JPS61166968A - Production of thin zinc sulfide film - Google Patents

Production of thin zinc sulfide film

Info

Publication number
JPS61166968A
JPS61166968A JP615285A JP615285A JPS61166968A JP S61166968 A JPS61166968 A JP S61166968A JP 615285 A JP615285 A JP 615285A JP 615285 A JP615285 A JP 615285A JP S61166968 A JPS61166968 A JP S61166968A
Authority
JP
Japan
Prior art keywords
zinc
zns
adduct
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP615285A
Other languages
Japanese (ja)
Other versions
JPH0645878B2 (en
Inventor
Naoyuki Ito
直行 伊藤
Takashi Shimobayashi
隆 下林
Teruyuki Mizumoto
照之 水本
Norihisa Okamoto
岡本 則久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP615285A priority Critical patent/JPH0645878B2/en
Publication of JPS61166968A publication Critical patent/JPS61166968A/en
Publication of JPH0645878B2 publication Critical patent/JPH0645878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin zinc sulfide film having a high crystal grade by using an addition product obtd. by mixing dialkyl zinc and dimethyl selenium at an equal molar ratio as a zinc source and hydrogen sulfide as a sulfur source. CONSTITUTION:A substrate 3 is set on a susceptor 2 provided in a reaction tube 1. H2S diluted by a carrier gas is packed in a cylinder 16. The addition product formed by mixing the dialkyl zinc and dimethyl selenium at an equal ratio is sealed into a bubbler 13 and dimethyl selenium (DMSe) is sealed into a bubbler 14. The respective gaseous raw materials are diluted by the carrier gas flowing in a piping 18 and flow to the reaction furnace 1. The formation of ZnS in a vapor phase occurring heretofore in the deficiency of the thermal stability of the addition product is suppressed by using the above-mentioned addition product as the zinc source. The crystallinity of the thin ZnS film obtd. by a thermal vapor cracking method of org. metal is thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫化亜鉛(Zns)薄膜の製造法に関する。さ
らに詳しくは、有機金属の気相分解法(MOCVD法)
を用いた硫化亜鉛薄膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing zinc sulfide (Zns) thin films. For more details, please refer to the organic metal vapor phase decomposition method (MOCVD method)
This invention relates to a method for producing a zinc sulfide thin film using.

〔従来の技術〕[Conventional technology]

MOCVD法は良質の化合物干導体薄膜の製造が可能で
しかも量産性に富むことから、オプトエレクトロニクス
用の材料及びデバイス製造分野において注目されている
技術である。このMOCVD法を用いて、短波長発光素
子材料として有望なZnS薄膜を作成する試みがなされ
ているもののいまだデバイス化が可能なレベルの薄膜形
成は実現していない。これは、亜鉛ソースに周込るジア
ルキル亜鉛が極めて反応性の高いことに起因する。
The MOCVD method is a technology that is attracting attention in the field of optoelectronic materials and device manufacturing because it allows the production of high-quality compound dry conductor thin films and is highly suitable for mass production. Although attempts have been made to use this MOCVD method to create a ZnS thin film, which is a promising material for short-wavelength light emitting devices, formation of a thin film at a level that can be used for device production has not yet been achieved. This is due to the extremely high reactivity of the dialkylzinc contained in the zinc source.

即ち、ガス状のジアルキル亜鉛は硫化水素(H2S)と
混合するやいなや室温においてもすみやかに反応し% 
 znsを生じるっ気相中にて生成したZnSは粒塊と
なってあたかも雪が積るが如く成長基板の上に堆積する
。基板表面に堆積したZnS粒塊は、基板表面で進行す
る結晶成長過程に悪影響を及ぼすため、ジアルキル亜鉛
/ HZ S  系で得られるZnS薄膜の結晶品位は
あまり高くなかった。
That is, as soon as gaseous dialkylzinc is mixed with hydrogen sulfide (H2S), it reacts rapidly even at room temperature.
ZnS generated in the gas phase that generates Zns becomes particles and accumulates on the growth substrate like snow. Since the ZnS grains deposited on the substrate surface have a negative effect on the crystal growth process proceeding on the substrate surface, the crystal quality of the ZnS thin film obtained with the dialkyl zinc/HZ S system was not very high.

最近、ジアルキル亜鉛又は硫化水素のうち少なくとも一
方を反応性の低いものと代替することで気相中でのZn
S生成を抑制しようという試みがなされている。これを
以下に述べる。
Recently, Zn in the gas phase has been improved by replacing at least one of dialkyl zinc or hydrogen sulfide with a less reactive one.
Attempts have been made to suppress S generation. This will be discussed below.

1、 ジアルキル亜鉛との反応性がH2S  より低い
環状硫黄化合物を硫黄ソースに用いる。
1. A cyclic sulfur compound whose reactivity with dialkylzinc is lower than that of H2S is used as a sulfur source.

(J、 Crystal Growth 66(198
4) 26−34 )2) ジアルキル亜鉛と一般式R
8R’(R%R′はアルキル基)で表わされるチオエー
テルとの等モル混合によって得られる付加体(H2Sと
の反応性がジアルキル亜鉛より低い)を亜鉛ソースに用
いる。(■出願特許 整理A  20476 ) これらの対策を施すことによシジアルキル亜鉛/HZ 
S系で問題となった気相中でのZnS生成を大幅に低減
でき、得られる単結膜の結晶品位向上が見られているう 〔発明が解決しようとする問題点〕 しかし前述の従来技術では次の様な問題点を有する。1
.においては環状硫黄化合物が分解しにくいため、充分
な成長速度を得るには成長温度を高くする必要がある。
(J, Crystal Growth 66 (198
4) 26-34)2) Dialkylzinc and general formula R
An adduct (having lower reactivity with H2S than dialkylzinc) obtained by equimolar mixing with a thioether represented by 8R' (R% R' is an alkyl group) is used as a zinc source. (■Patent Application Arrangement A 20476) By taking these measures, cydialkylzinc/HZ
The generation of ZnS in the gas phase, which was a problem with the S system, can be significantly reduced, and the crystal quality of the resulting single conjunctiva has been improved. It has the following problems. 1
.. Since cyclic sulfur compounds are difficult to decompose, it is necessary to raise the growth temperature to obtain a sufficient growth rate.

成長温度が高いと格子欠陥の内包や不純物のとり込みが
即進される。2.においては、基板を含む加熱帯に導入
された付加体が解離して生じるジアルキル亜鉛とHz 
Sとが反応してZnSを生成するため、成長温度はジア
ルキル亜鉛/ Hz S系と同じであるが、用いる付加
体の熱的安定性に問題がある。例えば、ジエチル亜鉛(
DEZ)とジエチル硫黄(DES)の等モル混合によっ
て得られる付加体DEZ−DESは、ガス状態でH2S
と混合しても室温付近ではZnSを生じることはないが
、加熱帯に入ると同時に付加体の解離とZnSの生成が
進行するため、成長温度が500℃と比較的低い場合に
も加熱帯においてZnS微粒子の生成している様子が肉
眼で確認できる。DEZ−DES付加体を用いて得られ
るZnS薄膜は上述の様に、加熱帯内部の気相中で生じ
たZnS微粒子の影響を受けるだめに(aOO)回折X
線ピークのロッキングカーブ平値幅が、0.25°程度
のものしか得られていない。
When the growth temperature is high, the inclusion of lattice defects and the incorporation of impurities are accelerated. 2. In , the adduct introduced into the heating zone containing the substrate dissociates and forms dialkylzinc and Hz.
Since ZnS reacts with S to produce ZnS, the growth temperature is the same as the dialkylzinc/Hz S system, but there is a problem with the thermal stability of the adduct used. For example, diethylzinc (
The adduct DEZ-DES obtained by equimolar mixing of DEZ) and diethyl sulfur (DES) is
Although ZnS will not be produced near room temperature even when mixed with The generation of ZnS fine particles can be confirmed with the naked eye. As mentioned above, the ZnS thin film obtained using the DEZ-DES adduct exhibits anomalous (aOO) diffraction
The rocking curve average width of the line peak was only about 0.25°.

また、ジメチル亜鉛(DMZ)とDESによって得られ
る付加体DMZ−DESは、30℃において減圧蒸留を
した場合、わずかではあるが時間とともに沸点が変化す
る。これは、付加体の一部が30℃において解離してい
ることを示唆しており、解離によって生じたDMZがH
2Sと反応することを考えれば好ましくない。そこで本
発明は、上述の様な問題点を解決するもので、ジアルキ
ル亜鉛・ジアルキル硫黄からなる付加体よりも解離しに
くい付加体を用い、さらに結晶品位の高いZnS膜を製
造するところにある。
Further, when the adduct DMZ-DES obtained from dimethylzinc (DMZ) and DES is distilled under reduced pressure at 30°C, the boiling point changes slightly over time. This suggests that a part of the adduct is dissociated at 30°C, and the DMZ produced by the dissociation is H
Considering that it reacts with 2S, it is not preferable. Therefore, the present invention solves the above-mentioned problems by using an adduct that is more difficult to dissociate than an adduct consisting of dialkyl zinc and dialkyl sulfur, and producing a ZnS film with even higher crystal quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る硫化亜鉛薄膜の製造法においてはジアルキ
ル亜鉛とジメチルセレンの等モル混合によって得られる
付加体を亜鉛ンースとし、H2Sを硫黄ソースとして用
いることを特徴としている。
The method for producing a zinc sulfide thin film according to the present invention is characterized in that an adduct obtained by equimolar mixing of dialkylzinc and dimethylselenium is used as the zinc source, and H2S is used as the sulfur source.

ジメチルセレンは化学的にかなり安定な化合物であるた
め、ジメチルセレンの分解によるZnS膜中へのSeの
混入は問題としないでよいう〔実施例〕 第1図には本発明で用いるMOCVD装置の概略図を示
す。透明石英製の反応管■の内部にはSiCコーティン
グを施したグラファイト製すセグター■がセットされて
おり、サセプター■の上には基板■がセットされている
。サセプター■の内部には熱電対■の先端が埋め込まれ
ており、基板温度のモニターを行なう。反応管■の周囲
には抵抗加熱、高周波、赤外線などからなる加熱炉0を
設け、基板加熱を行なう0反応管■はバルブ、■■及び
■を介してそれぞれ廃ガス処理系0、排気システム■へ
と接続されている。■、0には、純化装置より精製され
たキャリアーガスが、マスクローコントローラにより流
量制御されて流れている。キャリアーガスはHz、He
いずれでもよい。
Since dimethylselenium is a chemically quite stable compound, the incorporation of Se into the ZnS film due to the decomposition of dimethylselenium is not a problem. [Example] Figure 1 shows the MOCVD apparatus used in the present invention. A schematic diagram is shown. A graphite segmenter (2) coated with SiC is set inside the transparent quartz reaction tube (2), and a substrate (2) is set on top of the susceptor (2). The tip of a thermocouple (■) is embedded inside the susceptor (■) to monitor the substrate temperature. A heating furnace 0 consisting of resistance heating, high frequency, infrared, etc. is installed around the reaction tube ■, and the reaction tube ■ which heats the substrate is connected to a waste gas treatment system 0 and an exhaust system ■ through valves ■■ and ■, respectively. connected to. (2) In 0, carrier gas purified by the purification device flows under flow rate control by a mask low controller. Carrier gas is Hz, He
Either is fine.

ボ/べ紗にはキャリアーガスで2q6程度に希釈したH
 2 Sが充填されており、マスクローコントローラ@
によって直接供給量が制御できる。バブラーOにはジア
ルキル亜鉛とジメチルセレン等モル混合によって形成さ
れる付加体が、又バブラー0にはジメチルセレン(DM
Se)が封入されている。付加体、DMSeの供給はキ
ャリアーガスによるバブリングで気化させておこなう。
For bo/besa, H diluted to about 2q6 with carrier gas.
2 S is filled and mask low controller @
The supply amount can be directly controlled by Bubbler O contains an adduct formed by equimolar mixture of dialkylzinc and dimethyl selenium, and Bubbler 0 contains dimethyl selenium (DM
Se) is enclosed. The adduct, DMSe, is supplied by vaporizing it by bubbling with a carrier gas.

従って供給量はバブリングガスの流量とバブリング温度
によって制御できる。各原料ガスは、配管0を流れるキ
ャリアーガスにより希釈されて反応炉のへ至る。
Therefore, the supply amount can be controlled by the bubbling gas flow rate and bubbling temperature. Each raw material gas is diluted by the carrier gas flowing through pipe 0 and reaches the reactor.

成長を常圧で行なう時はバルブ■■を開いて反応ガスを
廃ガス処理系■へ導くっ減圧で行なう時はバルブ■を閉
じ、バルブ■とロータリーポンプ■の排気量、反応ガス
流量により反応炉内の真空度を調節しつつ成長を行なう
。ロータリーポンプを出た反応ガスは廃ガス処理系(■
へと導かれる。
When performing growth at normal pressure, open the valve ■■ and guide the reaction gas to the waste gas treatment system ■. When performing growth under reduced pressure, close the valve ■ and control the reaction by adjusting the displacement of the valve ■ and rotary pump ■, and the flow rate of the reaction gas. Growth is performed while adjusting the degree of vacuum in the furnace. The reaction gas that exits the rotary pump is passed through the waste gas treatment system (■
be led to.

〔実施例1〕 以下にはZnS単結晶膜のGaAS、GaP、Si基板
上−・成長する際のプロセスについて説明する。
[Example 1] Below, a process for growing a ZnS single crystal film on a GaAS, GaP, or Si substrate will be described.

付加体としては、ジメチル亜鉛とジメチルセレンの等モ
ル混合によって得られるDMZ  DMSeを用いた。
As the adduct, DMZ DMSe obtained by equimolar mixing of dimethylzinc and dimethylselenium was used.

DMZ−DMSeは常圧におイテ沸点67.2℃を示す
液体であることからDMZ−DESよりは熱的に安定な
付加体と考えられる。
Since DMZ-DMSe is a liquid exhibiting a boiling point of 67.2°C at normal pressure, it is considered to be a more thermally stable adduct than DMZ-DES.

1、 基板の熱エツチングに:る表面清浄化あらかじめ
化学エツチングにより表面処理を施した、GaAstG
aP+Si基板を反則、管■内にセットし系内を真空引
きする。続いてキャリアガスを導入し、再度真空引きを
する。
1. For thermal etching of the substrate: surface cleaning GaAstG which has been surface treated by chemical etching in advance
Place the aP+Si substrate inside the tube (2) and evacuate the system. Next, carrier gas is introduced and vacuum is drawn again.

この操作によシ系内の残留酸素や残留水分?除去する。Does this operation result in residual oxygen or residual moisture in the system? Remove.

キャリアガスを毎分1〜21程度流しながら、GaA、
、5tGaP基板の場合には500〜600℃、Si基
板では900〜1000℃に加熱するっこの熱エツチン
グ(でより基板表面に残留する酸化膜を除去できる。
GaA,
The oxide film remaining on the substrate surface can be removed by thermal etching (heating to 500 to 600°C for a 5tGaP substrate and 900 to 1000°C for a Si substrate).

5〜10分間の熱エツチングを施しだ後基板温度を成長
温度に設定する。
After thermal etching for 5 to 10 minutes, the substrate temperature is set to the growth temperature.

λ 結晶成長 ボンベ[株]からHz Sを、又バブラー0のバブリン
グ開始により付加体をそれぞれ反応炉■へ供給する。こ
れに伴ない基板上にZnSの成長がおこる。代表的な成
長条件を次に示す。
Hz S is supplied from a λ crystal growth cylinder [Co., Ltd.], and the adduct is supplied to the reactor (2) when bubbler 0 starts bubbling. As a result, ZnS grows on the substrate. Typical growth conditions are shown below.

キャリアーガス(He)  :総流量 4.51/mi
n、−zO℃における付加体のバブリングガス流量:2
5m1%H2又は)(eベース2%、HzSの供給量:
 11]Oml/min 。
Carrier gas (He): Total flow rate 4.51/mi
Bubbling gas flow rate of adduct at n, -zO℃: 2
5m1% H2 or) (e base 2%, HzS supply amount:
11] Oml/min.

成長温度:500〜550℃ 以上の条件のとき、成長温度、成長基板の種類によらず
0.8〜1.0μm/heとほぼ一定であった。
Growth temperature: When the conditions were 500 to 550° C. or higher, the growth rate was approximately constant at 0.8 to 1.0 μm/he regardless of the growth temperature or the type of growth substrate.

成長膜のIMA(イオンマイクロアナライザー)による
分析では、Seは検出されなかった。450℃において
成長した厚さ2μmのZnSの(400)回折X線ロッ
キングカーブ半値幅は0.15〜(120’を示した。
Se was not detected in the analysis of the grown film using an IMA (ion microanalyzer). The half width of the (400) diffraction X-ray rocking curve of ZnS with a thickness of 2 μm grown at 450° C. was 0.15 to (120′).

DMZ−DMSeの利用によりDEZ−DESを亜鉛ソ
ースとしたときに比べて結晶性の向上が見られた。
By using DMZ-DMSe, the crystallinity was improved compared to when DEZ-DES was used as the zinc source.

上記のZnS成長中においてはDEZ−DBS付加付加
剤いたときの様な、加熱帯内部の気相中におけるZnS
微粒子の生成は観測されなかった。
During the ZnS growth described above, ZnS in the gas phase inside the heating zone, such as when the DEZ-DBS addition agent was present.
No generation of fine particles was observed.

DMZ−DMSe付加体が、DEZ−DES付加体に比
べて安定であることを示している。
The DMZ-DMSe adduct is shown to be more stable than the DEZ-DES adduct.

〔実施例2〕 上述のプロセスに従って成長を行なうとき成長温度が5
00℃付近になると成長膜表面のモホロジーがやや悪く
なって来た。また、成長中わずかではあるが加熱帯内部
の気相中においてZn5e粒子の生成が見られた。これ
は、成長温度が高くなると第1図において、加熱炉■の
出力が増大するため、反応炉■に導入された反応ガスは
、基板近傍に達するまでに加熱されてしまう。このため
上述の様に気相中でのZnSの生成がおこり、生成した
微粒子が成長膜の中にとり込まれるために表面モホロジ
ーの劣化がおきていると思われる。
[Example 2] When the growth is performed according to the above process, the growth temperature is 5
When the temperature reached around 00°C, the morphology of the surface of the grown film became slightly worse. Further, during the growth, Zn5e particles were observed to be generated in the gas phase inside the heating zone, albeit slightly. This is because as the growth temperature increases, the output of the heating furnace (2) increases in FIG. 1, so the reaction gas introduced into the reactor (2) is heated before it reaches the vicinity of the substrate. For this reason, as mentioned above, ZnS is generated in the gas phase, and the generated fine particles are incorporated into the grown film, resulting in deterioration of the surface morphology.

成長温度が高いときには、付加体の他にジメチルセレン
を供給することで前述の問題は解決できる。つまり次式
で表わされる付加体の解離平衡。
When the growth temperature is high, the above-mentioned problem can be solved by supplying dimethylselenium in addition to the adduct. In other words, the dissociation equilibrium of the adduct is expressed by the following equation.

例えば、DMZ−DMSeの場合 D M Z −D M S e : D M Z + 
D M S eにおいて、DMSeを過剰に供給するこ
とにより、熱平衡を付加体形成の方向に移動することが
できるからである。これにより、付加体の解離を抑制す
ることができる。〔実施例1〕の成長条件で成長温度5
00℃のとき、バブラー■に封入したDMSeを0℃、
25m/minのバブリングによって供給した。DMS
eの供給量は付加体のおよそ四倍量に相当している。D
MSeの導入により、気相中でのZnSの生成は抑止で
き、表面モホロジーの劣化も改善できた。成長温度がさ
らに高いときは、DMSeの供給量を増やすことで同様
の効果が得られた。IMAによればZnS膜中へのSe
のとり込みはないことがわかった。
For example, in the case of DMZ-DMSe, DMZ - DMSe: DMZ +
This is because in DMSe, by supplying DMSe in excess, the thermal equilibrium can be shifted in the direction of adduct formation. Thereby, dissociation of the adduct can be suppressed. Growth temperature 5 under the growth conditions of [Example 1]
When the temperature is 0°C, DMSe sealed in the bubbler ■ is heated to 0°C.
It was supplied by bubbling at 25 m/min. DMS
The amount of e supplied corresponds to approximately four times the amount of adduct. D
By introducing MSe, the generation of ZnS in the gas phase could be suppressed, and the deterioration of surface morphology could also be improved. When the growth temperature was higher, a similar effect was obtained by increasing the amount of DMSe supplied. According to IMA, Se in the ZnS film
It was found that there was no uptake.

〔実施例3〕 〔実施例1.2〕に示しだプロセスと同様にして非晶質
基板例えば、ガラス、石英、あるいは、ITOの様な透
明電極、TazOs、SiO2,5f3N4、Alzo
x、Sm 20 sなどの絶縁膜の上へのZnS膜形成
が可能である。弱アルカリ性の洗浄液にて筆洗いをした
後、純水、アルコール、グイフロン中での超音波洗浄を
順次行なった非晶質基板上に〔実施例1)K示したプロ
セス及び成長条件に従ってZnS膜の成長を行なった。
[Example 3] Similar to the process shown in [Example 1.2], an amorphous substrate such as glass, quartz, or a transparent electrode such as ITO, TazOs, SiO2, 5f3N4, Alzo
It is possible to form a ZnS film on an insulating film such as x, Sm 20 s, etc. A ZnS film was formed on an amorphous substrate that had been brush-washed with a weak alkaline cleaning solution and then sequentially ultrasonically cleaned in pure water, alcohol, and Guiflon according to the process and growth conditions shown in Example 1. I grew up.

90龍の成長によって得られたZnS膜の厚さは約70
00^:成長速度は15μ’m/hrとなった。
The thickness of the ZnS film obtained by the growth of 90 yen is approximately 70 yen.
00^: The growth rate was 15 μ'm/hr.

成長速度がGaAS%GaP、s i基板に比べて小さ
いのは、加熱源として赤外線炉を用いたためと考えられ
る。つまり透明石英の赤外線吸収係数が小さいので、熱
電対モニターによる設定温度が同じでも、基板表面の実
際温度がGaAS、GaP基板に比べて低くなっている
ためと思われる。得られたZrtS膜の電子線回折パタ
ーンは、濃淡を有する同心円を呈しており多結晶膜であ
ることを示している。
The reason why the growth rate is lower than that of the GaAS%GaP, s i substrate is thought to be because an infrared furnace was used as a heating source. In other words, it is thought that because the infrared absorption coefficient of transparent quartz is small, the actual temperature of the substrate surface is lower than that of GaAS and GaP substrates even if the temperature set by the thermocouple monitor is the same. The electron beam diffraction pattern of the obtained ZrtS film exhibits concentric circles with shading, indicating that it is a polycrystalline film.

以上の実施例はDMZ−DMSe付加体について示した
が、DEZ−DMSe付加体においても成長条件が同じ
場合にはDMZ−DMSeと同様の結果が得られ、形成
したZnS薄膜の結晶性も同レベルであった。
Although the above examples were shown for DMZ-DMSe adducts, when the growth conditions are the same, results similar to those of DMZ-DMSe can be obtained for DEZ-DMSe adducts, and the crystallinity of the formed ZnS thin film is also at the same level. Met.

実施例はへテロエビタキシロル成長及び、非晶基板上へ
の成長についてのべたが、本“発明はこの様な範囲に限
定されず、例えば、zns上へのZnSホモエピタキシ
ャル成長や、その他ZnS薄膜の成長には応用が可能で
ある。
Although the embodiments have described growth of heteroepitaxylol and growth on an amorphous substrate, the present invention is not limited to such scope, and may be applied to, for example, homoepitaxial growth of ZnS on ZNS or other ZnS thin films. It can be applied to the growth of

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば、ジアルキル亜鉛とジメ
チルセレンの等モル混合によって得られる付加体を亜鉛
ソースとしたことにより、従来、付加体の熱的安定性の
乏しさに起因していた気相中でのZnSの生成が抑制で
きた。これによシ得られるZnS薄膜の結晶性が向上し
た。
As described above, according to the present invention, by using an adduct obtained by equimolar mixing of dialkylzinc and dimethylselenium as a zinc source, the adduct has conventionally been caused by poor thermal stability. The generation of ZnS in the gas phase could be suppressed. This improved the crystallinity of the ZnS thin film obtained.

本発明が短波長発光素子材料として有望なZnSの良質
な薄膜を製造する際に寄与するところは極めて大きいと
確信する。
We believe that the present invention will greatly contribute to the production of high-quality thin films of ZnS, which are promising as materials for short-wavelength light-emitting devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図には本発明で用いるMOCVDシステムの概略図
を示す。 1、透明石英製反応管 2.8icコーテイングを施し
たグラファイト製サセプタ 五基板4、熱電対 50反
応管内の真空度を調節するバルブ 6、Zパルプ aロ
ータリーポンプ9廃ガス処理システム 1α高真空排気
系11、抵抗加熱、赤外線、高周波などによる加熱炉 
12.高精度ニードルバルブ 1五付加体のの入ったバ
ブラー 14.ジメチルセレンの入ったバブラー 15
.配管系 16.硫化水素の入ったホンベ 1Zマスフ
ローコントローラー1a配管系 19.2L1.バルブ 以上
FIG. 1 shows a schematic diagram of the MOCVD system used in the present invention. 1. Transparent quartz reaction tube 2. Graphite susceptor with 8IC coating 5. Substrate 4. Thermocouple 50. Valve to adjust the degree of vacuum inside the reaction tube 6. Z pulp a. Rotary pump 9. Waste gas treatment system 1.alpha. High vacuum exhaust system 11. Heating furnace using resistance heating, infrared rays, high frequency, etc.
12. High precision needle valve Bubbler with 1 pentaadduct 14. Bubbler containing dimethyl selenium 15
.. Piping system 16. Honbe containing hydrogen sulfide 1Z mass flow controller 1a piping system 19.2L1. More than a valve

Claims (3)

【特許請求の範囲】[Claims] (1)有機金属気相熱分解法(MOCVD法)により硫
化亜鉛薄膜を製造する際、ジアルキル亜鉛とジメチルセ
レン(DMSe)の等モル混合によつて得られる付加体
を亜鉛ソースとし、硫化水素を硫黄ソースとして用いる
ことを特徴とした硫化亜鉛薄膜の製造法。
(1) When producing a zinc sulfide thin film by the metal organic vapor phase pyrolysis method (MOCVD method), the adduct obtained by equimolar mixing of dialkylzinc and dimethyl selenium (DMSe) is used as the zinc source, and hydrogen sulfide is A method for producing a zinc sulfide thin film characterized by its use as a sulfur source.
(2)特許請求の範囲第1項記載の硫化亜鉛薄膜の製造
法において、該付加体と硫化水素を気相中で均一に混合
した後に基板を含む加熱領域へ供給することを特徴とし
た硫化亜鉛薄膜の製造法。
(2) A method for producing a zinc sulfide thin film according to claim 1, characterized in that the adduct and hydrogen sulfide are uniformly mixed in a gas phase and then supplied to a heating region including a substrate. Method for producing zinc thin film.
(3)特許請求の範囲第1項記載の硫化亜鉛薄膜の製造
法において、該付加体とジメチルセレンを気相中で却一
に混合した後、両者の付加体を硫化水素と均一に混合し
、基板を含む加熱領域へ供給することを特徴とした硫化
亜鉛薄膜の製造法。
(3) In the method for producing a zinc sulfide thin film according to claim 1, the adduct and dimethyl selenium are thoroughly mixed in a gas phase, and then both adducts are uniformly mixed with hydrogen sulfide. , a method for producing a zinc sulfide thin film, characterized in that the zinc sulfide thin film is supplied to a heated region including a substrate.
JP615285A 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film Expired - Lifetime JPH0645878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP615285A JPH0645878B2 (en) 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP615285A JPH0645878B2 (en) 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film

Publications (2)

Publication Number Publication Date
JPS61166968A true JPS61166968A (en) 1986-07-28
JPH0645878B2 JPH0645878B2 (en) 1994-06-15

Family

ID=11630555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP615285A Expired - Lifetime JPH0645878B2 (en) 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film

Country Status (1)

Country Link
JP (1) JPH0645878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077092A (en) * 1989-06-30 1991-12-31 Texas Instruments Incorporated Method and apparatus for deposition of zinc sulfide films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077092A (en) * 1989-06-30 1991-12-31 Texas Instruments Incorporated Method and apparatus for deposition of zinc sulfide films

Also Published As

Publication number Publication date
JPH0645878B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
Wright et al. The use of heterocyclic compounds in the organometallic chemical vapour deposition of epitaxial ZnS, ZnSe and ZnO
Nagasawa et al. Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
JPS61166968A (en) Production of thin zinc sulfide film
JPS61166969A (en) Production of thin zinc sulfide film
JPS6115150B2 (en)
JPS63319296A (en) Production of semiconductor
JPS61151092A (en) Thin film formation and system therefor
JPS58209117A (en) Manufacture of compound semiconductor film
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JPS5987814A (en) Manufacture of group iii-v compound semiconductor
JPS6360536A (en) Manufacture of semiconductor superlattice
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements
JPS61161710A (en) Manufacture of compound semiconductor thin film
JP2678737B2 (en) Organozinc compound
JPH04238890A (en) Preparation of compound semiconductor single crystal
JPH04133316A (en) Vapor phase epitaxy
JPS59164697A (en) Vapor growth method
JPS61166972A (en) Production of thin zinc selenide film
RU1775491C (en) Zinc oxide film producing method
JP2736417B2 (en) Semiconductor element manufacturing method
JPS60206446A (en) Photochemical gaseous phase growing apparatus
JP2678736B2 (en) Organozinc compound
JPH0222814A (en) Manufacture of compound semiconductor device
JPH02122521A (en) Manufacture of compound semiconductor crystal layer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term