2021-06-01 2023-04-11 Buildingestimates.Com Limited Rapid and accurate modeling of a building construction structure including estimates, detailing, and take-offs using artificial intelligence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294410A (en) * 1991-03-22 1992-10-19 Sansha Electric Mfg Co Ltd Dc power unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11625553B2 (en) 2021-06-01 2023-04-11 Buildingestimates.Com Limited Rapid and accurate modeling of a building construction structure including estimates, detailing, and take-offs using artificial intelligence

Also Published As

Publication number Publication date
JPS5520207A (en) 1980-02-13

Similar Documents

Publication Publication Date Title
US4719187A (en) Dense sintered bodies of nitride materials
US5063183A (en) Sinterable aluminum nitride composition, sintered body from this composition and process for producing the sintered body
US3811928A (en) Silicon nitride ceramics
JPH0545554B2 (en)
US4950435A (en) Process for producing aluminum nitride sintered body
US4952535A (en) Aluminum nitride bodies and method
US5242872A (en) Process for producing aluminum nitride sintered body
US4066468A (en) Ceramics of silicon nitride
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPS6116746B2 (en)
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH0662336B2 (en) Aluminum titanate ceramics
JPS5823346B2 (en) Production method of α-sialon sintered body
JPH07165462A (en) Alumina-beta-sialon-yag composite material
US3737331A (en) Thoria-yttria-based ceramic materials
JPS6343346B2 (en)
JPH06191955A (en) Production of aluminum mitride sintered compact
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
NEELY et al. Thermal conductivity and heat capacity of beryllium carbide
JPS60186462A (en) Thermal impact-resistant refractories
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPS6033787B2 (en) Manufacturing method of ceramic sintered body
JPH0818875B2 (en) Method for manufacturing silicon nitride sintered body