JPH06191955A - Production of aluminum mitride sintered compact - Google Patents

Production of aluminum mitride sintered compact

Info

Publication number
JPH06191955A
JPH06191955A JP43A JP34291092A JPH06191955A JP H06191955 A JPH06191955 A JP H06191955A JP 43 A JP43 A JP 43A JP 34291092 A JP34291092 A JP 34291092A JP H06191955 A JPH06191955 A JP H06191955A
Authority
JP
Japan
Prior art keywords
firing
sintered body
sintering
aln
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Susumu Kajita
進 梶田
Noboru Hashimoto
登 橋本
Hiroyoshi Yoda
浩好 余田
Yasushi Tanaka
恭史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP43A priority Critical patent/JPH06191955A/en
Publication of JPH06191955A publication Critical patent/JPH06191955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain an AlN sintered compact excellent in thermal conductivity and mechanical strength at low cost in a practical way. CONSTITUTION:AlN powder >=12.0m<2>/g in specific surface area is added with an oxygen-contg. and nonfluorine base rare earth metal compound as sintering auxiliary followed by molding, and the resultant form is then sintered in a nonoxidative atmosphere at <=1650 deg.C, thus obtaining the objective AlN sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、窒化アルミニウム焼
結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum nitride sintered body.

【0002】[0002]

【従来の技術】IC等に代表されるような半導体素子の
高集積化や大電力化が進み、これに伴って、放熱性の良
い電気絶縁材料が要求されるようになった。その中で
も、特に、窒化アルミニウム焼結体からなる絶縁基板
が、熱伝導性、熱膨張性、電気絶縁性等の点で優れてい
るということから、注目され実用化も進んでいる。
2. Description of the Related Art With the progress of higher integration and higher power consumption of semiconductor elements represented by ICs and the like, along with this, there has been a demand for an electrically insulating material having a good heat dissipation property. Among them, in particular, an insulating substrate made of an aluminum nitride sintered body is excellent in terms of thermal conductivity, thermal expansion property, electrical insulating property, etc., and therefore, it has been noticed and put into practical use.

【0003】しかしながら、窒化アルミニウム焼結体
は、原料の窒化アルミニウム粉末が高価であるとともに
難焼結性で1750℃以上の高温焼成を必要とするた
め、非常に高価なものとなっていた。このため、焼成温
度を下げてコスト低減を図る窒化アルミニウム焼結体の
製造方法が提案されている。窒化アルミニウム粉末に、
焼結助剤として、稀土類元素のフッ化物や酸化物とアル
カリ土類元素のフッ化物又は酸化物とを併用することが
提案されている(特開昭61-209959 号公報,USP4,746,63
7 号明細書) 。ここでは、1550〜1700℃という
低温焼成で緻密で高熱伝導率の窒化アルミニウム焼結体
が得られるとされている。 しかしながら、上記の方法
の場合、以下のような問題がある。
However, the aluminum nitride sintered body is very expensive because the raw material aluminum nitride powder is expensive and it is difficult to sinter and requires high temperature firing at 1750 ° C. or higher. For this reason, a method of manufacturing an aluminum nitride sintered body has been proposed in which the firing temperature is lowered to reduce the cost. Aluminum nitride powder,
As a sintering aid, it has been proposed to use a fluoride or oxide of a rare earth element and a fluoride or oxide of an alkaline earth element in combination (JP-A 61-209959, USP 4,746, 63
(Specification No. 7). Here, it is said that a dense aluminum nitride sintered body having a high thermal conductivity can be obtained by firing at a low temperature of 1550 to 1700 ° C. However, the above method has the following problems.

【0004】焼結助剤にフッ化物を用いると、焼成時に
焼結助剤の分解で生じたフッ素元素が簡単にHFなどの
腐食性・毒性のガスになり、作業者の健康への悪影響や
焼成炉等の損傷などの問題が起こるために実用的とは言
えない。焼結助剤としての稀土類化合物とアルカリ土類
化合物の併用は、稀土類化合物の単独使用の場合に比
べ、液相形成温度の低下が認められ、そのため、低温で
の焼結が可能となるのであるが、同時に液相形成による
粒成長が顕著となるため高熱伝導率化には有利でも機械
的強度の面では不利となる。また、アルカリ土類の場
合、焼成中に拡散が起こり易く、焼結体中で不均一な分
布を生じ易く、また、窒化アルミニウム焼結体の焼けム
ラ、焼成炉や治具であるセッターへの付着反応による劣
化などといった問題を生じる。加えて、上記の液相は厚
い粒界層を形成してグレインを取り巻くため、破壊モー
ドが粒界破壊となる。一般に機械強度は稀土類化合物単
独の場合に比べて低下してしまう。稀土類化合物がY2
3 単独の場合を例にとると、1760℃でAl2 3
との間で液相を形成し、この液相が窒化アルミニウムの
グレインを濡らしはするのであるが、粒界層を形成せず
に粒界の三重点に集まり易くて粒界層は非常に薄くな
り、この結果、破壊モードは粒界破壊ではなく粒内破壊
となり易い。粒内破壊の方が粒界破壊に比べて、一般的
に機械的強度は高くなる。
When a fluoride is used as a sintering aid, elemental fluorine produced by decomposition of the sintering aid during firing easily becomes a corrosive or toxic gas such as HF, which may adversely affect the health of workers. It is not practical because problems such as damage to the firing furnace occur. When a rare earth compound and an alkaline earth compound are used together as a sintering aid, the liquidus formation temperature is lower than that when the rare earth compound is used alone, which enables sintering at a low temperature. However, since grain growth due to liquid phase formation becomes remarkable at the same time, it is advantageous for increasing the thermal conductivity but disadvantageous in terms of mechanical strength. Further, in the case of alkaline earth, diffusion is likely to occur during firing, uneven distribution is likely to occur in the sintered body, burning unevenness of the aluminum nitride sintered body, and a sintering furnace or a jig setter. Problems such as deterioration due to adhesion reaction occur. In addition, since the liquid phase forms a thick grain boundary layer and surrounds the grains, the fracture mode is grain boundary fracture. In general, the mechanical strength is lower than that of the rare earth compound alone. Rare earth compounds are Y 2
Taking O 3 alone as an example, Al 2 O 3 at 1760 ° C.
A liquid phase is formed between and, and this liquid wets the grains of aluminum nitride, but without forming a grain boundary layer, it is easy to gather at the triple points of the grain boundaries and the grain boundary layer is very thin. As a result, the fracture mode is likely to be intragranular fracture rather than intergranular fracture. Intragranular fracture generally has higher mechanical strength than intergranular fracture.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、熱伝導率および機械的強度に優れた窒化アルミ
ニウム焼結体を安価に得ることのできる実用的な方法を
提供することを課題とする。
In view of the above circumstances, the present invention aims to provide a practical method capable of inexpensively obtaining an aluminum nitride sintered body excellent in thermal conductivity and mechanical strength. And

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる窒化アルミニウム焼結体の製造方
法は、窒化アルミニウム粉末に焼結助剤を添加し成型し
てなる成形体を、非酸化性雰囲気で焼成することにより
焼結させるにあたり、窒化アルミニウム粉末に焼結助剤
を添加し成型してなる成形体を、非酸化性雰囲気で焼成
することにより焼結させる窒化アルミニウム焼結体の製
造方法において、前記窒化アルミニウム粉末の比表面積
が12.0m2 /g以上であって、前記焼結助剤が、非
フッ化系の酸素を含む稀土類化合物であり、前記非酸化
性雰囲気での焼成を1650℃以下の温度で行うように
している。
In order to solve the above-mentioned problems, a method for producing an aluminum nitride sintered body according to the present invention is a method of forming a molded body obtained by adding a sintering aid to aluminum nitride powder and molding the same. When sintering by firing in an oxidizing atmosphere, a molded body formed by adding a sintering aid to aluminum nitride powder and molding the sintered body is sintered by firing in a non-oxidizing atmosphere. In the production method, the aluminum nitride powder has a specific surface area of 12.0 m 2 / g or more, the sintering aid is a non-fluorinated rare earth compound containing oxygen, and Is fired at a temperature of 1650 ° C. or lower.

【0007】この発明において、焼成の前後または焼成
中に還元処理を行うようにする形態は、以下で詳しく述
べるように、得られる窒化アルミニウム焼結体(以下、
「AlN焼結体」と言う)の熱伝導率の高める上で有効
であり、有用な形態ということが出来る。この発明にお
いて、比表面積が12.0m2 /g以上の微小粒径の窒
化アルミニウム粉末(以下、「AlN粉末」と言う)を
用いる理由は、非フッ化系の酸素を含む稀土類化合物
(稀土類元素の含酸素化合物)、すなわち稀土類酸化
物,焼成で稀土類酸化物となる非フッ化系の化合物から
なる稀土類化合物群の範囲にある化合物だけの使用のも
とに1650℃以下の低温焼成で焼結させられるように
なるからである。
In the present invention, the form in which the reduction treatment is performed before or after the firing or during the firing is, as described in detail below, the obtained aluminum nitride sintered body (hereinafter,
It is effective in increasing the thermal conductivity of the "AlN sintered body" and can be said to be a useful form. In the present invention, the reason for using the aluminum nitride powder having a specific surface area of 12.0 m 2 / g or more and having a fine particle diameter (hereinafter, referred to as “AlN powder”) is that a non-fluorinated rare earth compound containing oxygen (rare earth) is used. (Oxygenated compounds of group elements), that is, rare earth oxides, non-fluorinated compounds that become rare earth oxides when fired, are used at a temperature of 1650 ° C or lower. This is because it becomes possible to sinter by low temperature firing.

【0008】前述したように、稀土類元素のフッ化物又
は酸化物とアルカリ土類元素のフッ化物又は酸化物を併
用すると、比表面積が12.0m2 /g未満のAlN粉
末でも焼結可能なのであるが、粒成長などによる機械的
強度の低下、AlN焼結体の焼けムラ、焼成炉やセッタ
ーの劣化等の問題を生じる。この発明は、併用形態をと
らずとも、低温焼成で焼結させられるようになる上記併
用の不都合が解消できるようになる。
As described above, when a rare earth element fluoride or oxide and an alkaline earth element fluoride or oxide are used in combination, AlN powder having a specific surface area of less than 12.0 m 2 / g can be sintered. However, there are problems such as a decrease in mechanical strength due to grain growth, uneven burning of the AlN sintered body, deterioration of a firing furnace and a setter, and the like. According to the present invention, it is possible to eliminate the above-mentioned inconvenience of the combined use that the sintering can be performed by low temperature firing without using the combined form.

【0009】代表的な稀土類元素の含酸素化合物である
2 3 を例にとると、Y2 3 とAlN粉末表面のA
2 3 とで共晶融液を形成するのが、1760℃以上
であり、液相焼結を行うには、これ以上の温度で焼成す
ることが必要となる。発明者らの検討によると、比表面
積が3.0m2 /g程度の粗いAlN粉末を用い、Y 2
3 単独で焼結させようとすると、上述の液相焼結は不
可欠であり、1760℃以上の高温焼成が必須となる。
そこで、発明者らは、検討を続け、比表面積が12.0
2 /g以上の細かなAlN粉末なら液相焼結でなく固
相焼結が可能で焼成温度の低減が図れるようであること
を見いだしたのである。比表面積が12.0m2 /g未
満のAlN粉末だと1700℃を越す焼成温度が必要な
のであるが、比表面積が12.0m2 /g以上のAlN
粉末だと非フッ化系稀土類化合物の焼結助剤だけで16
50℃以下の焼成温度で焼結が可能であることを見いだ
したのである。
A typical rare earth element oxygen-containing compound
Y2O3Take, for example, Y2O3And AlN powder surface A
l2O3To form a eutectic melt at 1760 ° C or higher
Therefore, in order to perform liquid phase sintering, firing at a temperature higher than this is required.
Will be required. According to the study by the inventors, the specific surface
Product is 3.0m2/ G using a coarse AlN powder 2
O3If you try to sinter it alone, the above liquid phase sintering will not work.
It is indispensable, and high temperature firing at 1760 ° C or higher is essential.
Therefore, the inventors continued to study, and the specific surface area was 12.0.
m2If it is fine AlN powder of / g or more, it is not liquid phase sintering but solid.
It seems that phase sintering is possible and the firing temperature can be reduced.
I found it. Specific surface area is 12.0m2/ G not
Full AlN powder requires firing temperature over 1700 ° C
The specific surface area is 12.0m2/ G or more of AlN
If it is a powder, it is possible to use only sintering aids of non-fluorinated rare earth compounds
We found that sintering is possible at a firing temperature of 50 ° C or less
I did.

【0010】1650℃以下の焼成で焼結が可能となる
と、焼成コストの低減に反映されるメリットがある。具
体的には、焼成容器として使われている高価なBN容器
の寿命が大幅に伸びることが挙げられるし、さらに、高
価なBN容器の代わりに安価なアルミナ系容器の使用が
可能となることも挙げられる。安価なアルミナ系容器は
1650℃を超える焼成では高温クリープによる変形が
著しくなるため従来なら使えない。さらに、消費電力の
節約などで焼成炉のランニングコストの面でもコストダ
ウンが図れる。
If sintering can be performed by firing at 1650 ° C. or lower, there is an advantage reflected in reduction of firing cost. Specifically, it is possible to significantly extend the life of an expensive BN container used as a firing container, and it is also possible to use an inexpensive alumina-based container instead of the expensive BN container. Can be mentioned. An inexpensive alumina-based container cannot be used in the past because it is significantly deformed by high temperature creep when fired above 1650 ° C. Further, the running cost of the firing furnace can be reduced by saving power consumption.

【0011】続いて、この発明で得るAlN焼結体の熱
伝導率や機械的強度に関して述べる。上でみたように、
この発明の場合、比表面積が12.0m2 /g以上の微
細なしAlN粉末を用い、非フッ化系稀土類化合物の焼
結助剤だけで1650℃以下の焼成温度で焼結を行うの
で、その焼結メカニズムは液相焼結ではなく固相焼結で
あると考えられるのである。それ故、AlN焼結体のグ
レインサイズは1650℃以下でも液相を形成するアル
カリ土類化合物を焼結助剤として用いた場合に比べ小さ
く、この結果、機械的強度が大きくなる。ただ、AlN
焼結体のグレインサイズが小さくなることで熱伝導率は
普通は小さくなる傾向がある。なぜなら、AlN焼結体
での熱伝導機構はフォノン伝導であり、このフォノン伝
導は粒界部分で散乱を起こし易く、グレインサイズの小
さなAlN焼結体の場合は粒界部分が多く、この結果、
このフォノン散乱も大きく、熱伝導が妨げられるからで
ある。
Next, the thermal conductivity and mechanical strength of the AlN sintered body obtained by the present invention will be described. As we saw above,
In the case of the present invention, fine non-alloyed AlN powder having a specific surface area of 12.0 m 2 / g or more is used, and sintering is performed at a firing temperature of 1650 ° C. or less only with a sintering aid of a non-fluorinated rare earth compound. The sintering mechanism is considered to be solid phase sintering, not liquid phase sintering. Therefore, the grain size of the AlN sintered body is smaller than that when an alkaline earth compound that forms a liquid phase is used as a sintering aid even at 1650 ° C. or lower, and as a result, the mechanical strength is increased. However, AlN
The thermal conductivity usually tends to decrease as the grain size of the sintered body decreases. This is because the heat conduction mechanism in the AlN sintered body is phonon conduction, and this phonon conduction easily causes scattering in the grain boundary portion, and in the case of the AlN sintered body having a small grain size, there are many grain boundary portions.
This is because this phonon scattering is large and heat conduction is hindered.

【0012】また、熱伝導率低下の原因となるAlN粉
末中の不純物酸素は、一般にAlN粉末の比表面積が大
きくなる(粒径が細かくなる)ほど増加する。というの
は、不純物酸素はAlN粉末の表層に存在するからであ
る。したがって、比表面積が12.0m2 /g以上の微
細なAlN粉末を用いるこの発明では、不純物酸素量
が、必然的に粒径の大きなAlN粉末を用いる場合に比
べて多くなる。
Further, the impurity oxygen in the AlN powder, which causes a decrease in thermal conductivity, generally increases as the specific surface area of the AlN powder increases (the particle size becomes finer). This is because the impurity oxygen exists in the surface layer of the AlN powder. Therefore, in the present invention in which the fine AlN powder having a specific surface area of 12.0 m 2 / g or more is used, the amount of impurity oxygen inevitably increases as compared with the case of using the AlN powder having a large particle size.

【0013】このように、この発明で得るAlN焼結体
はグレインサイズが小さいこと、原料のAlN粉末中の
不純物酸素の多いことで熱伝導率の点では不利である。
しかしながら、この発明において、焼成の前後または焼
成中に還元処理がなされるならば、熱伝導率を向上させ
ることが出来る。この還元処理でAlN粉末中の不純物
酸素が減り、その分、熱伝導率が高まる。ただ、この還
元処理で焼結体でのグレインサイズに変化は殆ど生じな
いため、グレインサイズによる熱伝導率の減少の解消は
全く望めないようにも見えるが、酸素量の低減により焼
結時に窒化アルミニウムのグレイン内にAlN粉末の表
層の酸素が一部取り込まれ、これによりグレイン自体の
熱伝導率が改善されるので、グレインサイズによる熱伝
導率の減少の解消も、一定程度は望めることになる。こ
のように、還元処理も行う場合は、グレインサイズは小
さいながらも、高純度化により高熱伝導率化が図れるの
である。
As described above, the AlN sintered body obtained by the present invention is disadvantageous in terms of thermal conductivity because of its small grain size and the large amount of impurity oxygen in the starting AlN powder.
However, in the present invention, the thermal conductivity can be improved if the reduction treatment is performed before or after the firing or during the firing. This reduction treatment reduces the amount of impurity oxygen in the AlN powder, and the heat conductivity increases accordingly. However, since this reduction treatment hardly changes the grain size in the sintered body, it seems that the reduction in thermal conductivity due to the grain size cannot be eliminated at all. Oxygen in the surface layer of the AlN powder is partially taken into the aluminum grains, which improves the thermal conductivity of the grains themselves, so that a certain degree of elimination of the decrease in thermal conductivity due to the grain size can be expected. . As described above, when the reduction treatment is also performed, the grain size is small, but the high thermal conductivity can be achieved by the high purification.

【0014】上述の要点を簡単に纏めると以下のような
ことになる。この発明では、種々の問題の原因となるア
ルカリ土類化合物やフッ素系の焼結助剤を使わず、経済
的な焼成コストを可能とする1650℃以下の低温焼成
で焼結させるために、原料として12m2 /g以上の微
粒子のAlN粉末と稀土類元素の含酸素化合物を用い
る。その結果、焼結体中のグレインサイズはアルカリ土
類化合物を使った場合と比較して小さくなるため、機械
的強度の向上が図れる。また、熱伝導率に関しては還元
処理の採用によるAlN粉末の不純物酸素の還元で向上
させることが可能となる。
The above points can be summarized as follows. In the present invention, a raw material is used for sintering at low temperature of 1650 ° C. or lower, which does not use an alkaline earth compound or a fluorine-based sintering additive that causes various problems and enables economical firing cost. As the powder, AlN powder having a particle size of 12 m 2 / g or more and an oxygen-containing compound of a rare earth element are used. As a result, the grain size in the sintered body becomes smaller than that in the case where the alkaline earth compound is used, so that the mechanical strength can be improved. Further, the thermal conductivity can be improved by reducing the impurity oxygen of the AlN powder by adopting the reduction treatment.

【0015】焼結助剤として使う非フッ素系の稀土類化
合物(稀土類元素の含酸素化合物)における稀土類元素
としては、Y,La,Dy,Er,Ce,Sm,Pm,
NdEu,Gd,Tb,Pr,Tm,Lu,Ho,Yb
などの酸化物,焼成で稀土類酸化物となる化合物として
の炭酸化物や硝酸化物、水酸化物、しゅう酸化物などの
形態のものが挙げられる。焼結助剤の使用にあたって
は、稀土類酸化物を複数種併用したり、焼成で稀土類酸
化物となる化合物を複数種併用したり、稀土類酸化物と
焼成で稀土類酸化物となる化合物とを併用したりするよ
うにしてもよい。焼結助剤の添加量に関しては、得られ
るAlN焼結体全体を100重量%とすると、そのうち
焼結助剤が0.1〜10重量%を占めるようになるよう
にする。
The rare earth elements in the fluorine-free rare earth compound (oxygen-containing compound of rare earth elements) used as a sintering aid include Y, La, Dy, Er, Ce, Sm, Pm,
NdEu, Gd, Tb, Pr, Tm, Lu, Ho, Yb
And oxides such as carbonates, nitric oxides, hydroxides, and oxalates as compounds that become rare earth oxides upon firing. When using sintering aids, multiple rare earth oxides may be used in combination, multiple compounds that become rare earth oxides by firing may be used in combination, and rare earth oxides and compounds that become rare earth oxides by firing may be used. You may make it use together with. Regarding the addition amount of the sintering aid, if the total amount of the obtained AlN sintered body is 100% by weight, the sintering aid will occupy 0.1 to 10% by weight.

【0016】焼成は、1400程度から1650℃まで
の温度範囲で1〜6時間程度の時間行うが、この焼成条
件に限らない。還元処理は、焼成の前後または焼結のた
めの焼成中のいずれでもよいが、焼結の進んでいない前
が酸素が除去され易い。例えば、1650℃で焼結を行
う場合、1200℃までを還元雰囲気とし、その後は中
性雰囲気で焼結させるようにしてもよいし、全焼成中を
還元雰囲気とし焼結処理と還元処理を同時に平行して殆
ど同じ期間だけ行うようにしてもよい。還元処理に使え
る還元雰囲気としは、H 2 ,CO,NH3 ,CH4 ,C
2 4 ,C2 6 ,C3 8 等の還元性ガス雰囲気が挙
げられ、これらの還元性ガスをN2 , Ar等の中性ガス
雰囲気と組み合わせることで効果的な処理雰囲気を実現
することができる。さらに、焼成炉がカーボンヒータや
カーボン炉材を使用したカーボン炉である場合、蒸気相
炭素による還元雰囲気の形成が容易である。
Firing is from about 1400 to 1650 ° C
The firing range is 1 to 6 hours.
Not limited to the case. The reduction treatment is performed before or after firing or after sintering.
It can be done during firing, but before sintering has not progressed
However, oxygen is easily removed. For example, sintering at 1650 ° C
In the case of
You may make it sinter in a neutral atmosphere, or
A reducing atmosphere is used, and the sintering process and the reducing process are performed simultaneously in parallel.
However, it may be performed for the same period. Can be used for reduction processing
The reducing atmosphere is H 2, CO, NH3, CHFour, C
2HFour, C2H6, C3H8A reducing gas atmosphere such as
To reduce these reducing gases to N2,Neutral gas such as Ar
Achieve an effective processing atmosphere by combining with the atmosphere
can do. In addition, the firing furnace is a carbon heater
If it is a carbon furnace using carbon furnace material, vapor phase
It is easy to form a reducing atmosphere with carbon.

【0017】[0017]

【作用】この発明の場合、種々の問題を生じるアルカリ
土類化合物やフッ素系の焼結助剤は使わずに、比表面積
が12.0m2 /g未満のAlN粉末に対して非フッ素
系の稀土類化合物の焼結助剤だけを用い、1650℃以
下の低温の焼成で焼結させられる。
In the case of the present invention, a non-fluorine-based AlN powder having a specific surface area of less than 12.0 m 2 / g is used without using an alkaline earth compound or a fluorine-based sintering aid which causes various problems. Sintering is performed by firing at a low temperature of 1650 ° C. or less using only a sintering aid of a rare earth compound.

【0018】焼結助剤としてアルカリ土類化合物やフッ
素系のものを使わずにすむため、AlN焼結体の焼けム
ラ、反り、炉やセッターへの拡散による劣化が阻止され
る上、1650℃以下の低温の焼成であるため、焼成容
器の長寿命化や低価格材料化が可能となるとともに消費
電力の節約などのランニングコスト低減も可能となる。
Since it is not necessary to use an alkaline earth compound or a fluorine-based compound as a sintering aid, uneven burning of the AlN sintered body, warpage, deterioration due to diffusion into a furnace or a setter are prevented, and 1650 ° C. Since the firing is performed at a low temperature as described below, it is possible to prolong the life of the firing container and to reduce the cost of the material, as well as to reduce the running cost such as saving the power consumption.

【0019】また、得られるAlN焼結体中のグレイン
サイズが小さくなるため、機械的強度の向上が達成され
る。阻止される上、1650℃以下の低温の焼成である
ため、焼結用容器の長寿命化や低価格材料化が可能とな
るとともに消費電力の節約などのランニングコスト低減
も可能となる。
Further, since the grain size in the obtained AlN sintered body becomes small, the mechanical strength is improved. In addition, since the firing is performed at a low temperature of 1650 ° C. or less, it is possible to extend the life of the sintering container, reduce the cost, and reduce the running cost such as power consumption.

【0020】焼成の前後または焼成中の還元処理を行う
場合は、不純物酸素の除去などにより、高熱伝導率のA
lN焼結体を得られるようになる。
When a reduction treatment is carried out before or after the firing or during the firing, A having a high thermal conductivity is removed by removing impurity oxygen.
The 1N sintered body can be obtained.

【0021】[0021]

【実施例】以下、この発明の実施例を説明する。この発
明は下記の実施例に限らない。 −実施例1− 比表面積が12.0m2 /gのAlN粉末に、焼結助剤
としてし、Y2 3 を3.0重量%添加し、湿式ボール
ミル混合、乾燥整粒の後、一軸プレスにより直径20m
m,高さ10mmの円板状に成型したのち、1.5to
n/cm2 の圧力でCIPを施し、円板状の成形体を得
た。
Embodiments of the present invention will be described below. This invention is not limited to the following embodiments. - the AlN powder of Example 1 a specific surface area of 12.0m 2 / g, and as a sintering aid, were added Y 2 O 3 3.0 wt%, a wet ball mill mixing, after drying sizing, uniaxial 20m diameter by press
m to 1.5 mm after being molded into a disk with a height of 10 mm
CIP was performed at a pressure of n / cm 2 to obtain a disk-shaped molded body.

【0022】続いて、この成形体をBN製ルツボ中に入
れ、ルーズなBN製フタを被せて、カーボン炉中に収納
し、4%のH2 を含有したN2 ガスを流しながら120
0℃まで昇温した後、ガスを100%N2 ガスに切替
え、1650℃に昇温して3時間保持し、AlN焼結体
を得た。 −実施例2− 焼結助剤としてし、Y2 3 をY(NO3 3 に変え、
焼結温度を1600℃とした他は、実施例1と同様にし
てAlN焼結体を得た。
Subsequently, the molded body was placed in a crucible made of BN, covered with a loose lid made of BN, stored in a carbon furnace, and a N 2 gas containing 4% H 2 was flowed while flowing 120.
After the temperature was raised to 0 ° C., the gas was switched to 100% N 2 gas, the temperature was raised to 1650 ° C., and the temperature was maintained for 3 hours to obtain an AlN sintered body. - by way of example 2-sintering agent, changing the Y 2 O 3 in Y (NO 3) 3,
An AlN sintered body was obtained in the same manner as in Example 1 except that the sintering temperature was set to 1600 ° C.

【0023】−実施例3− 比表面積が15.0m2 /gのAlN粉末に、焼結助剤
としてし、Y2 3 を3.0重量%添加し、実施例1と
同様にして円板状の成形体を得たのち、この成形体をア
ルミナセッター中に入れ、アルミナ板でふたをして、カ
ーボン炉中に収納し、4%のH2 を含有したN2 ガスを
流しながら1600℃まで昇温して3時間保持し、Al
N焼結体を得た。4%のH2 を含有したN2 ガスは全工
程で使用した。
-Example 3-A AlN powder having a specific surface area of 15.0 m 2 / g was added with 3.0% by weight of Y 2 O 3 as a sintering aid, and circled in the same manner as in Example 1. After obtaining a plate-shaped molded body, the molded body was placed in an alumina setter, covered with an alumina plate, and housed in a carbon furnace, while flowing N 2 gas containing 4% H 2 at 1600. The temperature is raised to ℃ and kept for 3 hours.
An N sintered body was obtained. N 2 gas containing 4% H 2 was used in all steps.

【0024】−実施例4− 焼結助剤としてし、Y2 3 をLa2 3 に変えた他
は、実施例3と同様にしてAlN焼結体を得た。 −実施例5− アルミナセッターとアルミナ板の代わりに、実施例1の
BN製ルツボとBN製フタを用い、全工程中、100%
2 ガスを用いるようにした他は、実施例3と同様にし
てAlN焼結体を得た。
[0024] - to the Example 4 sintering aid, except for changing the Y 2 O 3 to La 2 O 3, thereby obtaining the AlN sintered body in the same manner as in Example 3. -Example 5-In place of the alumina setter and the alumina plate, the crucible made of BN and the lid made of BN of Example 1 were used, and 100% in all steps
An AlN sintered body was obtained in the same manner as in Example 3 except that N 2 gas was used.

【0025】−比較例1− 比表面積が10.0m2 /gのAlN粉末に、焼結助剤
としてし、Y2 3 を3.0重量%添加し、実施例1と
同様にして円板状の成形体を得たのち、この成形体をB
N製ルツボ中に入れ、ルーズなBN製フタを被せて、カ
ーボン炉中に収納し、100%N2 ガスを流しながら、
1650℃に昇温して3時間保持し、AlN焼結体を得
た。
-Comparative Example 1-AlN powder having a specific surface area of 10.0 m 2 / g was added with 3.0% by weight of Y 2 O 3 as a sintering aid, and circled in the same manner as in Example 1. After obtaining a plate-shaped molded body,
Put it in an N crucible, cover it with a loose BN lid, store it in a carbon furnace, and let 100% N 2 gas flow,
The temperature was raised to 1650 ° C. and maintained for 3 hours to obtain an AlN sintered body.

【0026】−比較例2− 焼結助剤としてし、Y2 3 を3.0重量%およびCa
Oを0.5重量%添加した他は、比較例1と同様にして
AlN焼結体を得た。 −比較例3− AlN粉末として、比表面積が3.0m2 /gのAlN
粉末を用いた他は、比較例2と同様にしてAlN焼結体
を得た。
-Comparative Example 2-3.0% by weight of Y 2 O 3 and Ca as a sintering aid.
An AlN sintered body was obtained in the same manner as in Comparative Example 1 except that 0.5% by weight of O was added. -Comparative Example 3-AlN powder having a specific surface area of 3.0 m 2 / g as AlN powder
An AlN sintered body was obtained in the same manner as in Comparative Example 2 except that the powder was used.

【0027】実施例および比較例における焼成条件の主
なもの、実施例および比較例で得られた各AlN焼結体
について測定した密度、グレインサイズ、熱伝導率およ
び曲げ強度を、表1,表2に記す。
Tables 1 and 2 show the main firing conditions in Examples and Comparative Examples, and the density, grain size, thermal conductivity and bending strength measured for each AlN sintered body obtained in Examples and Comparative Examples. Note in 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表2にみるように、実施例のAlN焼結体
は、アルカリ土類系やフッ素系の焼結助剤を使わずと
も、十分に緻密化しており、又、高い熱伝導率と曲げ強
度を兼ね備えているが、比較例のAlN焼結体は、これ
らの特性を兼ね備えてはいなかった。
As shown in Table 2, the AlN sintered bodies of Examples were sufficiently densified without using an alkaline earth-based or fluorine-based sintering aid, and had high thermal conductivity. Although it also has bending strength, the AlN sintered body of the comparative example did not have these characteristics.

【0031】[0031]

【発明の効果】この発明にかかるAlN焼結体の製造方
法では、1650℃以下の低温焼成であるため、焼成治
具用容器の長寿命化および低価格材容器の使用が可能と
なるとともに消費電力の節約などによるランニングコス
トの低減も可能となる上、アルカリ土類系やフッ素系の
焼結助剤を使わずにすむため、焼けムラ、反り、炉やセ
ッターへの拡散による劣化が防げるだけでなく、グレイ
ンサイズが小さくなり、機械的強度に優れたAlN焼結
体が安価に得られ、加えて還元処理が施される場合には
AlN焼結体の熱伝導率の向上も可能となり、したがっ
て、この発明は実用的であって非常に有用である。
In the method for manufacturing an AlN sintered body according to the present invention, since the firing is performed at a low temperature of 1650 ° C. or lower, the life of the firing jig container can be extended and the low-priced material container can be used and consumed. Running costs can be reduced by saving electricity, and since alkaline earth-based and fluorine-based sintering aids are not used, uneven burning, warpage, and deterioration due to diffusion into the furnace or setter can be prevented. Not only that, the grain size becomes smaller, an AlN sintered body having excellent mechanical strength can be obtained at low cost, and in addition, when the reduction treatment is performed, the thermal conductivity of the AlN sintered body can be improved, Therefore, the present invention is practical and very useful.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月24日[Submission date] February 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】明細書[Document name] Statement

【発明の名称】窒化アルミニウム焼結体の製造方法Title: Method for producing aluminum nitride sintered body

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、窒化アルミニウム焼
結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum nitride sintered body.

【0002】[0002]

【従来の技術】IC等に代表されるような半導体素子の
高集積化や大電力化が進み、これに伴って、放熱性の良
い電気絶縁材料が要求されるようになった。その中で
も、特に窒化アルミニウム焼結体からなる絶縁基板が、
熱伝導性、熱膨張性、電気絶縁性等の点で優れていると
いうことから、注目され実用化も進んでいる。
2. Description of the Related Art With the progress of higher integration and higher power consumption of semiconductor elements represented by ICs and the like, along with this, there has been a demand for an electrically insulating material having a good heat dissipation property. Among them, especially the insulating substrate made of aluminum nitride sintered body,
Since it is excellent in terms of thermal conductivity, thermal expansion, electrical insulation, etc., it has attracted attention and is being put into practical use.

【0003】しかしながら、窒化アルミニウムの焼結体
は、原料の窒化アルミニウム粉末が高価であるとともに
難焼結性で1750℃以上の高温焼成を必要とするた
め、非常に高価なものとなっていた。このため、焼成温
度を下げてコスト低減を図る窒化アルミニウム焼成体の
製造方法が提案される。窒化アルミニウム粉末に、焼結
助剤として、稀土類元素のフッ化物や酸化物とアルカリ
土類元素のフッ化物は酸化物とを併用することが提案さ
れている(特開昭61−209959号公報,USP
4,746,637号)。ここでは、1550〜170
0℃という定温焼成で緻密で高熱伝導率の窒化アルミニ
ウム焼結体が得られるとされている。しかしながら、上
記の方法の場合、以下のような問題がある。
However, the aluminum nitride sintered body is very expensive because the raw material aluminum nitride powder is expensive and it is difficult to sinter and requires high temperature firing at 1750 ° C. or higher. For this reason, a method of manufacturing an aluminum nitride fired body is proposed in which the firing temperature is lowered to reduce the cost. It has been proposed to use a fluoride or oxide of a rare earth element and an oxide of a fluoride of an alkaline earth element in combination with aluminum nitride powder as a sintering aid (Japanese Patent Laid-Open No. 61-209959). , USP
4,746,637). Here, 1550 to 170
0 dense and high thermal conductivity aluminum nitride sintered body at a constant temperature firing that ℃ is to be obtained. Nevertheless, if the above methods have the following problems.

【0004】焼結助剤にフッ化物を用いると、焼成時に
焼結助剤の分解で生じたフッ素元素が簡単にHFなどの
腐食性・毒のガスになり、作業者の健康への悪影響や焼
成炉等の損傷などの問題が起るために実用的とは言えな
い。焼結助剤としての稀土類化合物とアルカリ土類化合
物の併用は、稀土類化合物の単独使用の場合に比べ、液
相形成温度の低下が認められ、そのため、低温での焼結
が可能となるのであるが、同時に液相形成による粒成長
が顕著のなるため高熱伝導率化には有利でも機械的強度
の面では不利となる。また、アルカリ土類の場合、焼成
中に拡散が起り易く、焼結体中で不均一な分布を生じ易
く、また、窒化アルミニウム焼結体の焼けムラ、焼成炉
や治具であるセッターへの付着反応による劣化などとい
った問題を生じる。加えて、上記の液相は厚い粒界層を
形成してグレインを取り巻くため、破壊モードが粒界破
壊となる。一般に機械強度は稀土類化合物単独の場合に
比べて低下してしまう。稀土類化合物がY単独の
場合を例にとると、1760℃でAlとの間で液
相を形成し、この液相が窒化アルミニウムのグレインを
濡らしはするのであるが、アルカリ土類のように厚い
界層を形成せずに粒界の三重点に集まり易くて粒界層は
非常に薄くなり、この結果、破壊モードは粒界破壊では
なく粒内破壊となり易い。粒内破壊の方が粒界破壊に比
べて、一般的に機械的強度は高くなる。
When a fluoride is used as a sintering aid, elemental fluorine produced by decomposition of the sintering aid during firing easily becomes a corrosive / poisonous gas such as HF, which adversely affects the health of workers. It is not practical because problems such as damage to the firing furnace occur. When a rare earth compound and an alkaline earth compound are used together as a sintering aid, the liquidus formation temperature is lower than that when the rare earth compound is used alone, which enables sintering at a low temperature. However, since grain growth due to liquid phase formation becomes remarkable at the same time, it is advantageous for achieving high thermal conductivity but disadvantageous in terms of mechanical strength. Further, in the case of alkaline earth, diffusion is likely to occur during firing, uneven distribution is likely to occur in the sintered body, uneven burning of the aluminum nitride sintered body, sintering furnace or a setter which is a jig. Problems such as deterioration due to adhesion reaction occur. In addition, since the liquid phase forms a thick grain boundary layer and surrounds the grains, the fracture mode is grain boundary fracture. In general, the mechanical strength is lower than that of the rare earth compound alone. Taking the case where the rare earth compound is Y 2 O 2 alone, a liquid phase is formed with Al 2 O 3 at 1760 ° C., and this liquid phase wets the aluminum nitride grains. Unlike the alkaline earth, it is easy to gather at the triple points of the grain boundaries without forming a thick grain boundary layer, and the grain boundary layer becomes very thin. As a result, the fracture mode is not the intergranular fracture but the intragranular fracture. Intragranular fracture generally has higher mechanical strength than intergranular fracture.

【0005】[0005]

【発明が解決しようとする手段】この発明は、上記事情
にい鑑み、熱伝導率および機械的強度に優れた窒化アル
ミニウム焼結体を安価に得ることのできる実用的な方法
を提供することを課題とする。
In view of the above circumstances, the present invention provides a practical method capable of inexpensively obtaining an aluminum nitride sintered body excellent in thermal conductivity and mechanical strength. It is an issue.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる窒化アルミニウム焼結体の製造方
法は、窒化アルミニウム粉末に焼結助剤を添加し成型し
てなる成形体を、非酸化性雰囲気で焼成することにより
焼結させるにあたり、前記窒化アルミニウム粉末の比表
面積が12.0m/g以上であって、前記焼結助剤
が、非フッ系の酸素を含む稀土類化合物であり、前記
非酸化性雰囲気での焼成を1650℃以下の温度で行う
ようにしている。
In order to solve the above-mentioned problems, a method for producing an aluminum nitride sintered body according to the present invention is a method of forming a molded body obtained by adding a sintering aid to aluminum nitride powder and molding the same. Upon sintering by firing in an oxidizing atmosphere, before Symbol specific surface area of the aluminum nitride powder is not more 12.0m 2 / g or more, the sintering aid, rare earth containing oxygen non fluorine system It is a compound, and the firing in the non-oxidizing atmosphere is performed at a temperature of 1650 ° C. or lower.

【0007】この発明において、焼成の前後または焼成
中に還元処理を行うようにする形態は、以下詳しく述べ
るように、得られる窒化アルミニウム焼結体(以下、
「AlN焼結体」と言う)の熱伝導率高める上で有効
であり、有用な形態ということが出来る。この発明にお
いて、比表面積が12.0m/g以上の微小粒径の窒
化アルミニウム粉末(以下、「AlN粉末」と言う)を
用いる理由は、非フッ系の酸素を含む稀土類化合物
(稀土類元素の含酸素化合物)、すなわち稀土類化合
物,焼成で稀土類化合物となる非フッ系の化合物から
なる稀土類化合物群の範囲にある化合物だけの使用のも
とに1650℃以下の低温焼成で焼結させられるように
なるからである。
In the present invention, the form in which the reduction treatment is carried out before or after the firing or during the firing is, as described in detail below, the obtained aluminum nitride sintered body (hereinafter,
Is effective in increasing the thermal conductivity of the referred to as "AlN sintered body"), it can be said that the useful form. In the present invention, a specific surface area of 12.0m 2 / g or more micro-grain size of the aluminum nitride powder (hereinafter, referred to as "AlN powder") The reason for using the rare earth compound containing oxygen non fluorine system (rare oxygen-containing compounds s elements), i.e. rare earth compound, firing a rare earth compound comprising a compound only original low temperature sintering of 1650 ° C. or less to the use in rare earth range of compounds consisting of compounds of the non-fluorine-based This is because they can be sintered in.

【0008】前述したように、稀土類元素のフッ化合物
又は酸化物とアルカリ土類元素のフッ化物又は酸化物を
併用すると、比表面積が12.0m/g未満のAlN
粉末でも焼結可なのであるが、粒成長などによる機械的
強度の低下、AlN焼結体の焼けムラ、焼成炉やセッタ
ーの劣化等の問題を生じる。この発明は、併用形態をと
らずとも、低温焼成で焼結させられるようになる上記併
用の不都合が解消できるようになる。
As mentioned above, when a fluorine compound or oxide of a rare earth element and a fluoride or oxide of an alkaline earth element are used in combination, AlN having a specific surface area of less than 12.0 m 2 / g.
Although powder can be sintered, problems such as a decrease in mechanical strength due to grain growth, uneven burning of an AlN sintered body, deterioration of a firing furnace and a setter, and the like occur. According to the present invention, it is possible to eliminate the above-mentioned inconvenience of the combined use that the sintering can be performed by low temperature firing without using the combined form.

【0009】代表的な稀土類元素の含酸素化合物である
を例にとると、YとAlN粉末表面のA
とで共晶融液を形成するのが、1760℃以上
であり、液相焼結を行うには、これ以上の温度で焼成す
ることが必要となる。発明者らの検討によると、比表面
積が3.0m/g程度の粗いAlN粉末を用い、Y
単独で焼結させようとすると、上述の液相焼結は不
可欠であり、1760℃以上の高温焼成が必須となる。
そこで、発明者らは、検討を続け、AlN粉末の粒径を
さらに細かくしてゆくと液相焼結でなく固相焼結が可能
で焼成温度の低減が図れるようであことを見いだしたの
である。比表面積が12.0m/g未満のAlN粉末
だと1700℃を越す焼成温度が必要なのであるが、比
表面積が12.0m/g以上のAlN粉末だと非フッ
系稀土類化合物の焼結助剤だけで1650℃以下の焼
成温度で焼結が可能であることを見いだしたのである。
Taking Y 2 O 2 which is a typical oxygen-containing compound of rare earth elements as an example, Y 2 O 3 and A on the surface of AlN powder are
The temperature at which the eutectic melt is formed with l 2 O 3 is 1760 ° C. or higher, and in order to perform liquid phase sintering, firing at a temperature higher than this is required. According to a study by the inventors, a coarse AlN powder having a specific surface area of about 3.0 m 2 / g was used and Y 2
When attempting to sinter O 3 alone, the liquid phase sintering described above is indispensable, and high temperature firing at 1760 ° C. or higher is indispensable.
Therefore, the inventors continued to study and determine the particle size of AlN powder.
It was discovered that further refinement would allow solid-state sintering instead of liquid-phase sintering, thus reducing the firing temperature. AlN powder with a specific surface area of less than 12.0 m 2 / g requires a firing temperature above 1700 ° C., but AlN powder with a specific surface area of 12.0 m 2 / g or more is non-fluorescent.
It was found that at 1650 ° C. below the firing temperature only sintering aid containing system rare earth compound capable sintering.

【0010】1650℃以下の焼成で焼結が可能となる
と、焼成コストの低減に反映されるメリットがある。具
体的には、焼成容器として使われている高価なBN容器
の寿命が大幅に伸びることが挙げられるし、さらに、高
価なBN容器の代わりに安価なアルミ系容器の使用が可
能となることも挙げられる。安価なアルミナ系容器は1
650℃を超える焼成では高温クリープによる変形が著
しくなるため従来なら使えない。さらに、消費電力の節
約などで焼成炉のランニングコストの面でもコストダウ
ンが図れる。
If sintering can be performed by firing at 1650 ° C. or lower, there is an advantage reflected in reduction of firing cost. Specifically, it can be mentioned that the life of an expensive BN container used as a firing container is significantly extended, and further, an inexpensive aluminum container can be used instead of the expensive BN container. Can be mentioned. 1 inexpensive alumina container
If the firing temperature exceeds 650 ° C, the deformation due to high temperature creep becomes remarkable, and thus it cannot be used conventionally. Further, the running cost of the firing furnace can be reduced by saving power consumption.

【0011】続いて、この発明で得るAlN焼結体の熱
伝導率や機械的強度に関して述べる。上で述べたよう
に、この発明の場合、比表面積が12.0m/g以上
の微細なAlN粉末を用い、非フッ系稀土類化合物の
焼結助剤だけで1650℃以下の焼成温度で焼結を行う
ので、その焼結メカニズムは液相焼結ではなく固相焼結
であると考えられるのである。それ故、AlN焼結体の
グレインサイズは1650℃以下でも液相を形成するア
ルカリ土類化合物を焼結助剤として用いた場合に比べ小
さく、この結果、機械的強度が大きくなる。ただ、Al
N焼結体のグレインサイズが小さくなることで熱伝導率
は普通は小さくなる傾向がある。なぜなら、AlN焼結
体での熱伝導機構はフォノン伝導であり、このフォノン
伝導は粒界部分で散乱を起こし易く、グレインサイズの
小さなAlN焼結体の場合は粒界部分が多く、この結
果、このフォノン散乱も大きく、熱伝導が妨げられるか
らである。
Next, the thermal conductivity and mechanical strength of the AlN sintered body obtained by the present invention will be described. As noted above, in this invention, a specific surface area using the above fine A l N powder 12.0m 2 / g, sintering of 1650 ° C. or less only sintering aid non fluorine-based rare-earth compound Since the sintering is performed at a temperature, it is considered that the sintering mechanism is solid phase sintering, not liquid phase sintering. Therefore, the grain size of the AlN sintered body is smaller than that when an alkaline earth compound that forms a liquid phase is used as a sintering aid even at 1650 ° C. or less, and as a result, the mechanical strength is increased. However, Al
The thermal conductivity usually tends to decrease as the grain size of the N sintered body decreases. This is because the heat conduction mechanism in the AlN sintered body is phonon conduction, and this phonon conduction easily causes scattering in the grain boundary portion, and in the case of the AlN sintered body having a small grain size, there are many grain boundary portions. This is because this phonon scattering is large and heat conduction is hindered.

【0012】また、熱伝導率低下と原因となるAlN粉
末中の不純物酸素は、一般にAlN粉末の比表面積が大
きくなる(粒径が細かくなる)ほど増加する。というの
は、不純物酸素はAlN粉末の表層に存在し易いからで
ある。したがって、比表面積が12.0m/g以上の
微細なAlN粉末を用いるこの発明では、不純物酸素量
が、必然的に粒径の大きなAN粉末を用いる場合に比べ
て多くなる。
Impurity oxygen in the AlN powder, which causes a decrease in thermal conductivity, generally increases as the specific surface area of the AlN powder increases (particle size decreases). This is because the impurity oxygen is likely to exist in the surface layer of the AlN powder. Therefore, in the present invention in which a fine AlN powder having a specific surface area of 12.0 m 2 / g or more is used, the amount of impurity oxygen inevitably increases as compared with the case of using AN powder having a large particle size.

【0013】このように、この発明で得るAlN焼結体
はグレインサイズが小さいこと、原料のAlN粉末中の
不純物酸素の多いことで、熱伝導率の点では不利であ
る。しかしながら、この発明において、焼成の前後また
は焼成中に還元処理がなされるならば、熱伝導率を向上
させることが出来る。この還元処理でAlN粉末中の不
純物酸素が減り、その分、熱伝導率が高まる。すなわ
ち、不純物酸素を減じても、基本的には焼結体のグレイ
ンサンイズに変化は余り生じないため、やはり、グレン
サイズによる熱伝導率の減少の解消、つまり高熱伝導化
には不利ではあるが、一方、焼結時にAlNグレイン内
にAlN粒子表層の酸素が一部取り込まれてしまうこと
によるAlNグレインそのものの熱伝導率の低下は、還
元処理による酸素量の低減により緩和される。そのた
め、グレインサイズは小さいながらも、高純度化により
高熱伝導率が達成でき、効果的には、グレンサイズによ
る熱伝導率の減少の解消につながるのである。
As described above, the AlN sintered body obtained according to the present invention has a small grain size and a large amount of impurity oxygen in the starting AlN powder, which is disadvantageous in terms of thermal conductivity. However, in the present invention, the thermal conductivity can be improved if the reduction treatment is performed before or after the firing or during the firing. This reduction treatment reduces the amount of impurity oxygen in the AlN powder, and the heat conductivity increases accordingly. Sanawa
Even if the impurity oxygen is reduced, the gray color of the sintered body is basically
Since there is not much change in quality, Glenn
Eliminating the decrease in thermal conductivity due to size, that is, high thermal conductivity
On the other hand, but inside the AlN grain during sintering
Part of the oxygen in the surface layer of AlN particles is taken in by
The decrease in the thermal conductivity of AlN grain itself due to
It is alleviated by the reduction of the amount of oxygen by the original treatment. That
Therefore, although the grain size is small, due to high purification
High thermal conductivity can be achieved and effectively depends on the grain size.
This leads to the elimination of the decrease in thermal conductivity.

【0014】上述の要点を簡単にまとめると以下のよう
なことになる。この発明では、種々の問題の原因となる
アルカリ土類化合物やフッ素系の焼結助剤を使わず、経
済的な焼成コストを可能とする1650℃以下の低温焼
成で焼結させるために、原料として12m/g以上の
微粒子のAlN粉末と稀土類元素の含酸素化合物を用い
る。その結果、焼結体中のグレインサイズはアルカリ土
類化合物を使った場合の比較して小さくなるため、機械
的強度の向上が図れる。また、熱伝導率に関しては還元
処理の採用によるAlN粉末の不純物酸素の還元で向上
させることが可能となる。
[0014] will be as follows: melt summarized briefly the above-mentioned point. In the present invention, a raw material is used for sintering at low temperature of 1650 ° C. or lower, which does not use an alkaline earth compound or a fluorine-based sintering additive that causes various problems and enables economical firing cost. As the powder, AlN powder of 12 m 2 / g or more and an oxygen-containing compound of a rare earth element are used. As a result, the grain size in the sintered body becomes smaller than that in the case where the alkaline earth compound is used, so that the mechanical strength can be improved. Further, the thermal conductivity can be improved by reducing the impurity oxygen of the AlN powder by adopting the reduction treatment.

【0015】焼結助剤として使う非フッ素系の稀土類化
合物(稀土類元素の含酸素化合物)における稀土類元素
としてはY,La,Dy,Er,Ce,Sm,Pm,N
d,Eu,Gd,Tb,Pr,Tm,Lu,Ho,Yd
などの酸化物、焼成で稀土類酸化物となる化合物として
の炭酸化物、硝酸化物、水酸化物、しゅう酸化物などの
形態のものが挙げられる。焼結助剤の使用にあたって
は、稀土類酸化物を複数種併用したり、焼成で稀土類酸
化物となる化合物を複数種併用したり、稀土類酸化物と
焼成で稀土類酸化物となる化合物を併用したりするよう
にしてもよい。焼結助剤の添加量に関しては、得られる
AlN焼結体全体を100重量%とすると、そのうち焼
結助剤が0.1〜10重量%を占めるようになるように
する。
The rare earth elements in the fluorine-free rare earth compounds (oxygen-containing compounds of rare earth elements) used as sintering aids are Y, La, Dy, Er, Ce, Sm, Pm, N.
d, Eu, Gd, Tb, Pr, Tm, Lu, Ho, Yd
And oxides such as carbonates, nitric oxides, hydroxides, and oxalates as compounds that become rare earth oxides upon firing. When using sintering aids, multiple rare earth oxides may be used in combination, multiple compounds that become rare earth oxides by firing may be used in combination, and rare earth oxides and compounds that become rare earth oxides by firing may be used. You may make it use together. Regarding the addition amount of the sintering aid, if the total amount of the obtained AlN sintered body is 100% by weight, the sintering aid will occupy 0.1 to 10% by weight.

【0016】焼成は、1400程度から1650℃ま
での温度範囲で1〜6時間程度の時間行うが、この焼成
条件に限らない。還元処理は、焼成の前後または焼結の
ための焼成中のいずれでもよいが、焼結の進んでいない
前が酸素が除去され易い。例えば、1650℃で焼結を
行う場合、1200℃までを還元雰囲気とし、その後は
中性雰囲気で焼結させるようにしてもよいし、全焼成中
を還元雰囲気とし焼結処理と還元処理を同時に平行して
殆ど同じ期間だけ行うようにしてもよい。還元処理に使
える還元雰囲気としは、H,CO,NH,CH
,C,C等の還元性ガス雰囲気が
挙られ、これらの還元性ガスをN,Ar等の中性ガス
雰囲気と組み合わせることで効果的な処理雰囲気を実現
することができる。さらに、焼成炉がカーボンヒータや
カーボン炉材を使用したカーボン炉である場合、蒸気相
炭素による還元雰囲気の形成が容易である。
The firing is performed in the temperature range of about 1400 ° C. to 1650 ° C. for about 1 to 6 hours, but the firing conditions are not limited to this. The reduction treatment may be performed before or after firing or during firing for sintering, but oxygen is easily removed before the sintering has progressed. For example, when sintering is performed at 1650 ° C., the reducing atmosphere may be performed up to 1200 ° C., and then the sintering may be performed in a neutral atmosphere. You may make it parallel and only perform the substantially same period. The reducing atmosphere that can be used for the reducing treatment includes H 2 , CO, NH 3 , CH 4 ,
A reducing gas atmosphere such as C 2 H 4 , C 2 H 6 , C 3 H 8 or the like is mentioned. By combining these reducing gases with a neutral gas atmosphere such as N 2 or Ar, an effective processing atmosphere can be obtained. Can be realized. Further, when the firing furnace is a carbon furnace using a carbon heater or carbon furnace material, it is easy to form a reducing atmosphere by vapor phase carbon.

【0017】[0017]

【作用】この発明の場合、種々の問題を生じるアルカリ
土類化合物よフッ素系の焼結助剤は使わずに、比表面積
が12.0m/g以上のAlN粉末に対して非フッ素
系の稀土類化合物の焼結助剤だけを用い、1650℃以
下の低温の焼成で焼結させられる。
In the case of the present invention, a non-fluorine-based AlN powder having a specific surface area of 12.0 m 2 / g or more is used without using an alkaline earth compound which causes various problems and a fluorine-based sintering aid. Sintering is performed by firing at a low temperature of 1650 ° C. or less using only a sintering aid of a rare earth compound.

【0018】焼結助剤としてアルカリ土類化合物やフッ
素系のものを使わずにすむため、AlN焼結体の焼けム
ラ、反り、炉やセッターへの拡散による劣化が阻止され
る上、1650℃以下の低温の焼成であるため、焼成容
器の長寿命化や低価格材料化が可能となるとともに消費
電力の節約などのランニングコスト低減も可能となる。
Since it is not necessary to use an alkaline earth compound or a fluorine-based compound as a sintering aid, uneven burning of the AlN sintered body, warpage, deterioration due to diffusion into a furnace or a setter are prevented, and 1650 ° C. Since the firing is performed at a low temperature as described below, it is possible to prolong the life of the firing container and to reduce the cost of the material, as well as to reduce the running cost such as saving the power consumption.

【0019】また、得られるAlN焼結体中のグレイン
サイズが小さくなるため、機械的強度の向上が達成され
Further, since the grain size in the obtained AlN sintered body becomes small, the mechanical strength is improved .

【0020】焼成の前後または焼成中の還元処理を行う
場合は、不純物酸素の除去などにより、高熱伝導率のA
lN焼結体を得られるようになる。
When a reduction treatment is carried out before or after the firing or during the firing, A having a high thermal conductivity is removed by removing impurity oxygen.
The 1N sintered body can be obtained.

【0021】[0021]

【実施例】以下、この発明の実施例を説明する。この発
明は下記の実施例に限らない。 −実施例1− 比表面積が12.0m/gのAlN粉末に、焼結助剤
として、を3.0重量%添加し、湿式ボールミ
ル場合、乾燥整粒の後、一軸プレスにより直径20m
m、高さmmの円板状に成型したのち、1.5ton
/cmの圧力でCIPを施し、円板状の成形体を得
た。
Embodiments of the present invention will be described below. This invention is not limited to the following embodiments. - the AlN powder of Example 1 a specific surface area of 12.0m 2 / g, as a sintering aid <br/>, added Y 2 O 3 3.0 wt%, when wet ball mill, dried sized After that, the diameter is 20m by uniaxial press
m, height 5 mm, molded into a disk, then 1.5 ton
CIP was performed at a pressure of / cm 2 to obtain a disk-shaped molded body.

【0022】続いて、この成形体をBN製ルツボ中に入
れ、ルーズなBN製フタを被せて、カーボン炉中に収納
し、4%のHを含有したNガスを流しながら120
0℃まで昇温した後、ガスを100%Nガスに切替え
1650℃に昇温して3時間保持し、AlN焼結体を得
た。 −実施例2− 焼結助剤として、Y(NOをY換算で3重
量%添加し、焼結温度を1600℃とした他は実施例1
と同様にしてAlN焼結体を得た。
Subsequently, the molded body was placed in a crucible made of BN, covered with a loose lid made of BN, housed in a carbon furnace, and a N 2 gas containing 4% H 2 was flowed while flowing 120.
After the temperature was raised to 0 ° C., the gas was switched to 100% N 2 gas, the temperature was raised to 1650 ° C., and the temperature was maintained for 3 hours to obtain an AlN sintered body. - As Example 2 sintering aids, triple the Y (NO 3) 3 in terms of Y 2 O 3
Example 1 except that the sintering amount was 1600 ° C.
An AlN sintered body was obtained in the same manner as in.

【0023】−実施例3− 比表面積が15.0m/gのAlN粉末に、焼結助剤
として、を3.0重量%添加し、実施例1と同
様にして円板状の成形体を得たのち、この成形体をアル
ミセッター中に入れ、アルミナ板でふたをして、カーボ
ン炉中に収納し、4%のHを含有したNガスを流し
ながら1600℃まで昇温して3時間保持し、AlN焼
結体を得た。4%のHを含有したNガスは全工程で
使用した。
[0023] - the AlN powder of Example 3 a specific surface area of 15.0 m 2 / g, as a sintering aid <br/>, added Y 2 O 3 3.0 wt%, as in Example 1 Similarly, after obtaining a disk-shaped molded body, the molded body was placed in an aluminum setter, covered with an alumina plate, and housed in a carbon furnace to contain N 2 gas containing 4% H 2. While flowing, the temperature was raised to 1600 ° C. and held for 3 hours to obtain an AlN sintered body. N 2 gas containing 4% H 2 was used in all steps.

【0024】−実施例4− 焼結助剤として、をLaに変えた他は、
実施例3と同様にしてAlN焼結体を得た。 −実施例5− アルミセッターとアルミナ板の代わりに、実施例1のB
N製ルツボとBN製フタを用い、全工程中、100%N
ガス用いるようにした他は、実施例3と同様にしてA
lN焼結体を得た。
[0024] - as an example of 4-sintering agent, except for changing the Y 2 O 3 to La 2 O 3 is
An AlN sintered body was obtained in the same manner as in Example 3. -Example 5-B of Example 1 was used instead of the aluminum setter and the alumina plate.
Using N crucible and BN lid, 100% N in all steps
A was the same as in Example 3 except that 2 gases were used.
An IN sintered body was obtained.

【0025】−比較例1− 比表面積が10.0m/gのAlN粉末に、焼結助剤
として、を3.0重量%添加し、実施例1と同
様にして円板状の成形体を得たのち、この成形体をBN
製ルツボ中に入れ、ルーズなBN製フタを被せて、カー
ボン炉中に収納し、100%Nガスを流しながら、1
650℃に昇温して3時間保持し、AlN焼結体を得
た。
[0025] - the AlN powder of Comparative Example 1 a specific surface area of 10.0 m 2 / g, as a sintering aid <br/>, added Y 2 O 3 3.0 wt%, as in Example 1 Similarly, after obtaining a disk-shaped molded body, this molded body was BN
Put it in a crucible made of steel, cover it with a loose BN lid, store it in a carbon furnace, and while flowing 100% N 2 gas,
The temperature was raised to 650 ° C. and maintained for 3 hours to obtain an AlN sintered body.

【0026】−比較例2− 焼結助剤として、を3.0重量%およびCaO
を0.5重量%添加した他は、比較例1と同様にしてA
lN焼結体を得た。 −比較例3− AlN粉末として、比表面積が3.0m/gのAlN
粉末を用いた他は、比較例2と同様にしてAlN焼結体
を得た。
[0026] - as a comparative example 2 sintering aids, a Y 2 O 3 3.0 wt% and CaO
Was added in the same manner as in Comparative Example 1 except that 0.5% by weight of A was added.
An IN sintered body was obtained. -Comparative Example 3-AlN powder having a specific surface area of 3.0 m 2 / g
An AlN sintered body was obtained in the same manner as in Comparative Example 2 except that the powder was used.

【0027】実施例および比較例における焼結条件の主
なもの、実施例および比較例で得られた各AlN焼結体
について測定した密度、グレインサイズ、熱伝導率およ
び曲げ強度を、表1,表2に記す。
Table 1 shows the main sintering conditions in Examples and Comparative Examples, and the density, grain size, thermal conductivity and bending strength measured for each AlN sintered body obtained in Examples and Comparative Examples. The results are shown in Table 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表2にみるように、実施例のAlN焼結体
は、アルカリ土類系やフッ素系の焼結助剤を使わずと
も、十分に緻密化しており、又、高い熱伝導率の曲げ強
度を兼ね備えているが、比較例のAlN焼結体は、これ
らの特性を兼ね備えてはいなかった。
As shown in Table 2, the AlN sintered bodies of Examples were sufficiently densified without using an alkaline earth-based or fluorine-based sintering aid, and had a high thermal conductivity. Although it also has bending strength, the AlN sintered body of the comparative example did not have these characteristics.

【0031】[0031]

【発明の効果】この発明にかかるAlN焼結体の製造方
法では、1650℃以下の低温焼成であるため、焼成治
具容器の長寿命化および低価格材容器の使用が可能とな
るとともに消費電力の節約などによるランニングコスト
の低減も可能となる上、アルカリ土類系やフッ素系の焼
結助剤を使わずにすむため、焼けムラ、反り、炉やセッ
ターへの拡散による劣化が防げるだけでなく、グレイン
サイズが小さくなり、機械的強度に優れたAlN焼結体
が安価に得られ、加えて還元処理が施される場合にはA
lN焼結体の熱伝導率の向上も可能となり、したがっ
て、この発明は実用的であって非常に有用である。
In the method for manufacturing an AlN sintered body according to the present invention, since the firing is performed at a low temperature of 1650 ° C. or less, it is possible to extend the life of the firing jig container and use a low-priced material container, and to consume less power. It is possible to reduce running costs by saving energy, and since it does not require the use of alkaline earth or fluorine-based sintering aids, uneven burning, warping, and deterioration due to diffusion into the furnace or setter can be prevented. In addition, the grain size is reduced, and an AlN sintered body having excellent mechanical strength can be obtained at a low cost.
It is also possible to improve the thermal conductivity of the 1N sintered body, and therefore, the present invention is practical and very useful.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 恭史 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Tanaka 1048 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム粉末に焼結助剤を添加
し成型してなる成形体を、非酸化性雰囲気で焼成するこ
とにより焼結させる窒化アルミニウム焼結体の製造方法
において、前記窒化アルミニウム粉末の比表面積が1
2.0m2 /g以上であって、前記焼結助剤が、非フッ
化系の酸素を含む稀土類化合物であり、前記非酸化性雰
囲気での焼成を1650℃以下の温度で行うことを特徴
とする窒化アルミニウム焼結体の製造方法。
1. A method for producing an aluminum nitride sintered body, which comprises sintering a molded body formed by adding a sintering aid to aluminum nitride powder and firing the sintered body in a non-oxidizing atmosphere. Has a specific surface area of 1
2.0 m 2 / g or more, the sintering aid is a non-fluorinated rare earth compound containing oxygen, and the firing in the non-oxidizing atmosphere is performed at a temperature of 1650 ° C. or less. A method for producing a characteristic aluminum nitride sintered body.
【請求項2】 焼成の前後または焼成中に還元処理も行
う請求項1記載の窒化アルミニウム焼結体の製造方法。
2. The method for producing an aluminum nitride sintered body according to claim 1, wherein a reduction treatment is also performed before or after firing or during firing.
JP43A 1992-12-22 1992-12-22 Production of aluminum mitride sintered compact Pending JPH06191955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06191955A (en) 1992-12-22 1992-12-22 Production of aluminum mitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06191955A (en) 1992-12-22 1992-12-22 Production of aluminum mitride sintered compact

Publications (1)

Publication Number Publication Date
JPH06191955A true JPH06191955A (en) 1994-07-12

Family

ID=18357472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06191955A (en) 1992-12-22 1992-12-22 Production of aluminum mitride sintered compact

Country Status (1)

Country Link
JP (1) JPH06191955A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062686A1 (en) * 2000-02-24 2001-08-30 Ibiden Co., Ltd. Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
JP2002173372A (en) * 2000-12-04 2002-06-21 Toshiba Electronic Engineering Corp Aluminum nitride substrate and its production process
US6888236B2 (en) 2000-03-07 2005-05-03 Ibiden Co., Ltd. Ceramic substrate for manufacture/inspection of semiconductor
JP2006199535A (en) * 2005-01-20 2006-08-03 Mitsui Chemicals Inc Aluminum nitride sintered compact and its manufacturing method
JP2006273584A (en) * 2005-03-25 2006-10-12 Ngk Insulators Ltd Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062686A1 (en) * 2000-02-24 2001-08-30 Ibiden Co., Ltd. Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
US6861165B2 (en) 2000-02-24 2005-03-01 Ibiden Co., Ltd. Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
US6929874B2 (en) 2000-02-24 2005-08-16 Ibiden Co., Ltd. Aluminum nitride sintered body, ceramic substrate, ceramic heater and electrostatic chuck
US6888236B2 (en) 2000-03-07 2005-05-03 Ibiden Co., Ltd. Ceramic substrate for manufacture/inspection of semiconductor
JP2002173372A (en) * 2000-12-04 2002-06-21 Toshiba Electronic Engineering Corp Aluminum nitride substrate and its production process
JP2006199535A (en) * 2005-01-20 2006-08-03 Mitsui Chemicals Inc Aluminum nitride sintered compact and its manufacturing method
JP2006273584A (en) * 2005-03-25 2006-10-12 Ngk Insulators Ltd Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact

Similar Documents

Publication Publication Date Title
US8236722B2 (en) Aluminum oxide sintered product and method for producing the same
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
KR100445050B1 (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
JP5039097B2 (en) Power module
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JPH06191955A (en) Production of aluminum mitride sintered compact
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JPS6217076A (en) Aluminum nitride powder composition
JP4221006B2 (en) Silicon nitride ceramic circuit board
JPH09175867A (en) Aluminum nitride sintered product
KR100381589B1 (en) Aluminum nitride sintered bodies and semiconductor-producing members including same
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JP2001010864A (en) Highly heat conductive silicon nitride-based sintered compact
JP2003192445A (en) Silicon nitride substrate, method of producing the same and silicon nitride substrate having thin film obtained by using the substrate
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
KR960006249B1 (en) Process for producing an aluminium sintered product
JP2003146760A (en) Aluminum nitride sintered compact and method of producing the same
JPH06211577A (en) Production of aluminum nitride sintered compact with superfine particles
JPH11116338A (en) Aluminum nitride sintered product and circuit substrate using the same
JP3527816B2 (en) Method for producing aluminum nitride sintered body
JPH0687659A (en) Production of aluminum nitride sintered compact
JPH0566339B2 (en)
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JPH06219846A (en) Production of aluminum nitride sintered compact