JPS6116529A - Flattening method for surface of semiconductor device - Google Patents

Flattening method for surface of semiconductor device

Info

Publication number
JPS6116529A
JPS6116529A JP13830984A JP13830984A JPS6116529A JP S6116529 A JPS6116529 A JP S6116529A JP 13830984 A JP13830984 A JP 13830984A JP 13830984 A JP13830984 A JP 13830984A JP S6116529 A JPS6116529 A JP S6116529A
Authority
JP
Japan
Prior art keywords
reaction chamber
semiconductor device
film
etching
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13830984A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP13830984A priority Critical patent/JPS6116529A/en
Publication of JPS6116529A publication Critical patent/JPS6116529A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To obtain a semiconductor device with its flat surface having no both protrusion and void by a method wherein insulating films are selectively formed in the etched parts of the surface of the device without taking out the device from the reaction chamber used for performing an etching on the surface of the semiconductor device. CONSTITUTION:A silicon substrate 11, whereon an SiO2 film 12 and an aluminum thin film 13 are formed, is thrown in the reaction chamber and chlorine reaction gas is introduced in the reaction chamber. Then, when light is selectively irradiated in irradiation extents 15, the aluminum thin film 13 is etched and wiring layers 13 and gaps 14 are formed. Cl2 is exhausted from the reaction chamber, and SiH4 and NH3, for example, are introduced in the reaction chamber. When light is irradiated in irradiation extents 15', Si3N4 films 16 are formed and the gaps 14 are buried in. As the width of the Si3N4 films 16 can be changed according to the forming conditions of optical intensity and so forth, a condition of enabling to form most flatly the surface of this semiconductor device can be easily obtained. In this series of the etching and film forming processes, there is no need to draw out this silicon substrate outside the reaction chamber.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置表面の平坦化方法、詳しくは、同装
置表面に生じた凹部を絶縁物等で埋めることによって、
表面を平坦化する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for flattening the surface of a semiconductor device, and more specifically, a method for planarizing the surface of a semiconductor device, in particular, by filling a recess formed on the surface of the device with an insulator or the like.
The present invention relates to a method for flattening a surface.

従来例の構成とその問題点 近年、半導体集積回路の高集積化にともない、素子の加
工寸法は縮小の一途をたどっている。ところが、配線金
属層の厚さに関しては配線抵抗の増大の点から、また素
子間分離層の厚さに関しては寄生トランジスタ効果の増
大の点から、いずれも、比例縮小的に小さくすることは
できない。従って、配線金属層を例にとると、その幅と
厚さとが同程度の寸法となシ、結果として半導体装置の
表面は激しい凹凸を持つようになる。このような表面の
凹凸は、その上に形成される配線金属の段差部での断線
などの原因となり、素子歩留の著しい低下を招く0その
ため、このような表面の凹凸を絶縁物等により平坦化す
る方法が種々提案されている。以下、従来の表面平坦化
方法の一例について図面により概略的に述べる。
Conventional configurations and their problems In recent years, as semiconductor integrated circuits have become more highly integrated, the processing dimensions of elements have been steadily decreasing. However, the thickness of the wiring metal layer cannot be reduced proportionally because of the increase in wiring resistance, and the thickness of the element isolation layer cannot be reduced proportionally because of the increase in the parasitic transistor effect. Therefore, taking a wiring metal layer as an example, its width and thickness are approximately the same, and as a result, the surface of the semiconductor device becomes extremely uneven. Such surface irregularities can cause wire breakage at stepped portions of the wiring metal formed on top of the surface, leading to a significant drop in device yield. Various methods have been proposed. An example of a conventional surface flattening method will be schematically described below with reference to the drawings.

第1図(a) 、 (b)は、従来例の表面平坦化方法
を工程順に示す流れ図である。
FIGS. 1(a) and 1(b) are flowcharts showing a conventional surface flattening method in the order of steps.

第1図(−)は、金属配線形成工程が完了した時点の半
導体装置の断面図であり、シリコン基板1上に熱酸化膜
2.金属配線層3が形成されている。
FIG. 1(-) is a cross-sectional view of the semiconductor device at the time when the metal wiring forming process is completed, in which a thermal oxide film 2. A metal wiring layer 3 is formed.

金属配線層3の最小幅と厚さとは同程度の寸法であり、
かつ、金属配線層3の隣接相互間に最小幅と深さとが同
程度の寸法であるような間げき4が形成されている。
The minimum width and thickness of the metal wiring layer 3 are approximately the same size,
In addition, gaps 4 are formed between adjacent metal wiring layers 3 such that the minimum width and depth are approximately the same.

次に、第1図(b)に示すように、表面全面に金属配線
層3と同程度の厚さのCVD法で形成されたシリコン酸
化膜(以下、5102膜という)5を成長させ、通常の
フォトリングラフィ法により、金属配線層3上のSio
2膜6を除去する。これにより、間げき4は埋めること
ができるが、一般にフォトリングラフィ法ではマスク合
せずれをゼロにすることは不可能であるため、結果とし
て、金属配線層3上の突起6および金属配線層3と5i
n2膜6との間の空げき7のいずれか一方丑たは両方が
形成されてしまう。突起6を除去したり、または空げき
7を埋め込んで表面を平坦にするためには、非常に複雑
な工程が必要であり、工程数が多く、また制御も容易で
ないため、かえって歩留の低下を招くことがある。
Next, as shown in FIG. 1(b), a silicon oxide film (hereinafter referred to as 5102 film) 5 formed by the CVD method to a thickness similar to that of the metal wiring layer 3 is grown on the entire surface. Sio on the metal wiring layer 3 is
2 film 6 is removed. As a result, the gap 4 can be filled, but since it is generally impossible to reduce the mask misalignment to zero with the photolithography method, as a result, the protrusion 6 on the metal wiring layer 3 and the metal wiring layer 3 and 5i
Either one or both of the gaps 7 between the n2 film 6 and the n2 film 6 are formed. Removing the protrusions 6 or filling in the voids 7 to make the surface flat requires a very complicated process, which involves a large number of processes and is not easy to control, which results in a decrease in yield. may invite

マスク合せずれを防ぐために、フォトレジストを用いた
リフトオフ法によ)、金属配線層3上の3102膜を自
己整合的に除去し、間げき4を埋め込む方法も提案され
ているが、やはり金属配線層とS iO2膜との間に空
げきが形成され、その空げきを埋めるのに複雑な工程を
要することに変わりはない。
In order to prevent mask misalignment, a method has also been proposed in which the 3102 film on the metal wiring layer 3 is removed in a self-aligned manner (by a lift-off method using photoresist) and the gap 4 is filled in, but the metal wiring A gap is formed between the layer and the SiO2 film, and a complicated process is still required to fill the gap.

発明の目的 本発明は、上述のような従来例の問題点を解消するもの
であり、工程が簡単であり、かつ、高集積化に適した半
導体装置表面の平坦化方法を提供するものである。
OBJECTS OF THE INVENTION The present invention solves the problems of the conventional methods as described above, and provides a method for planarizing the surface of a semiconductor device that has a simple process and is suitable for high integration. .

発明の構成 本発明は、要約するに、半導体装置表面の一部を光化学
反応により選択的に食刻する工程と、食刻に用いた反応
室から前記半導体装置を取シ出すことなく、前記食刻工
程により食刻された部分と大略同一部分に光化学反応に
より選択的に絶縁膜を形成する工程とをそなえた半導体
装置の表面平坦化方法であり、これにより、簡単な工程
で、突起や空げきの無い平坦な表面を有する半導体装置
を実現することが可能である。
Components of the Invention In summary, the present invention comprises a step of selectively etching a part of the surface of a semiconductor device by a photochemical reaction, and a step of selectively etching a part of the surface of a semiconductor device by a photochemical reaction, and etching the semiconductor device without taking the semiconductor device out of the reaction chamber used for etching. This is a surface planarization method for semiconductor devices that includes a step of selectively forming an insulating film by a photochemical reaction on roughly the same part as the part etched by the etching process. It is possible to realize a semiconductor device having a flat surface without cracks.

実施例の説明 以下に、実施例を参照して、本発明の詳細な説明する。Description of examples The present invention will be described in detail below with reference to Examples.

第2図(a) 、 (b) 、 (C)は、本発明の一
実施例として、集積回路の配線金属層表面の平坦化過程
を工程順に示す流れ図である。
FIGS. 2(a), 2(b), and 2(C) are flowcharts showing, in order of process, the process of planarizing the surface of a wiring metal layer of an integrated circuit as an embodiment of the present invention.

第2図(a)は、シリコン基板11上に熱酸化法によっ
て形成されたS x O2膜12.アルミニウム薄膜1
3が形成された状態である。この状態の基板を反応室(
不図示)に投入し、反応室を10〜1o−’Pa程度の
圧力1で排気する。
FIG. 2(a) shows an S x O2 film 12 formed on a silicon substrate 11 by a thermal oxidation method. Aluminum thin film 1
3 has been formed. The substrate in this state is placed in the reaction chamber (
(not shown), and the reaction chamber is evacuated at a pressure of about 10 to 1 o-'Pa.

次に、この反応室に塩素系の反応ガス、例えば、Cl3
を1o○〜数千P数千Pa圧力になるように導入する。
Next, a chlorine-based reaction gas, for example, Cl3, is added to this reaction chamber.
is introduced to a pressure of 100 to several thousand P and several thousand Pa.

ついで、周知の技術である投影露光法などの方法を用い
て、第2図(b)に示す照射範囲15に選択的に光を照
射すると、光化学反応により照射範囲16においてアル
ミニウム薄膜13がエツチングされ、配線層13′と、
間げき14とが形成される。
Next, when the irradiation range 15 shown in FIG. 2(b) is selectively irradiated with light using a well-known technique such as projection exposure, the aluminum thin film 13 is etched in the irradiation range 16 due to a photochemical reaction. , a wiring layer 13',
A gap 14 is formed.

このエツチングの際のシリコン基板11の温度は室温で
もよいし、2oO℃程度まで加熱してもよいO 次に、反応室からCl3を排出し、再び10−5〜1o
−’P祷度の圧力とした後、シリコンを含む反応ガス、
例えばS I H4と、窒素を含む反応ガス、例えばN
H3とを、10o〜1o00Pa程度の圧力になるよう
に導入する。
The temperature of the silicon substrate 11 during this etching may be room temperature, or may be heated to about 200°C.Next, Cl3 is discharged from the reaction chamber, and the temperature is 10-5 to 10°C again.
- Reactant gas containing silicon after being brought to a pressure of P
For example, S I H4 and a reactant gas containing nitrogen, such as N
H3 is introduced to a pressure of about 10 to 100 Pa.

この状態で、シリコン基板11を200〜400℃程度
の温度に加熱しながら、第2図(c)に示すように、第
2図(b)の工程での照射範囲15と同一の゛部分、す
なわち照射範囲16′に光を照射すると、光化学反応に
より照射範囲15′においてSi3N4膜16が形成さ
れ、間げき14が埋め込まれる。
In this state, while heating the silicon substrate 11 to a temperature of about 200 to 400° C., as shown in FIG. 2(c), That is, when the irradiation range 16' is irradiated with light, the Si3N4 film 16 is formed in the irradiation range 15' due to a photochemical reaction, and the gap 14 is filled in.

この時Si3N4膜16の膜厚は配線層13′の膜厚と
同程度にするのが適当である。また、Si3N4膜16
0幅は、光強度等の形成条件により変えることが可能な
ので、表面が最も平坦になる条件を得ることは容易であ
る。
At this time, it is appropriate that the thickness of the Si3N4 film 16 be approximately the same as the thickness of the wiring layer 13'. In addition, the Si3N4 film 16
Since the zero width can be changed depending on the formation conditions such as light intensity, it is easy to obtain the conditions that give the flattest surface.

上記一連のエツチング及び膜形成湯圧において、シリコ
ン基板11は反応室外に取り出す必要はない。また、投
影露光に用いるフォトマスク等モ交換または移動する必
要がないので、反応室内でシリコン基板11を固定して
おけば、アルミニウム薄膜13のエツチング時とSi3
N4膜16の膜形成時との光の照射範囲は同一にでき、
工程間の位置ずれは生じない。また、露光法としていわ
ゆるステップ・アンド・リピート法を用いた場合でも、
エツチング時と膜形成時との照射範囲の位置ずれは、基
板が固定されている台座の機械的送り精度のみで決捷る
。この送り精度は、最近の装置では数nm程度が得られ
ており、大きな問題とはならない。また、エツチング時
と膜形成時との基板温度の差による基板の伸縮に関して
も、投影時の像の倍率を機械的に変化させるなどの方法
で容易に対応できる。
In the series of etching and film forming processes described above, it is not necessary to take the silicon substrate 11 out of the reaction chamber. In addition, since there is no need to replace or move the photomask used for projection exposure, if the silicon substrate 11 is fixed in the reaction chamber, the Si3
The light irradiation range can be the same as when forming the N4 film 16,
No positional deviation occurs between processes. Furthermore, even when using the so-called step-and-repeat method as the exposure method,
The positional deviation of the irradiation range during etching and during film formation is determined only by the mechanical feed accuracy of the pedestal to which the substrate is fixed. This feeding accuracy has been achieved on the order of several nanometers in recent devices, and is not a major problem. Furthermore, expansion and contraction of the substrate due to the difference in substrate temperature between etching and film formation can be easily dealt with by mechanically changing the magnification of the image during projection.

上記実施例においては、被エツチング膜はアルミニウム
を例として用いたが、エツチング条件を変えることによ
り、多結晶シリコン、単結晶シリコン、 S 102膜
その他の材料に対しても用いることができる。捷た形成
膜はSi3N4膜を例として用いたが、S z O2膜
、多結晶シリコン膜なども形成することができる。さら
に、半導体基板とじてはシリコン以外の材料を用いるこ
とができるのは言うまでもない。
In the above embodiments, aluminum was used as the film to be etched, but by changing the etching conditions, the film may be etched with polycrystalline silicon, single crystal silicon, S102 film, or other materials. Although a Si3N4 film is used as an example of the warped film, a S z O2 film, a polycrystalline silicon film, etc. can also be formed. Furthermore, it goes without saying that materials other than silicon can be used for the semiconductor substrate.

発明の効果 本発明によれば、次のような効果が有る。Effect of the invention According to the present invention, there are the following effects.

第1に、少ない工程数で表面の平坦化が達成できるので
、素子歩留の良好外半導体素子を得ることができる。
First, since surface planarization can be achieved with a small number of steps, semiconductor devices with good device yields can be obtained.

第2に、エツチングおよび膜形成にイオンやプラズマの
効果を利用しないので、素子に与える損傷が少なく、電
気的特性の良好な半導体素子を得ることができる。
Second, since the effects of ions and plasma are not used in etching and film formation, there is little damage to the device, and a semiconductor device with good electrical characteristics can be obtained.

第3に、エツチング領域と埋込み領域との位置合わせか
、最悪でも装置の機械的精度のみで決剪り、いわゆる工
程間の合わせずれがほとんど発生しないので、表面に微
細な突起や空げきが形成されることがない。
Thirdly, the alignment between the etched area and the embedded area is determined only by the mechanical precision of the device at worst, and so-called misalignment between processes hardly occurs, so minute protrusions and gaps are formed on the surface. never be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、−’−(b)は、従来例の表面平坦化方
法の工程順流れ図、第2図(a)〜(C)は本発明実施
例の工程順流れ図である。 1.11・・・・シリコン基板、2.12・萌・・熱酸
化膜、3・・・・・・金属配線層、4.14・・・・・
間げき、6・・・・・CVD酸化膜、6・・・・・・突
起、7・・・・・・空げき、13・・・・・・アルミニ
ウム薄膜、13′・・・・・・配線層、15 、15’
・・・・・・照射範囲、16・・・・・・S 1 s 
N 4膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
FIGS. 1(a) and 1-(b) are process flowcharts of a conventional surface flattening method, and FIGS. 2(a) to (C) are process flowcharts of an embodiment of the present invention. 1.11... Silicon substrate, 2.12. Moe... Thermal oxide film, 3... Metal wiring layer, 4.14...
Gap, 6...CVD oxide film, 6...Protrusion, 7...Gap, 13...Aluminum thin film, 13'... Wiring layer, 15, 15'
....Irradiation range, 16...S 1 s
N4 membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
figure

Claims (1)

【特許請求の範囲】[Claims] 半導体装置表面の一部を光化学反応により選択的に食刻
する工程と、食刻に用いた反応室から前記半導体装置を
取り出すことなく、前記食刻工程により食刻された部分
と大略同一部分に光化学反応により選択的に絶縁膜を形
成する工程とをそなえた半導体装置表面の平坦化方法。
A step of selectively etching a part of the surface of a semiconductor device by a photochemical reaction, and a step of etching a part of the surface of a semiconductor device by photochemical reaction; A method for planarizing the surface of a semiconductor device, which includes a step of selectively forming an insulating film through a photochemical reaction.
JP13830984A 1984-07-03 1984-07-03 Flattening method for surface of semiconductor device Pending JPS6116529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13830984A JPS6116529A (en) 1984-07-03 1984-07-03 Flattening method for surface of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13830984A JPS6116529A (en) 1984-07-03 1984-07-03 Flattening method for surface of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6116529A true JPS6116529A (en) 1986-01-24

Family

ID=15218865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13830984A Pending JPS6116529A (en) 1984-07-03 1984-07-03 Flattening method for surface of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6116529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029222A (en) * 2009-07-21 2011-02-10 Murata Mfg Co Ltd Electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029222A (en) * 2009-07-21 2011-02-10 Murata Mfg Co Ltd Electronic component

Similar Documents

Publication Publication Date Title
US8080886B2 (en) Integrated circuit semiconductor device with overlay key and alignment key and method of fabricating the same
JPS6116529A (en) Flattening method for surface of semiconductor device
JP3651344B2 (en) Manufacturing method of semiconductor device
JP2978680B2 (en) Method for manufacturing semiconductor device
JPH02260639A (en) Manufacture of semiconductor device
KR100216266B1 (en) Semiconductor manufacturing method
JPH06151852A (en) Thin film transistor
JPH01205553A (en) Device isolation
JP2570154B2 (en) Method for manufacturing semiconductor device
JPH09331043A (en) Fabrication of semiconductor memory
JPH05152427A (en) Manufacture of semiconductor device
JP2006261341A (en) Method of manufacturing semiconductor apparatus
JPH09181077A (en) Semiconductor device and manufacturing method thereof
JPH0945680A (en) Manufacture of semiconductor device
KR0146257B1 (en) Method for manufacturing the insulation film of semiconductor device
JP2002050682A (en) Method for manufacturing semiconductor device and reticle mask
JPH01130546A (en) Electrode wiring forming method
JPH0493028A (en) Manufacture of semiconductor device
JPH04101413A (en) Method of forming semiconductor recrystalline layer
JP2004356363A (en) Eb mask and method of manufacturing the same, and exposure method
JPH0714918A (en) Manufacture of semiconductor element
JPH0653312A (en) Manufacture of soi substrate
JPH07245339A (en) Semiconductor device and its manufacture
JPH11121610A (en) Manufacture of semiconductor substrate
JP2001274053A (en) Method of manufacturing semiconductor