JPS6033787B2 - Manufacturing method of ceramic sintered body - Google Patents

Manufacturing method of ceramic sintered body

Info

Publication number
JPS6033787B2
JPS6033787B2 JP52117882A JP11788277A JPS6033787B2 JP S6033787 B2 JPS6033787 B2 JP S6033787B2 JP 52117882 A JP52117882 A JP 52117882A JP 11788277 A JP11788277 A JP 11788277A JP S6033787 B2 JPS6033787 B2 JP S6033787B2
Authority
JP
Japan
Prior art keywords
substance
oxides
weight
parts
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52117882A
Other languages
Japanese (ja)
Other versions
JPS5452110A (en
Inventor
勝利 西田
昭二 岡田
正 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52117882A priority Critical patent/JPS6033787B2/en
Publication of JPS5452110A publication Critical patent/JPS5452110A/en
Publication of JPS6033787B2 publication Critical patent/JPS6033787B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はセラミックス焼結体の改良に関し、特に耐熱性
に優れたち密なセラミックス焼結体を普通暁結法で得る
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in ceramic sintered bodies, and more particularly to a method for obtaining dense ceramic sintered bodies with excellent heat resistance by a conventional sintering method.

耐熱性に優れたち密なセラミックス焼緒体は横造材料の
先端を行くものとして各方面で注目を集めている。
Dense ceramic cords with excellent heat resistance are attracting attention in various fields as being at the forefront of horizontal construction materials.

この種セラミックス暁結体の代表的なものの1つにホッ
トプレスされた窒化珪素系焼給体がある。
One of the typical ceramic compacts of this type is a hot-pressed silicon nitride-based firing body.

しかし、ホットプレス法なる手段は普通競緒法に比べ、
得られる形状の制約が大きく、また製造効率の点で劣る
ことは周知である。普通嘘給法による場合、この窒化珪
素系のセラミックス凝結体はち密化に困難を伴ない、ま
た耐熱性もそれほど優れてはいなかった。
However, compared to the hot press method, the hot press method is
It is well known that there are significant restrictions on the shape that can be obtained and that manufacturing efficiency is poor. When using the ordinary feeding method, it was difficult to densify the silicon nitride ceramic aggregates, and the heat resistance was not so good.

また、最近は珪素−金属−酸素−窒素系の化合物(8′
型窒化珪素系化合物)を主たる構成相とするセラミック
ス嬢絹体が注目されている。
Recently, silicon-metal-oxygen-nitrogen compounds (8'
Ceramic silk bodies whose main constituent phase is silicon nitride-based compounds are attracting attention.

しかし、このセラミックス競結体においても、ち密で耐
熱性に十分優れた焼緒体を量産的に製造するに至ってい
ない。本発明はち密で耐熱性に十分優れたセラミックス
焼縞体を普通糠結法で得る手段を提供するものである。
However, even in this ceramic composite body, it has not yet been possible to mass-produce a compact and sufficiently heat-resistant sintered body. The present invention provides a means for obtaining a ceramic fired striped body which is dense and has sufficiently excellent heat resistance by a conventional brazing method.

本発明方法は窒化珪素と酸化物と炭素との混合物を成形
、暁結する方法である。
The method of the present invention is a method in which a mixture of silicon nitride, oxide, and carbon is formed and solidified.

本発明においては特に酸化物の選択と炭素の混合に特徴
を有する。本発明の構成は次のとおりである。
The present invention is particularly characterized by the selection of oxides and the mixing of carbon. The configuration of the present invention is as follows.

即ち第1の物質として炭素又は加熱により炭素に変化し
うる物質より選ばれる少くとも1種と、第2の物質とし
て窒化珪素と、第3の物質としてアルミニウム及びチタ
ンの酸化物又は加熱により酸化物に変化しうる物質より
選ばれる少くとも1種と、第4の物質としてイットリウ
ム、リチウム、マンガン、カルシウム、ネオジウム、バ
リウム、ストロンチウム及びセリウムの酸化物又は加熱
により酸化物に変化しうる物質より選ばれる少くとも1
種との混合粉末を成形後焼結するものである。
That is, at least one kind selected from carbon or a substance that can be converted into carbon by heating as a first substance, silicon nitride as a second substance, and oxides of aluminum and titanium or oxides of aluminum and titanium as a third substance. at least one substance selected from substances that can be changed into oxides, and a fourth substance selected from oxides of yttrium, lithium, manganese, calcium, neodymium, barium, strontium, and cerium, or substances that can be changed into oxides by heating. at least 1
The mixed powder with seeds is molded and then sintered.

本発明は炭素又は加熱により炭素に変化しうる物質を混
合することにより、十分ち密かつ耐熱性にすぐれたセラ
ミックス暁結体を得るものである。
The present invention provides a ceramic compact that is sufficiently dense and has excellent heat resistance by mixing carbon or a substance that can be converted into carbon by heating.

この炭素又は加熱により炭素に変化しうる物質は次のよ
うに働くものと考えられる。即ち、窒化珪素原料粉末は
もともとその表面が多くの酸化層で覆われているが、粉
砕によりさらに多くの酸化層が生じ、この酸化層が混合
される酸化物と競結時に反応してガラス相を形成する。
This carbon or a substance that can be changed into carbon by heating is thought to work as follows. In other words, the surface of silicon nitride raw material powder is originally covered with many oxide layers, but when it is pulverized, more oxide layers are generated, and this oxide layer reacts with the mixed oxide during competitive bonding to form a glass phase. form.

このガラス相は暁結により形成される主たる相である珪
素−金属−酸素−窒素系の化合物相との熱膨張差が大き
い。このため熱衝撃によりガラス相と化合物相の間での
膨張差が原因となって焼結体にクラックを生ずる。この
場合、炭素が存在すると前記酸化層と暁結時に反応して
これを蒸散させて系外へ除外してしまうため、ガラス相
の生成を防止あるいは減少させうると考えられる。加熱
により炭素に変化しうる物質としては、たとえば、ポリ
メチルフエニレン、ポリエチレンなどの炭素含量の多い
しかも酸素含量の少ない炭化水素がある。
This glass phase has a large difference in thermal expansion from the silicon-metal-oxygen-nitrogen compound phase, which is the main phase formed by crystallization. Therefore, thermal shock causes cracks in the sintered body due to the difference in expansion between the glass phase and the compound phase. In this case, if carbon is present, it reacts with the oxidized layer during crystallization, evaporates it, and removes it from the system, which is thought to prevent or reduce the formation of the glass phase. Examples of substances that can be converted to carbon by heating include hydrocarbons with a high carbon content and low oxygen content, such as polymethylphenylene and polyethylene.

炭素又は加熱により炭素に変化しうる物質はあまり多量
に混合すると密度の低下をもたらすので、その混合量は
後述のごとく調整するとよい。
If carbon or a substance that can be converted into carbon by heating is mixed in too large a quantity, the density will decrease, so the mixing amount may be adjusted as described below.

前述の本発明方法における混合粉末に採用される酸化物
又は加熱により酸化物に変化しうる物質は、次の理由に
より選択される。第3の物質は、第2の物質である窒化
珪素とで珪素−金属−酸素−窒素系の化合物を形成し、
ち密な焼結体が得られる。
The oxide or substance that can be converted into an oxide by heating to be used in the mixed powder in the method of the present invention described above is selected for the following reasons. The third substance forms a silicon-metal-oxygen-nitrogen compound with silicon nitride, which is the second substance,
A dense sintered body can be obtained.

第4の物質は暁結促進剤として作用するものであり、焼
結時間の減少、暁結温度の低下など本発明を工業的にさ
らに有利に導く。
The fourth substance acts as a dawning accelerator, which makes the present invention industrially more advantageous, such as reducing the sintering time and lowering the dawning temperature.

酸化物又は加熱により酸化物に変化しうる物質は、あま
り多く混合すると酸化物相が競結体中に多く存在する傾
向になるので、後述のごとく調整するとよい。
If too many oxides or substances that can be converted into oxides by heating are mixed, the oxide phase tends to be present in large amounts in the competitive body, so it is best to adjust them as described below.

本発明方法における混合粉末は次のように調整されると
望ましい。
The mixed powder in the method of the present invention is preferably adjusted as follows.

第2、第3、第4の物質の総重量を100として、第1
の物質を0.2〜1の重量部、好ましくは0.5〜7重
量部、さらに好ましくは0.5〜5重量部とし、第3、
第4の物質の合量を5〜6の重量部、好ましくは10〜
5の重量部、さらに好ましくは25〜50重量部とし、
第4の物質を0.2〜10重量部、好ましくは0.2〜
7重量部、さらに好ましくは0.5〜5重量部とし、残
部を第2の物質とする。
The total weight of the second, third, and fourth substances is 100, and the first
The third substance is 0.2 to 1 part by weight, preferably 0.5 to 7 parts by weight, and more preferably 0.5 to 5 parts by weight.
The total amount of the fourth substance is 5 to 6 parts by weight, preferably 10 to 6 parts by weight.
5 parts by weight, more preferably 25 to 50 parts by weight,
0.2 to 10 parts by weight of the fourth substance, preferably 0.2 to 10 parts by weight
The amount is 7 parts by weight, more preferably 0.5 to 5 parts by weight, and the remainder is the second substance.

第3の物質は2.の重量部以上とする。本発明において
加熱により酸化物に変化しうる物質としては、たとえば
炭酸塩、修酸塩、硫酸塩、硝酸塩、酷酸塩、塩化物、弗
化物、水酸化物などがある。
The third substance is 2. Parts by weight or more. In the present invention, substances that can be changed into oxides by heating include carbonates, oxalates, sulfates, nitrates, peroxidates, chlorides, fluorides, and hydroxides.

焼結は普通競結、即ち加圧せずしてなされうる。Sintering can normally be done competitively, ie, without pressure.

焼結温度は1200〜2000q0でなすとよい。特に
1400〜1800qoで焼結することは望ましい。焼
結をあまり低温で行なうと密度が上がらず好ましくない
。また、あまり高温で行なうと分解、昇華が生じるので
好ましくない。焼結雰囲気は非酸化性雰囲気が好ましい
。たとえば不活性ガス雰囲気や窒素雰囲気が使用できる
。実施例 表に示す添加物を混合した窒化珪素粉末を成形後窒素雰
囲気中で1700ooにて2時間焼結し、理論密度を基
礎とする相対密度%と耐熱衝撃値を測定した。
The sintering temperature is preferably 1200 to 2000q0. It is particularly desirable to sinter at 1400 to 1800 qo. If sintering is performed at too low a temperature, the density will not increase, which is not preferable. Furthermore, if the temperature is too high, decomposition and sublimation will occur, which is not preferable. The sintering atmosphere is preferably a non-oxidizing atmosphere. For example, an inert gas atmosphere or a nitrogen atmosphere can be used. After molding silicon nitride powder mixed with the additives shown in the Examples table, it was sintered in a nitrogen atmosphere at 1700 oo for 2 hours, and the relative density % based on the theoretical density and thermal shock resistance were measured.

耐熱衝撃値は糠結体を種々の温度から2500の水中の
急冷し、クラックが生ずる温度を求め、このクラックを
生ずる温度と水温との差を求め(△Tc)として表示し
た。なお試料の大きさは直径20側、長さ5柳とした。
表から本発明製造方法に係るものはほぼ400℃以上の
耐熱衝撃性と85%以上の密度を有することが分る。
The thermal shock resistance value was determined by rapidly cooling the bran compact in water at 2,500 °C from various temperatures, determining the temperature at which cracks occur, and determining the difference between the temperature at which cracks occur and the water temperature (ΔTc). The size of the sample was 20 mm in diameter and 5 willow in length.
From the table, it can be seen that the products produced by the manufacturing method of the present invention have thermal shock resistance of approximately 400° C. or higher and a density of 85% or higher.

table

Claims (1)

【特許請求の範囲】[Claims] 1 第1の物質として炭素又は加熱により炭素に変化し
うる物質より選ばれる少くとも1種と、第2の物質とし
て窒化珪素と、第3の物質としてアルミニウム及びチタ
ンの酸化物又は加熱により酸化物に変化しうる物質より
選ばれる少くとも1種と、第4の物質としてイツトリウ
ム、リチウム、マンガン、カルシウム、ネオジウム、バ
リウム、ストロンチウム及びセリウムの酸化物又は加熱
により酸化物に変化しうる物質より選ばれる少くとも1
種と混合粉末を成形後焼結するセラミツクス焼結体の製
造方法であつて、前記混合粉末は、前記第3、第4の物
質を酸化物に換算して、前記第2、第3、第4の物質の
総重量を100として、第1の物質を炭素に換算して0
.2〜10重量部とし、第3、第4の物質の合量を5〜
60重量部とし、第4の物質を0.2〜10重量部とし
、残部を第2の物質としたことを特徴とするセラミツク
ス焼結体の製造方法。
1 At least one kind selected from carbon or a substance that can be converted into carbon by heating as the first substance, silicon nitride as the second substance, and oxides of aluminum and titanium or oxides of aluminum and titanium as the third substance. at least one substance selected from substances that can be changed into oxides, and a fourth substance selected from oxides of yttrium, lithium, manganese, calcium, neodymium, barium, strontium, and cerium, or substances that can be changed into oxides by heating. at least 1
A method for manufacturing a ceramic sintered body in which a seed and a mixed powder are molded and then sintered, wherein the mixed powder contains the second, third, and fourth substances in terms of oxides. Assuming the total weight of the 4th substance as 100, the 1st substance is converted to carbon and is 0.
.. 2 to 10 parts by weight, and the total amount of the third and fourth substances is 5 to 10 parts by weight.
60 parts by weight, the fourth substance is 0.2 to 10 parts by weight, and the remainder is the second substance.
JP52117882A 1977-10-03 1977-10-03 Manufacturing method of ceramic sintered body Expired JPS6033787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52117882A JPS6033787B2 (en) 1977-10-03 1977-10-03 Manufacturing method of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52117882A JPS6033787B2 (en) 1977-10-03 1977-10-03 Manufacturing method of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS5452110A JPS5452110A (en) 1979-04-24
JPS6033787B2 true JPS6033787B2 (en) 1985-08-05

Family

ID=14722562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52117882A Expired JPS6033787B2 (en) 1977-10-03 1977-10-03 Manufacturing method of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS6033787B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204672A (en) * 1984-03-29 1985-10-16 株式会社東芝 Manufacture of ceramic powder material
US4871698A (en) * 1987-11-09 1989-10-03 Vesuvius Crucible Company Carbon bonded refractory bodies

Also Published As

Publication number Publication date
JPS5452110A (en) 1979-04-24

Similar Documents

Publication Publication Date Title
US5077245A (en) Aluminum nitride-based sintered body and process for the production thereof
US4698320A (en) Aluminum nitride sintered body
EP0300601A2 (en) Process for the production of sintered aluminium nitrides
JPH0717454B2 (en) Aluminum nitride sintered body and manufacturing method thereof
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JPS6265978A (en) Silicon iodide sintered body and its production
JPS6033787B2 (en) Manufacturing method of ceramic sintered body
JPS6033786B2 (en) Method for manufacturing ceramic sintered bodies
JP2666942B2 (en) Aluminum nitride sintered body
JPS6033788B2 (en) Method for manufacturing ceramic sintered bodies
JPS6033785B2 (en) Manufacturing method of ceramic sintered body
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP3145519B2 (en) Aluminum nitride sintered body
JPS6033789B2 (en) Method for manufacturing ceramic sintered bodies
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH0355402B2 (en)
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2938153B2 (en) Manufacturing method of aluminum nitride sintered body
JPS5823346B2 (en) Production method of α-sialon sintered body
JP2851721B2 (en) Silicon nitride sintered body for cutting tools
JPH0453831B2 (en)
KR960006249B1 (en) Process for producing an aluminium sintered product
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JP2772580B2 (en) Method for producing aluminum nitride sintered body