JPS61166969A - Production of thin zinc sulfide film - Google Patents

Production of thin zinc sulfide film

Info

Publication number
JPS61166969A
JPS61166969A JP615385A JP615385A JPS61166969A JP S61166969 A JPS61166969 A JP S61166969A JP 615385 A JP615385 A JP 615385A JP 615385 A JP615385 A JP 615385A JP S61166969 A JPS61166969 A JP S61166969A
Authority
JP
Japan
Prior art keywords
zinc
zns
adduct
dimethyl
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP615385A
Other languages
Japanese (ja)
Other versions
JPH0645879B2 (en
Inventor
Naoyuki Ito
直行 伊藤
Takashi Shimobayashi
隆 下林
Teruyuki Mizumoto
照之 水本
Norihisa Okamoto
岡本 則久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP615385A priority Critical patent/JPH0645879B2/en
Publication of JPS61166969A publication Critical patent/JPS61166969A/en
Publication of JPH0645879B2 publication Critical patent/JPH0645879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin zinc sulfide film having a high crystal grade by using an addition product obtd. by mixing dialkyl zinc and dimethyl selenium in a vapor phase as a zinc source. CONSTITUTION:A substrate 3 is set on a susceptor 2 provided in a reaction tube 1. H2S diluted by a carrier gas is packed in a cylinder 16. The dimethyl zinc is sealed in a bubbler 13 and the dimethyl selenium into a bubbler 14. The respective gaseous raw materials are diluted by the carrier gas flowing in a piping 18 and flow to the reaction tube 1. The dimethyl zinc and the dimethyl selenium join first and the addition product is formed in the vapor phase. The addition product is thereafter uniformly mixed with H2S. The formation of ZnS in the vapor phase is suppressed by using the above-mentioned addition product. The crystallinity of the thin ZnS film obtd. by a thermal vapor cracking method of org. metal is thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫化亜鉛(ZnS)薄膜の製造法に関する。さ
らに詳しくは、有機金属の気相熱分解法(MOCVD法
)を用いた硫化亜鉛薄膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing zinc sulfide (ZnS) thin films. More specifically, the present invention relates to a method for producing a zinc sulfide thin film using a metal organic vapor phase pyrolysis method (MOCVD method).

〔従来の技術〕[Conventional technology]

MOCVD法は良質の化合物干導体薄膜の製造が可能で
しかも量産性に富むことから、オプトエレクトロニクス
用の材料及びデバイス製造の分野において非常に注目さ
れている技術である。このIVI OCV D法を用い
て、短波長発光素子材料として有望なZnS薄膜を作製
する試みがなされているもののいまだデバイス化が可能
なレベルの薄膜形成は実現していない。これは、亜鉛ソ
ースに用いるジアルキル亜鉛が極めて反応性の高いこと
に起因する。即ち、ガス状のジアルキル亜鉛は硫化水素
(H2S)と混合するやいなや室温においてもすみやか
に反応し、ZnSを生じる。気相中にて生成したZnS
は粒塊となってあたかも雪が積るが如く成長基板の上に
堆積する。基板表面に堆積したZnS粒塊は、基板表面
で進行する結晶成長過程に悪影響を及ぼすため、ジアル
キル亜鉛/H2S系で得られるZnS薄膜の結晶品位は
あまり高くなかった。
The MOCVD method is a technology that is attracting much attention in the field of optoelectronic materials and device manufacturing because it allows the production of high-quality compound dry conductor thin films and is highly suitable for mass production. Although attempts have been made to use this IVI OCV D method to produce a ZnS thin film, which is promising as a short wavelength light emitting element material, formation of a thin film at a level that can be used for device production has not yet been achieved. This is due to the extremely high reactivity of the dialkylzinc used in the zinc source. That is, as soon as gaseous dialkylzinc is mixed with hydrogen sulfide (H2S), it reacts rapidly even at room temperature to produce ZnS. ZnS generated in gas phase
The particles form clumps and accumulate on the growth substrate like snow. Since the ZnS grains deposited on the substrate surface have a negative effect on the crystal growth process proceeding on the substrate surface, the crystal quality of the ZnS thin film obtained with the dialkyl zinc/H2S system was not very high.

最近、ジアルキル亜鉛又は硫化水素のうち少なくとも一
方を反応性の低いものと代替することで気相中でのZn
S生成を抑制しようという試みがなされている。これを
以下に述べる。
Recently, Zn in the gas phase has been improved by replacing at least one of dialkyl zinc or hydrogen sulfide with a less reactive one.
Attempts have been made to suppress S generation. This will be discussed below.

1、 ジアルキル亜鉛との反応性がH2Sよシ低い環状
硫黄化合物を硫黄ンースに用いる。
1. A cyclic sulfur compound whose reactivity with dialkylzinc is lower than that of H2S is used as a sulfur source.

(J Crystal Gr、owth 66 (19
84)26−34)2、 ジアルキル亜鉛と一般弐R3
R’(R%R’はアルキル基)で表わされるチオエーテ
ルとの等モル混合によって得られる付加体(H2Sとの
反応性がジアルキル亜鉛よシ低い)を亜鉛ソースに用い
る。 (■出願特許 整理鷹これらの対策を施すことに
よりジアルキル亜鉛/ HZ S系で問題となった気相
中でのZnS生成を大幅に低減でき、得られる単結膜の
結晶品位向上が見られている。
(J Crystal Gr, owth 66 (19
84)26-34)2, Dialkylzinc and general 2R3
An adduct obtained by equimolar mixing with a thioether represented by R' (R% R' is an alkyl group) (reactivity with H2S is lower than that of dialkyl zinc) is used as a zinc source. (■Patent application: Sorotaka) By taking these measures, the generation of ZnS in the gas phase, which was a problem with the dialkylzinc/HZS system, can be significantly reduced, and the crystal quality of the resulting single conjunctiva has been improved. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし前述の従来技術では次の様な問題点を有する。1
.においては環状硫黄化合物が分解しにくいため、充分
な成長速度を得るには成長温度を高くする必要がある。
However, the above-mentioned conventional technology has the following problems. 1
.. Since cyclic sulfur compounds are difficult to decompose, it is necessary to raise the growth temperature to obtain a sufficient growth rate.

成長温度が高いと格子欠陥の内包や不純物のとシ込みが
挿通される。・乙においては、基板を含む加熱帯に導入
された付加体が解離して生じるジアルキル亜鉛とH2S
とが反応してZnSを生成するため、成長温度はジアル
キル亜鉛/ Hz S系と同じであるが、用いる付加体
の熱的安定性に問題がある。例えは、ジエチル亜鉛(D
EZ)とジエチル硫黄(DES)の等モル混合によって
得られる付加体DEZ−DESは、ガス状態でH2Sと
混合しても室温付近ではZnSを生じることはないが、
加熱帯に入ると同時に付加体の解離とZnSの生成が進
行するため、成長温度が300℃と比較的低い場合にも
加熱帯においてZnS微粒子の生成が肉眼で確認できる
。DEZ−DBS付加体を用いて得られるZnS薄膜は
上述の様に1加熱帯内部の気相中で生じたZnS微粒子
の影響を受けるためK(400)回折X線ピークのロッ
キングカーブ半値幅が、α25’程度のものしか得られ
ていない。
If the growth temperature is high, inclusions of lattice defects and impurities are penetrated.・In B, dialkylzinc and H2S are generated by the dissociation of the adduct introduced into the heating zone containing the substrate.
The growth temperature is the same as that of the dialkylzinc/HzS system, but there is a problem with the thermal stability of the adduct used. For example, diethylzinc (D
The adduct DEZ-DES obtained by equimolar mixing of EZ) and diethyl sulfur (DES) does not produce ZnS at around room temperature even when mixed with H2S in a gaseous state.
Since the dissociation of the adduct and the production of ZnS proceed simultaneously upon entering the heating zone, the production of ZnS fine particles can be confirmed with the naked eye in the heating zone even when the growth temperature is relatively low at 300°C. As mentioned above, the ZnS thin film obtained using the DEZ-DBS adduct is affected by the ZnS fine particles generated in the gas phase inside the first heating zone, so the half-value width of the rocking curve of the K(400) diffraction X-ray peak is Only about α25' was obtained.

また、ジメチル亜鉛(DMZ)とDESの混合によって
得られる付加体DMZ−DESは、50℃において減圧
蒸留をした場合、わずかではあるが時間とともに沸点が
変化する。これは、付加体の一部が50℃において解離
していることを示唆しており、解離によって生じたDM
ZがHt Sと反応することを考えれば好ましくない。
Further, when the adduct DMZ-DES obtained by mixing dimethylzinc (DMZ) and DES is distilled under reduced pressure at 50°C, the boiling point changes slightly over time. This suggests that part of the adduct is dissociated at 50°C, and the DM generated by dissociation
Considering that Z reacts with HtS, this is not preferable.

そこで本発明は、上述の様な問題点を解決するもので、
ジアルキル亜鉛・ジアルキル硫黄からなる付加体よりも
解離しにくい付加体を用い、さらに結晶品位の高いZn
S膜を製造するところKある。
Therefore, the present invention solves the above-mentioned problems.
Using an adduct that is more difficult to dissociate than an adduct consisting of dialkyl zinc and dialkyl sulfur, Zn has a higher crystal quality.
There is a company that manufactures S film.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明に係る硫化亜鉛薄膜の製造法においては、ジアル
キル亜鉛をZnソース、HzSf:SンースとするMO
CVD法によりZnS薄膜を製造する際ジアルキル亜鉛
とジメチルセレンを気相中で混合し付加体を形成し、付
加体の形でZnソースを基板を含む加熱領域へ供給する
ことを特徴としている。この時、ジアルキル亜鉛のH2
Sに対する反応性はジメチルセレンとの付加体形成によ
シ極めて乏しい状態にできるため、ジアルキル亜鉛はジ
メチルセレンとの間で付加体を形成した後、H2Sと混
合される。ここで、ジメチルセレンは化学的にかなシ安
定な化合物であるため、ジメチルセレンの分解によるZ
n5Il中へのSeの混入は問題としないでよい。
In the method for producing a zinc sulfide thin film according to the present invention, an MO using dialkyl zinc as a Zn source and a HzSf:S source is used.
When manufacturing a ZnS thin film by the CVD method, dialkyl zinc and dimethyl selenium are mixed in a gas phase to form an adduct, and the Zn source is supplied in the form of the adduct to a heating region including the substrate. At this time, H2 of dialkyl zinc
Since the reactivity towards S can be made extremely poor by forming an adduct with dimethylselenium, dialkylzinc is mixed with H2S after forming an adduct with dimethylselenium. Here, since dimethylselenium is a chemically stable compound, Z due to the decomposition of dimethylselenium
The contamination of Se into n5Il may not be a problem.

〔実施例〕〔Example〕

第1図には本発明で用いるMOCVD装置の概略図を示
す。透明石英製の反応管■の内部にはSiCコーティン
グ5を施したグラファイト製サセプター〇がセットされ
ておシ、サセプター■の上には基板■がセットされてい
る。サセプター〇の内部には熱電対■の先端が埋め込ま
れており、基板温度のモニターを行なう。反応管■の周
囲には抵抗加熱、高周波、赤外線などからなる加熱炉■
を設け、基板加熱を行なう。反応管■はバルブ、■■又
は■を介してそれぞれ廃ガス処理系[株]、排気システ
ム■へと接続されている。[株]、■には、純化装置に
より精製され六キャリアーガスが、マスクローコントロ
ーラにより流量制御されて流れている。キャリアーガス
はHz s H6いずれでもよい。ポ/べ[株]にはキ
ャリアーガスで2%程度希釈したH 2 Sが充填され
ており、マスクローコントローラOKよって直接供給量
が制御できる。バブラーOにはジメチル亜鉛(DMZ)
が又バブラー[相]にはジメチルセレン(DMSe )
が封入されている。DMZ、DMSeの供給はキャリア
ーガスによるバブリングで気化させておこなう。従って
供給量はバブリングガスの流量とバブリング温度によっ
て制御できる。各原料ガスは、配管[株]を流れるキャ
リアーガスにより希釈されて反応炉■へ至る。このとき
DMZとDMSeが最初に合流し付加体が形成される。
FIG. 1 shows a schematic diagram of an MOCVD apparatus used in the present invention. A graphite susceptor 〇 coated with SiC coating 5 is set inside the transparent quartz reaction tube 〇, and a substrate 〇 is set on top of the susceptor 〇. The tip of a thermocouple (■) is embedded inside the susceptor (○) to monitor the substrate temperature. Around the reaction tube, there is a heating furnace that uses resistance heating, high frequency, infrared, etc.
is installed to heat the substrate. The reaction tube (2) is connected to a waste gas treatment system (stock) and an exhaust system (2) via a valve, (2) or (2), respectively. [Co., Ltd.], (2), a carrier gas purified by a purification device is flowing through the tank with its flow rate controlled by a mask low controller. The carrier gas may be either Hz or H6. Po/Be is filled with H 2 S diluted by about 2% with a carrier gas, and the supply amount can be directly controlled by a mask low controller OK. Bubbler O contains dimethyl zinc (DMZ)
Dimethyl selenium (DMSe) is used in the bubbler [phase].
is included. DMZ and DMSe are supplied by being vaporized by bubbling with a carrier gas. Therefore, the supply amount can be controlled by the bubbling gas flow rate and bubbling temperature. Each raw material gas is diluted by the carrier gas flowing through the piping and reaches the reactor (2). At this time, DMZ and DMSe first merge to form an adduct.

しかる後にH2Sと合流し付加体とHz Sは均一に混
合される。このとき付加体とH2Sの合流地点よシ下流
の配管内部及び反応管への導入口付近においてはZnS
の生成は確認されなかった。しかし、DMSeの供給を
中断すると、反応管へのガス導入口よりZnSの微粒子
が霧状に流れていくのが観測された。DMSeの供給に
よりDMZとDMSeの付加体が形成され、DMZとH
2Sの反応が抑制されていることがわかる。
Thereafter, it is combined with H2S, and the adduct and Hz S are uniformly mixed. At this time, ZnS is present inside the pipe downstream of the confluence point of the adduct and H2S and near the inlet to the reaction tube.
generation was not confirmed. However, when the supply of DMSe was interrupted, fine particles of ZnS were observed to flow in the form of mist from the gas inlet to the reaction tube. By supplying DMSe, an adduct of DMZ and DMSe is formed, and DMZ and H
It can be seen that the 2S reaction is suppressed.

成長を常圧で行なう時はバルブ■■を開いて反応ガスを
廃ガス処理系■へ導く。減圧で行なう時はバルブ■を閉
じ、バルブ■とロータリーポンプ■の排気量、反応ガス
流量により反応炉内の真空度を調節しつつ成長を行なう
。ロータリーポンプを出た反応ガスは廃ガス処理系■へ
と導かれる。
When growing at normal pressure, open the valve ■■ and guide the reaction gas to the waste gas treatment system ■. When carrying out the process under reduced pressure, the valve (2) is closed, and the growth is performed while adjusting the degree of vacuum in the reactor by adjusting the displacement of the valve (2), the rotary pump (2), and the flow rate of the reaction gas. The reaction gas leaving the rotary pump is led to the waste gas treatment system (■).

〔実施例1〕 以下にはZnS単結晶膜のG a A s s G a
 P s S l基板上へ成長する際のプロセスについ
て説明する。
[Example 1] Below is a description of the ZnS single crystal film.
The process of growing onto a PsSl substrate will be described.

1、 基板の熱エツチングによる表面清浄化あらかじめ
化学エツチングにより表面処理を施した。GaAstG
aPnSi基板を反応管■内にセットし系内を真空引き
する。続いてキャリアガスを導入し、再度真空引きをす
る。
1. Surface cleaning of the substrate by thermal etching The surface was previously treated by chemical etching. GaAstG
The aPnSi substrate was set in the reaction tube (2), and the system was evacuated. Next, carrier gas is introduced and vacuum is drawn again.

この操作によシ系内の残留酸素や残留水分を除去する。This operation removes residual oxygen and moisture in the system.

キャリアガスを毎分1〜21程度流しながら、GaAs
、GaP基板の場合には500〜600℃、Si基蓼で
は900〜1000℃に加熱する。この熱エツチングに
より基板表面に残留する酸化膜を除去できる。
GaAs is
In the case of a GaP substrate, it is heated to 500 to 600°C, and in the case of a Si substrate, it is heated to 900 to 1000°C. This thermal etching can remove the oxide film remaining on the substrate surface.

5〜10分間の熱エツチングを施した後基板温度を成長
温度に設定する。
After thermal etching for 5 to 10 minutes, the substrate temperature is set to the growth temperature.

2 結晶成長 ポンベ[株]よりH2Sを、又バブラー■からD M 
S eを、続いてバブラー0からDMZの反応管■への
供給をそれぞれこの順序で開始する。これに伴ない基板
上にZnSの成長がおこる。代表的な成長条件を次に示
す。
2 H2S from Crystal Growth Pombe [Co., Ltd.] and DM from Bubbler ■
The supply of Se, followed by DMZ from bubbler 0 to reaction tube 2 is started in this order. As a result, ZnS grows on the substrate. Typical growth conditions are shown below.

キャリアーガス(He):総流量 4.5Jl/min
  、 −20℃におけるDMseのバブリングガス流
量: 65m/min s  (このときDMSeとD
MZの供給比は約10:1である)H2又はHeペース
2%HzSの供給量:100プ/min  、成長温度
;300〜550 ℃ 以上の条件のとき、成長温度、成長基板の種類によらず
0.8〜1.0μm/heとほぼ一定であった、成長膜
のI M、A (イオンマイクロアナライザー)による
分析ではs Seは検出されなかった。450℃におい
て成長した厚さ2μmのZnSの(400)回折X線ロ
ッキングカーブ半値幅はα15〜α20゜を示した。D
MZ−DMSe O利用によ#)DEz−DBSを亜鉛
ソースとしたときに比べて結晶性の向上が見られた。
Carrier gas (He): Total flow rate 4.5 Jl/min
, DMse bubbling gas flow rate at -20°C: 65 m/min s (At this time, DMSe and D
MZ supply ratio is approximately 10:1) H2 or He pace 2% HzS supply rate: 100p/min, growth temperature: 300-550°C or higher, depending on the growth temperature and type of growth substrate. sSe was almost constant at 0.8 to 1.0 μm/he, and no sSe was detected in the analysis of the grown film using an IM,A (ion microanalyzer). The half width of the (400) diffraction X-ray rocking curve of ZnS with a thickness of 2 μm grown at 450° C. was α15 to α20°. D
By using MZ-DMSeO, an improvement in crystallinity was observed compared to when DEz-DBS was used as the zinc source.

上記0ZnS成長中においてはDEZ−DES付加体を
用いたときの様な、加熱帯内部の気相中におけるZnS
微粒子の生成は観測されなかった。
During the above-mentioned 0ZnS growth, ZnS in the gas phase inside the heating zone, such as when using the DEZ-DES adduct,
No generation of fine particles was observed.

DMZとDMSeの混合によって形成されるDMZ−D
MSe付加体2>f、DEZ−DES付加体に比べて安
定であることを示している。
DMZ-D formed by mixing DMZ and DMSe
MSe adduct 2>f, indicating that it is more stable than the DEZ-DES adduct.

〔実施例2〕 上述のプロセスに従って成長を行なうとき成長温度が5
00℃付近になると成長膜表面のモホロジーがやや悪く
なって来た。また、成長中わずかではあるが加熱帯内部
の気相中においてZnS微粒子の生成が見られた。これ
は、成長温度が高くなると第1図において、加熱炉■の
出力が増大するため、反応炉■に導入された反応ガスは
、基板近傍に達するまでに加熱されてしまう。このため
上述の様に気相中でのZnSの生成がおこシ、生成した
微粒子が成長膜の中にとり込まれるために表面モホロジ
ーの劣化がおきていると思われる。
[Example 2] When the growth is performed according to the above process, the growth temperature is 5
When the temperature reached around 00°C, the morphology of the surface of the grown film became slightly worse. Further, during the growth, ZnS fine particles were observed to be generated in the gas phase inside the heating zone, although only slightly. This is because as the growth temperature increases, the output of the heating furnace (2) increases in FIG. 1, so the reaction gas introduced into the reactor (2) is heated before it reaches the vicinity of the substrate. For this reason, as mentioned above, ZnS is generated in the gas phase, and the generated fine particles are incorporated into the grown film, resulting in deterioration of the surface morphology.

成長温度が高いときには、さらに大過剰にジメチルセレ
ンを供給することで前述の問題は解決できる。つまり次
式で表わされる付加体の解離平衡。
When the growth temperature is high, the above-mentioned problem can be solved by supplying dimethyl selenium in even greater excess. In other words, the dissociation equilibrium of the adduct is expressed by the following equation.

例えば、DMZ−DMSeの場合 D M Z −D M S e : D M Z + 
D M S eにおいて、DMSeを大過剰に供給する
ことにより、熱平衡を付加体形成の方向に移動すること
ができるからである。これにより、付加体の解離を抑制
することができる。〔実施例1〕の成長条件で成長温度
500℃のとき、バブラー■に封入したDMSeを15
℃、65m/!/minのバブリングによって供給した
。DMSeの供給量は付加体の約20倍量に相当してい
る。大過剰のDMSeの導入により、気相中でのZnS
の生成は抑止でき、表面モホロジーの劣化も改善できた
。成長温度がさらに高いときは% DMSeの供給量を
さらに増やすことで同様の効果が得られた。IMAによ
ればZnS膜中へのSe・のとり込みはないことがわか
った。
For example, in the case of DMZ-DMSe, DMZ - DMSe: DMZ +
This is because, in DMSe, by supplying DMSe in large excess, the thermal equilibrium can be shifted in the direction of adduct formation. Thereby, dissociation of the adduct can be suppressed. When the growth temperature was 500°C under the growth conditions of [Example 1], 15% of DMSe sealed in the bubbler
℃, 65m/! It was supplied by bubbling at /min. The amount of DMSe supplied corresponds to about 20 times the amount of adduct. By introducing a large excess of DMSe, ZnS in the gas phase
It was possible to suppress the formation of and improve the deterioration of surface morphology. A similar effect was obtained by further increasing the amount of DMSe supplied when the growth temperature was higher. According to IMA, it was found that there was no incorporation of Se into the ZnS film.

〔実施例5〕 〔実施例1.2〕に示したプロセスと同様にして非晶質
基板例えば、ガラス、石英、あるいは、ITOの様な透
明電極、Ta+zOs、5H)2、Si3N4%Alz
Os、、a SmxOsなどの絶縁膜の上へのZnS膜
形成が可能である。弱アルカリ性の洗浄液にて筆洗いを
した後、純水、アルコール、ダイ7・・中での超音波洗
浄を順次行なった非晶  ゛ :質基板上に〔実施例1
〕に示したプロセス及び成長条件に従ってZnS膜の成
長を行なった。90罷の成長によって得られたZnS膜
の厚さは約7000^、成長速度はCL5μm/hrと
なった。
[Example 5] Similar to the process shown in [Example 1.2], an amorphous substrate such as glass, quartz, or a transparent electrode such as ITO, Ta+zOs, 5H)2, Si3N4%Alz
It is possible to form a ZnS film on an insulating film such as Os, , a SmxOs. After brush washing with a weak alkaline cleaning solution, ultrasonic cleaning in pure water, alcohol, and die 7 was performed sequentially on an amorphous substrate [Example 1]
A ZnS film was grown according to the process and growth conditions shown in ]. The thickness of the ZnS film obtained by growing 90 lines was about 7000^, and the growth rate was CL 5 μm/hr.

成長速度がQaAs%GaP基板に比べて小さいのは、
加熱源として赤外線炉を用いたためと考えられる。つま
り透明石英の赤外線吸収係数が小さいので、熱電対のモ
ニターによる設定温度が同じでも、基板表面の実際温度
がGaAl1.GaP基板に比べて低くなっているため
と思われる。得られたZnS膜の電子線回折パターンは
、濃淡を有する同心円を呈しており多結晶膜であること
を示している。
The reason why the growth rate is lower than that of QaAs%GaP substrate is because
This is thought to be due to the use of an infrared furnace as a heating source. In other words, since the infrared absorption coefficient of transparent quartz is small, even if the temperature set by the thermocouple monitor is the same, the actual temperature of the substrate surface will be GaAl1. This is probably because it is lower than the GaP substrate. The electron beam diffraction pattern of the obtained ZnS film exhibits concentric circles with shading, indicating that it is a polycrystalline film.

以上の実施例はDMZとDMSeの混合による付加体形
成について示したが、DEZとDMSeの混合による付
加体形成においても、成長条件が同じ場合にはDMZ−
DMSe系と同様の結果が得られ、形成したZnS薄膜
の結晶性も同レベルであった。
The above examples have shown the formation of adducts by mixing DMZ and DMSe, but even in the formation of adducts by mixing DEZ and DMSe, if the growth conditions are the same, DMZ-
Results similar to those of the DMSe system were obtained, and the crystallinity of the formed ZnS thin film was also at the same level.

実施例はへテロエピタキシャル成長及び、非晶質基板上
への成長についてのべたが、本発明はこの様な範囲に限
定されず、例えば、ZnS上へのZnSホモエピタキシ
ャル成長や、その他znS薄膜の成長には応用が可能で
ある。
Although the embodiments have been described with respect to heteroepitaxial growth and growth on an amorphous substrate, the present invention is not limited to such scope, and may be applied to, for example, ZnS homoepitaxial growth on ZnS or growth of other ZnS thin films. can be applied.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば、ジアルキル亜鉛トジメ
チルセレンの気相状態での混合によって形成される付加
体を亜鉛ソースとしたこと釦より、従来、付加体の熱的
安定性の乏しさに起因していた気相中でのZnSの生成
が抑制できた。これにより得られるZnS薄膜の結晶性
が向上した。
As described above, according to the present invention, an adduct formed by mixing dialkylzinc and dimethylselenium in a gas phase is used as a zinc source. The formation of ZnS in the gas phase, which was caused by this, could be suppressed. This improved the crystallinity of the ZnS thin film obtained.

本発明が短波長発光素子材料として有望なZnSの良質
な薄膜を製造する際に寄与するところは極めて大きいと
確信する。
We believe that the present invention will greatly contribute to the production of high-quality thin films of ZnS, which are promising as materials for short-wavelength light-emitting devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図には本発明で用いるMOCVDシステムの概略図
を示す。 1、透明石英製反応管 2.8ICコーテイングを施し
たグラファイト製サセプタ 五基板4、熱電対 50反
応管内の真空度を調節するパルプ 6、lパルプ &ロ
ータリーポンプ9廃ガス処理システム 1CL高真空排
気系11.抵抗加熱、赤外線、高周波などによる加熱炉
12.i%精度ニードルバルブ 1五ジアルキル亜鉛の
入ったバブラー 14.ジメチルセレンの入ったバブラ
ー 15.配管系 16.硫化水素ノ入ったボンベ 1
Zマスフローコントローラー  1a配管系 19.2
αパルプ 以上
FIG. 1 shows a schematic diagram of the MOCVD system used in the present invention. 1. Transparent quartz reaction tube 2.8 Graphite susceptor with IC coating 5. Substrate 4. Thermocouple 50. Pulp to adjust the degree of vacuum inside the reaction tube 6. 1 Pulp & rotary pump 9. Waste gas treatment system 1.CL high vacuum evacuation system 11. Heating furnace using resistance heating, infrared rays, high frequency, etc. 12. i% accuracy needle valve Bubbler containing 15 dialkyl zinc 14. Bubbler containing dimethyl selenium 15. Piping system 16. Cylinder containing hydrogen sulfide 1
Z mass flow controller 1a piping system 19.2
α pulp or higher

Claims (3)

【特許請求の範囲】[Claims] (1)ジアルキル亜鉛を亜鉛ソース、硫化水素を硫黄ソ
ースとする気相熱分解法(MOCVD法)により硫化亜
鉛薄膜を製造する際、ジアルキル亜鉛とジメチルセレン
を気相中で混合し両者の付加体を形成し、該付加体を亜
鉛ソースとして用いることを特徴とする硫化亜鉛薄膜の
製造法。
(1) When producing a zinc sulfide thin film by the gas phase pyrolysis method (MOCVD method) using dialkylzinc as the zinc source and hydrogen sulfide as the sulfur source, dialkylzinc and dimethylselenium are mixed in the gas phase to form an adduct of both. 1. A method for producing a zinc sulfide thin film, the method comprising forming a zinc sulfide thin film and using the adduct as a zinc source.
(2)特許請求の範囲第1項記載の硫化亜鉛薄膜の製造
法において、ジアルキル亜鉛の量と等しい量かまたはそ
れより過剰の量のジメチルセレンを付加体形成の際供給
することを特徴とする硫化亜鉛薄膜の製造法。
(2) The method for producing a zinc sulfide thin film according to claim 1, characterized in that dimethylselenium is supplied in an amount equal to or in excess of the amount of dialkylzinc during adduct formation. Method for manufacturing zinc sulfide thin film.
(3)特許請求の範囲第1項において、最初にジアルキ
ル亜鉛とジメチルセレンを混合して付加体を形成し、続
いて付加体と硫化水素の混合を行ないしかる後に基板を
含む加熱領域へ導入することを特徴とした硫化亜鉛薄膜
の製造法。
(3) In claim 1, dialkylzinc and dimethyl selenium are first mixed to form an adduct, then the adduct and hydrogen sulfide are mixed, and then introduced into the heating region containing the substrate. A method for producing a zinc sulfide thin film characterized by:
JP615385A 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film Expired - Lifetime JPH0645879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP615385A JPH0645879B2 (en) 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP615385A JPH0645879B2 (en) 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film

Publications (2)

Publication Number Publication Date
JPS61166969A true JPS61166969A (en) 1986-07-28
JPH0645879B2 JPH0645879B2 (en) 1994-06-15

Family

ID=11630582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP615385A Expired - Lifetime JPH0645879B2 (en) 1985-01-17 1985-01-17 Manufacturing method of zinc sulfide thin film

Country Status (1)

Country Link
JP (1) JPH0645879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077092A (en) * 1989-06-30 1991-12-31 Texas Instruments Incorporated Method and apparatus for deposition of zinc sulfide films
JP2006070342A (en) * 2004-09-03 2006-03-16 Sumitomo Electric Ind Ltd Vapor phase film deposition system, susceptor and vapor phase film deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077092A (en) * 1989-06-30 1991-12-31 Texas Instruments Incorporated Method and apparatus for deposition of zinc sulfide films
JP2006070342A (en) * 2004-09-03 2006-03-16 Sumitomo Electric Ind Ltd Vapor phase film deposition system, susceptor and vapor phase film deposition method

Also Published As

Publication number Publication date
JPH0645879B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
KR940001249B1 (en) SILICON-GaAs EPITAXIAL COMPOSITIONS AND PROCESS FOR MAKING THE SAME
Wright et al. The use of heterocyclic compounds in the organometallic chemical vapour deposition of epitaxial ZnS, ZnSe and ZnO
Nagasawa et al. Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
US6281036B1 (en) Method of fabricating film for solar cells
Tsang Chemical beam epitaxy of InGaAs
EP0460710B1 (en) Gallium nitride group compound semiconductor and luminous element comprising it and the process of producing the same
CN107815663B (en) Method for effectively improving yield and quality of single-layer two-dimensional transition metal chalcogenide
Souletie et al. Growth kinetics of ZnO prepared by organometallic chemical vapor deposition
JPS61166969A (en) Production of thin zinc sulfide film
JPS61166968A (en) Production of thin zinc sulfide film
JPH03196643A (en) Vapor phase epitaxy
JPS593099A (en) Growth method of compound semiconductor crystal
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JPS61151092A (en) Thin film formation and system therefor
JPS58209117A (en) Manufacture of compound semiconductor film
JPS63319296A (en) Production of semiconductor
JPS6360536A (en) Manufacture of semiconductor superlattice
JPH04238890A (en) Preparation of compound semiconductor single crystal
JPS62254437A (en) Manufacture of semiconductor superlattice
JPH04133316A (en) Vapor phase epitaxy
JPS6139527A (en) Manufacture of zinc sulfide thin film
TW477823B (en) Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term