JPS61163763A - Carrier wave recovery system - Google Patents

Carrier wave recovery system

Info

Publication number
JPS61163763A
JPS61163763A JP60003376A JP337685A JPS61163763A JP S61163763 A JPS61163763 A JP S61163763A JP 60003376 A JP60003376 A JP 60003376A JP 337685 A JP337685 A JP 337685A JP S61163763 A JPS61163763 A JP S61163763A
Authority
JP
Japan
Prior art keywords
carrier wave
signal
bit timing
circuit
synchronization pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60003376A
Other languages
Japanese (ja)
Inventor
Tokihiro Mishiro
御代 時博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60003376A priority Critical patent/JPS61163763A/en
Publication of JPS61163763A publication Critical patent/JPS61163763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals
    • H04L27/2272Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals using phase locked loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To recover stably a carrier wave by providing a discriminating means of a carrier wave recovery and synchronizing pattern part CR of a head part of a receiving burst signal, a bit timing regenerating and synchronizing pattern part BTR, a unique word part UW, and a data part DATA, and switching it to reverse modulation of the number of phases which has coincided with each number of modulation phases. CONSTITUTION:A receiving PSK signal (a) is applied to a demodulator 1, a carrier wave recovery circuit 2 and a bit timing regenerating circuit 5, a carrier wave (b) recovered by the carrier wave recovery circuit 2, and a bit terminal signal (c) regenerated by a bit timing regenerating circuit 5 are applied to the demodulator 1, and the receiving PSK signal (a) is demodulated. A demodulated signal (d) and the regenerated bit timing signal (c) are applied to a unique word detector 6, a unique word part UW is detected and applied to a phase number controlling circuit 7, and a time position of a carrier wave recovery and synchronizing pattern part CR and a bit timing regenerating and synchronizing pattern part BTR of the next burst signal is discriminated exactly.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、PSK−TDMA方式に於ける復調用の基準
搬送波を受信バースト信号から逆変調方式により再生す
る搬送波再生方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carrier wave regeneration method for regenerating a reference carrier wave for demodulation in a PSK-TDMA system from a received burst signal by an inverse modulation method.

〔従来の技術〕[Conventional technology]

受信PSK波から基準搬送波を再生する方式として、逓
倍分周方式や逆変調方式等が知られている。逓倍分周方
式は、変調相数に対応して逓倍して無変調波とし、それ
を分周してもとの周波数の信号を得て、再生搬送波を得
るものであり、TDMA方式のように、断続してPSK
波を受信する場合には、高速引き込みが可能で、所謂ハ
ングアップ現象を防止できるものである。又逆変調方式
は、復調信号で受信PSK波を変調して無変調波を形成
するものであり、前述の逓倍分周方式に比較して、C/
Nが同一ならばサイクルスキップ現象が少ない特徴があ
る。
As a method for regenerating a reference carrier wave from a received PSK wave, a frequency-multiplying method, an inverse modulation method, etc. are known. In the frequency multiplication/division method, the frequency is multiplied according to the number of modulation phases to create an unmodulated wave, and then the frequency is divided to obtain a signal at the original frequency to obtain a regenerated carrier wave. , intermittent PSK
When receiving waves, high-speed acquisition is possible and so-called hang-up phenomenon can be prevented. In addition, the inverse modulation method modulates the received PSK wave with a demodulated signal to form an unmodulated wave, and compared to the above-mentioned frequency-multiplying method, it has a C/
If N is the same, the cycle skip phenomenon is less likely to occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

衛星通信に適用されるPSK−TDMA方式に於いては
、低C/N状態でも送受信できるようにすることが要望
され、又伝送効率の点から、搬送波再生用同期パターン
部やビットタイミング再生用同期パターン部をできるだ
け短縮することが要望されている。前述の逓倍分周方式
は、低C/N状態では位相遷移を起こすサイクルスキッ
プ現象が大きい欠点がある。一方前述の逆変調方式は、
サイクルスキップ現象が小さい特徴があるが、ハングア
ップ現象が生じやすい欠点がある。このハングアップ現
象を軽減する手段として、搬送波再生用同期パターン部
で逆変調を停止する提案がなされている。しかし、前述
のように、同期パターン部を短縮した場合には、充分な
ハングアップ現象の軽減を行うことができない欠点があ
った。
In the PSK-TDMA system applied to satellite communications, it is required to be able to transmit and receive even in low C/N conditions, and from the viewpoint of transmission efficiency, the synchronization pattern part for carrier wave recovery and the synchronization pattern part for bit timing recovery are required. It is desired to shorten the pattern portion as much as possible. The above-mentioned frequency multiplication/division method has a drawback that, in a low C/N state, there is a large cycle skip phenomenon that causes a phase transition. On the other hand, the above-mentioned inverse modulation method is
Although it has the characteristic that the cycle skip phenomenon is small, it has the disadvantage that the hang-up phenomenon easily occurs. As a means to alleviate this hang-up phenomenon, it has been proposed to stop inverse modulation in the synchronization pattern section for carrier wave reproduction. However, as described above, when the synchronization pattern section is shortened, there is a drawback that the hang-up phenomenon cannot be sufficiently alleviated.

本発明は、前述の従来の欠点を改善することを目的とす
るものである。
The present invention aims to improve the above-mentioned conventional drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の搬送波再生方式は、PSK−TDMA方式に於
ける復調用基準搬送波を逆変調方式により再生する搬送
波再生方式に於いて、受信バースト信号の先頭部の搬送
波再生用同期パターン部と、ビットタイミング再生用同
期パターン部と、ユニークワード部及びデータ部との判
別手段を設けて、この判別手段によりそれぞれの逆変調
相数の切換制御を行って基準搬送波を再生するものであ
る。
The carrier wave regeneration method of the present invention is a carrier wave regeneration method in which a reference carrier for demodulation in the PSK-TDMA system is regenerated by an inverse modulation method. A means for discriminating between the synchronization pattern section for reproduction, the unique word section, and the data section is provided, and the discriminating means performs switching control of the number of inverse modulation phases of each, thereby reproducing the reference carrier wave.

〔作用〕[Effect]

搬送波再生用同期パターン部は、一般に“O”或いは“
l”の連続信号で変調されているので無変調部となり、
この同期パターン部を受信した時は逆変調を停止し、ビ
ットタイミング再生用同期パターン部は、交互に“l”
と“0”とが繰り返される信号により変調されているの
で、この同期パターン部を受信した時は2相の逆変調を
行い、ユニークワード部及びデータ部は、4相等の変調
相数であるから、データ部の受信時はその変調相数の逆
変調を行うことにより、高速引き込み時のハングアップ
現象を防止し、ビットタイミング再生用同期パターン部
も搬送波再生用に利用できるので、同期パターン部の短
縮化を図ることができる。
The synchronization pattern section for carrier wave reproduction is generally “O” or “
Since it is modulated with a continuous signal of l'', it becomes an unmodulated part,
When this synchronization pattern section is received, inverse modulation is stopped, and the synchronization pattern section for bit timing reproduction is alternately set to "l".
Since it is modulated by a signal that repeats "0" and "0", two-phase inverse modulation is performed when this synchronization pattern part is received, and the unique word part and data part have a modulation phase number such as 4 phases. When receiving the data part, the number of modulation phases is inversely modulated to prevent the hang-up phenomenon during high-speed pull-in, and the synchronization pattern part for bit timing reproduction can also be used for carrier wave reproduction. It is possible to shorten the time.

〔実施例〕〔Example〕

以下図面を参照して、本発明の実施例について詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例のブロック図であり、lは復調
器、2は搬送波再生回路、3は逆変調器、4は帯域濾波
器(又は位相同期回路PLL)、5はビットタイミング
再生、回路、6はユニークワード検出器、7は相数制御
回路である。このユニークワード検出器6と相数111
1御回路7とにより、受信バースト信号の搬送波再生用
同期パターン部とビットタイミング再生用同期パターン
部とデータ部との判別手段を構成するものである。
FIG. 1 is a block diagram of an embodiment of the present invention, where l is a demodulator, 2 is a carrier recovery circuit, 3 is an inverse modulator, 4 is a bandpass filter (or phase locked loop PLL), and 5 is a bit timing recovery circuit. , circuit, 6 is a unique word detector, and 7 is a phase number control circuit. This unique word detector 6 and the number of phases 111
1 control circuit 7 constitutes means for discriminating between a synchronization pattern section for carrier wave reproduction, a synchronization pattern section for bit timing reproduction, and a data section of the received burst signal.

受信PSK信号aは、復調器1と搬送波再生回路2とビ
ットタイミング再生回路5とに加えられ、搬送波再生回
路2で再生された搬送波すと、ビットタイミング再生回
路5で再生されたビット夛イミング信号Cとが復調器l
に加えられて、受信PSK信号aが復調される。その復
調信号dと再生ビットタイミング信号Cとがユニークワ
ード検出器6に加えられ、復調信号dに含まれているユ
ニークワード部が検出されて、そのユニークワード検出
信号eが相数制御回路7に加えられる。相数制御回路7
は、ユニークワード検出信号eを基準として逆変調器3
の“相数を制御する制御信号fを出力するものである。
The received PSK signal a is applied to a demodulator 1, a carrier wave recovery circuit 2, and a bit timing recovery circuit 5. C and demodulator l
The received PSK signal a is demodulated. The demodulated signal d and the reproduced bit timing signal C are applied to the unique word detector 6, the unique word part included in the demodulated signal d is detected, and the unique word detection signal e is sent to the phase number control circuit 7. Added. Phase number control circuit 7
is the inverse modulator 3 using the unique word detection signal e as a reference.
It outputs a control signal f that controls the number of phases.

又復調信号dは後段の処理装置へ受信データとして転送
され、再生ビットタイミング信号Cはクロック信号とし
て転送される。
Further, the demodulated signal d is transferred to a subsequent processing device as received data, and the reproduced bit timing signal C is transferred as a clock signal.

TDMA方式に於ける受信PSK信号aは、例えば、第
2図の(a)に示すバースト信号であり、CRは搬送波
再生用同期パターン部、BTRはビットタイミング再生
用同期パターン部、UWはユニークワード部、DATA
はデータ部であり、それぞれの時間長は予め定められて
おり、且つ基準バースト信号を基準として所定時間位置
にそれぞれのバースト信号が受信できるように、時間位
置が設定されている。
The received PSK signal a in the TDMA system is, for example, a burst signal shown in FIG. Department, DATA
is a data portion, each time length is predetermined, and the time position is set so that each burst signal can be received at a predetermined time position with reference to the reference burst signal.

搬送波再生用同期パターン部CRは、無変調の搬送波部
分であり、又ビットタイミング再使用同期パターン部B
TRは、交互に“1”と“O”とにより変調されている
ので2相変態部分となる。
The carrier wave regeneration synchronization pattern section CR is an unmodulated carrier wave section, and the bit timing reuse synchronization pattern section B
Since TR is alternately modulated by "1" and "O", it becomes a two-phase transformation part.

又ユニークワード部UW及びデータ部DATAは、衛星
通信に於いては通常4相PSK変調が採用されているの
で4相変態部分となる。従って、第3図の(a)の0°
の搬送波ベクトルが搬送波再生用同期パターン部CRを
示し、(b)の0°と180゜との2相変調ベクトルが
ビットタイミング再生用同期パターン部BTRを示し、
(C1の0°、90゜、180°、270°の4相変調
ベクトルがユニークワード部UWとデータ部DATAと
を示すものとなる。
Furthermore, the unique word section UW and the data section DATA are four-phase transformed sections since four-phase PSK modulation is normally adopted in satellite communications. Therefore, 0° in (a) of Figure 3
The carrier wave vector indicates the synchronization pattern part CR for carrier wave reproduction, the two-phase modulation vector of 0° and 180° in (b) indicates the synchronization pattern part BTR for bit timing reproduction,
(The four-phase modulation vectors of 0°, 90°, 180°, and 270° of C1 indicate the unique word section UW and the data section DATA.

搬送波再生用同期パターン部CRやビットタイミング再
生用同期パターン部BTRの時間位置は、ユニークワー
ド部UWを基準として予め定められているので、ユニー
クワード検出器6によりユニークワード部UWを検出し
て、その検出信号eを相数制御回路7に加えると、次の
バースト信号の搬送波再生用同期パターン部CRやビッ
トタイミング再生用同期パターン部BTRの時間位置を
正確に判別できるものである。従って、相数制御回路7
は、例えば、第4図に示すように、カウンタ8とデコー
ダ9とにより構成し、ユニークワード検出信号eをカウ
ンタ8のリセット端子Rに加え、クロック信号をクロッ
ク端子CKに加えて、ユニークワード検出信号eにより
リセットされた後、クロック信号をカウントアツプする
カウンタ8のカウント内容をデコーダ9によってデコー
ドし、次のバースト信号の搬送波再生用同期パターン部
CR受信時に逆変調を停止させる為の制御信号f1及び
ビットタイミング再生用同期パターン部BTR受信時の
2相逆変調を行わせる為の制御信号f2を出力するもの
である。
Since the time positions of the synchronization pattern section CR for carrier wave reproduction and the synchronization pattern section BTR for bit timing reproduction are predetermined with respect to the unique word section UW, the unique word section UW is detected by the unique word detector 6, and When the detection signal e is applied to the phase number control circuit 7, the time position of the synchronization pattern section CR for carrier wave reproduction and the synchronization pattern section BTR for bit timing reproduction of the next burst signal can be accurately determined. Therefore, the phase number control circuit 7
For example, as shown in FIG. 4, the counter is composed of a counter 8 and a decoder 9, and a unique word detection signal e is applied to the reset terminal R of the counter 8, a clock signal is applied to the clock terminal CK, and the unique word detection signal e is applied to the reset terminal R of the counter 8. After being reset by the signal e, the count contents of the counter 8 that counts up the clock signal are decoded by the decoder 9, and the control signal f1 is used to stop the inverse modulation when receiving the synchronization pattern part CR for carrier wave reproduction of the next burst signal. and a control signal f2 for performing two-phase inverse modulation when receiving the bit timing reproduction synchronization pattern section BTR.

相数制御回路7から逆変調器3に加える制御信号rは、
搬送波再生用同期パターン部CRに対しては、第2図の
伽)に示す逆変調を停止させる制御信号とし、ビットタ
イミング再生用同期パターン部BTRに対しては、第2
図の(C)に示す2相逆変調を行わせる制御信号とし、
その他のユニークワード部UW及びデータ部DATAに
対しては、第2図の(d)に示す4相逆変調を行わせる
制御信号とするものである。それによって、逆変調器3
に於いては、搬送波再生用同期パターン部CR−に対し
て逆変調を停止し、受信PSK信号aを帯域濾波器4を
介して復調器lに再生搬送波すとして加えることになる
。即ち、無変調部であるから、そのまま再生搬送波とす
ることができるものである。
The control signal r applied from the phase number control circuit 7 to the inverse modulator 3 is
For the synchronization pattern section CR for carrier wave reproduction, the control signal for stopping the inverse modulation shown in Figure 2 is used, and for the synchronization pattern section BTR for bit timing reproduction, the second
A control signal for performing two-phase inverse modulation shown in (C) of the figure,
For the other unique word part UW and data part DATA, a control signal is used to perform four-phase inverse modulation as shown in FIG. 2(d). Thereby, the inverse modulator 3
In this case, inverse modulation is stopped for the synchronization pattern section CR- for carrier wave regeneration, and the received PSK signal a is applied to the demodulator l via the bandpass filter 4 as a regenerated carrier wave. That is, since it is a non-modulated part, it can be used as a reproduced carrier wave as it is.

次のビットタイミング再生用同期パターン部BTRに対
しては、2相逆変調を行い、2相変調状態のビットタイ
ミング再生用同期パターン部BTRは無変調信号に変換
され、帯域濾波器4を介して再生搬送波すとなる。又ユ
ニークワード部UW及びデータ部DATAに対しては、
4相逆変調を行って搬送波を再生することになる。
Two-phase inverse modulation is performed on the next bit timing reproduction synchronization pattern section BTR, and the bit timing reproduction synchronization pattern section BTR in the two-phase modulation state is converted into an unmodulated signal and passed through the bandpass filter 4. It becomes a regenerated carrier wave. Also, for the unique word part UW and data part DATA,
The carrier wave will be recovered by performing four-phase inverse modulation.

第5図は本発明の実施例の4相逆変調型の搬送波再生回
路のブロック図であり、11.12は平衡変調器、13
.14は低域濾波器、15゜16は識別器、17.18
は平衡変調器、19はセレクタ、20.21はハイブリ
ッド回路、22は遅延回路、2.3は再生搬送波を出力
する為の帯域濾波器又は位相同期回路(P L L)で
ある。この帯域濾波器23の出力の再生搬送波信号は、
90’ハイブリッド回路20によりそれぞれ90°の位
相差で分配されて平衡変調器11.12に加えられ、又
受信4相PSK信号がそれぞれ平衡変調器11.12に
加えられて、再生搬送波信号により同期検波される。
FIG. 5 is a block diagram of a four-phase inverse modulation type carrier wave regeneration circuit according to an embodiment of the present invention, in which 11.12 is a balanced modulator, 13
.. 14 is a low-pass filter, 15° 16 is a discriminator, 17.18
1 is a balanced modulator, 19 is a selector, 20.21 is a hybrid circuit, 22 is a delay circuit, and 2.3 is a bandpass filter or phase locked circuit (PLL) for outputting a recovered carrier wave. The regenerated carrier signal output from the bandpass filter 23 is
The signals are distributed by the 90' hybrid circuit 20 with a phase difference of 90° and applied to the balanced modulators 11.12, and the received 4-phase PSK signals are applied to the balanced modulators 11.12, respectively, and synchronized by the regenerated carrier signal. Detected.

平衡変調器11.12の出力信号は、それぞれ低域濾波
器13.14を介して識別器15.16に加えられ、レ
ベル識別によりデータが再生されてセレクタ19に加え
られる。セレクタ19は相数制御回路7により制御され
るものであり、逆変調停止制御信号f1又は2相逆変調
制御信号f2がセレクタ19に加えられる。セレクタ1
9で選択されたデータは、平衡変調器17.18に加え
られ、又遅延回路22で各部の遅延時間に対応して遅延
させた入力PSK信号がそれぞれ平衡変調器17.18
に加えられ、それぞれ逆変調が行われて、ハイブリッド
回路21により合成され、無変調状態の信号が帯域濾波
器23に加えられ、搬送波周波数を中心周波数とした帯
域濾波器23から再生搬送波信号が出力されることにな
る。
The output signals of the balanced modulators 11 , 12 are respectively applied to a discriminator 15 , 16 via a low-pass filter 13 , 14 , and the data is recovered by level discrimination and applied to a selector 19 . The selector 19 is controlled by the phase number control circuit 7, and an inverse modulation stop control signal f1 or a two-phase inverse modulation control signal f2 is applied to the selector 19. Selector 1
The data selected at step 9 is applied to balanced modulators 17 and 18, and input PSK signals delayed by delay circuits 22 corresponding to the delay times of each part are applied to balanced modulators 17 and 18, respectively.
The signals in the unmodulated state are applied to the bandpass filter 23, and a regenerated carrier signal is output from the bandpass filter 23 with the carrier frequency as the center frequency. will be done.

第6図はセレクタ19の要部回路図であり、ゲート回路
Gl、G2と切換回路SWとから構成されており、相数
制御回路7からの逆変調停止制御信号r1が“0゛で且
つ2相変調制御信号f2が・2相変調を指示していない
場合は、切換回路SWは図示の状態で、識別器15.1
6の出力のデータIin、Qtnはゲート回路Gl、G
2を介してデータ[out、Qoutとなり、逆変調を
行う平衡変調器IT、18に加えられる。即ち、4相逆
変調による搬送波再生の状態となり、ユニークワード部
UW及びデータ部DATAに対する復調用の搬送波を再
生することになる。
FIG. 6 is a circuit diagram of the main part of the selector 19, which is composed of gate circuits Gl and G2 and a switching circuit SW. When the phase modulation control signal f2 does not instruct two-phase modulation, the switching circuit SW is in the state shown, and the discriminator 15.1
6 output data Iin, Qtn are gate circuits Gl, G
2 becomes the data [out, Qout] and is applied to a balanced modulator IT, 18 which performs inverse modulation. That is, a state of carrier wave regeneration by four-phase inverse modulation is entered, and a carrier wave for demodulation for the unique word part UW and data part DATA is regenerated.

搬送波再生用同期パターン部CRに対する逆変調停止は
、“0”の逆変調停止制御信号r1が相数制御回路7か
らセレクタ19に加えられ、それによってゲート回路G
l、G2が閉じられるから、変調器17.18に加えら
れるデータIout、Qoutは論理“0”となり、平
衡変調器17.18に於ける通過位相は一定となり、帯
域濾波器23に入力される信号の位相は変化せず、従っ
て帯域濾波器の出力には安定な基準搬送波が得られる。
To stop the inverse modulation for the synchronization pattern section CR for carrier wave reproduction, the inverse modulation stop control signal r1 of "0" is applied from the phase number control circuit 7 to the selector 19, and thereby the gate circuit G
Since l and G2 are closed, the data Iout and Qout applied to the modulator 17.18 become logic "0", the passing phase in the balanced modulator 17.18 becomes constant, and the data is input to the bandpass filter 23. The phase of the signal does not change, so a stable reference carrier is obtained at the output of the bandpass filter.

皿ち、搬送波再生用同期パターン部CRは、無変調信号
であるから、そのまま再生搬送波信号として用いるもの
である。
Since the synchronization pattern section CR for carrier wave reproduction is a non-modulated signal, it can be used as it is as a reproduced carrier wave signal.

又ビットタイミング再生用同期パターン部BTRに対す
る2相逆変調は、相数制御回路7からの2相逆変禰制御
信号f2により切換回路SWが切換動作されて、データ
finがゲート回路Glとゲート回路G2とに加えられ
ることになり、その時逆変調停止信号r1は“l”とな
っているので、データIinが出力データ1out、Q
outとして平衡変調器17.18に加えられ、同一の
データでそれぞれ逆変調を行うものであるから、2相逆
変調となり、ビットタイミング再生用同期パターン部B
TRが2相変調状態であることから、無変調信号即ち搬
送波信号が再生されることになる。
In addition, the two-phase inverse modulation for the synchronization pattern section BTR for bit timing reproduction is performed by switching the switching circuit SW by the two-phase inverse modulation control signal f2 from the phase number control circuit 7, and the data fin is switched between the gate circuit Gl and the gate circuit. Since the inverse modulation stop signal r1 is "L" at that time, the data Iin is added to the output data 1out, Q
Since it is added to the balanced modulators 17 and 18 as out and performs inverse modulation with the same data, it becomes two-phase inverse modulation, and the synchronization pattern section B for bit timing reproduction
Since the TR is in a two-phase modulation state, an unmodulated signal, that is, a carrier wave signal is reproduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、PSK−TDMA方式
に於いて、受信バースト信号の先頭部の搬送波再生同期
パターン部CRと、ビットタイミング再生用同期パター
ン部BTRと、ユニークワード部UW及びデータ部DA
TA部との判別手段を設けて、それぞれの変調相数に一
致した相数の逆変調に切換えるものである。このように
、受信バースト信号の変調相数に一敗して逆変調相数を
切換えることによって、同期パターン部CR,BTRの
時間長が短縮されても、ハングアップ現象を少なくする
ことができるものである。そして、ビットタイミング再
生用同期パターン部BTRも搬送波再生に利用できる利
点がある。従って、低C/Na″態に於いても、逆変調
方式により搬送波を再生するものであるから、サイクル
スキップ現象が小さく、且つ前述のようにハングアップ
現象も小さくなるので、伝送効率を向上したPSK−T
DMA方式に適用して、安定な搬送波再生を行わせるこ
とができる利点がある。
As explained above, in the PSK-TDMA system, the present invention provides a carrier wave regeneration synchronization pattern section CR at the beginning of a received burst signal, a bit timing regeneration synchronization pattern section BTR, a unique word section UW, and a data section. D.A.
A means for discriminating between the TA section and the TA section is provided to switch to inverse modulation with a phase number that matches each modulation phase number. In this way, by changing the number of modulation phases of the received burst signal and changing the number of inverse modulation phases, it is possible to reduce the hang-up phenomenon even if the time length of the synchronization pattern sections CR and BTR is shortened. It is. Further, there is an advantage that the synchronization pattern section BTR for bit timing reproduction can also be used for carrier wave reproduction. Therefore, even in a low C/Na'' state, the carrier wave is regenerated by the inverse modulation method, so the cycle skip phenomenon is small, and as mentioned above, the hang-up phenomenon is also reduced, so transmission efficiency is improved. PSK-T
It has the advantage that it can be applied to a DMA system to perform stable carrier wave regeneration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図、第2図は受信バ
ースト信号及び制御信号の説明図、第3図は変調ベクト
ルの説明図、第4図は相数制御回路の一例のブロック図
、第5図は本発明の実施例の4相逆変調型の搬送波再生
回路のブロック図、第6図はセレクタの要部回路図であ
る。 ■は復調器、2は搬送波再生回路、3は逆変調器、4は
帯域濾波器、5はビットタイミング再生回路、6はユニ
ークワード検出器、7は相数制御回路、8はカウンタ、
9はデコーダ、CRは搬送波再生用同期パターン部、B
TRはビットタイミング再生用同期パターン部、UWは
ユニークワード部、DATAはデータ部である。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of received burst signals and control signals, Fig. 3 is an explanatory diagram of modulation vectors, and Fig. 4 is a block diagram of an example of a phase number control circuit. , FIG. 5 is a block diagram of a four-phase inverse modulation type carrier wave regeneration circuit according to an embodiment of the present invention, and FIG. 6 is a circuit diagram of the main part of the selector. 2 is a demodulator, 2 is a carrier recovery circuit, 3 is an inverse modulator, 4 is a bandpass filter, 5 is a bit timing recovery circuit, 6 is a unique word detector, 7 is a phase number control circuit, 8 is a counter,
9 is a decoder, CR is a synchronization pattern section for carrier wave reproduction, B
TR is a synchronization pattern section for bit timing reproduction, UW is a unique word section, and DATA is a data section.

Claims (1)

【特許請求の範囲】[Claims] PSK−TDMA方式に於ける復調用基準搬送波を逆変
調方式により再生する搬送波再生方式に於いて、受信バ
ースト信号の先頭部の搬送波再生用同期パターン部と、
ビットタイミング再生用同期パターン部と、ユニークワ
ード部及びデータ部との判別手段を設け、該判別手段か
らの制御信号により逆変調相数の切換制御を行って前記
受信バースト信号から前記復調用基準搬送波を再生する
ことを特徴とする搬送波再生方式。
In a carrier wave regeneration method in which a reference carrier wave for demodulation in the PSK-TDMA system is regenerated by an inverse modulation method, a synchronization pattern section for carrier wave regeneration at the beginning of a received burst signal;
A means for discriminating between a synchronization pattern section for bit timing reproduction, a unique word section, and a data section is provided, and a control signal from the discriminating means controls switching of the number of inverse modulation phases to convert the received burst signal to the reference carrier wave for demodulation. A carrier wave regeneration method characterized by regenerating.
JP60003376A 1985-01-14 1985-01-14 Carrier wave recovery system Pending JPS61163763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003376A JPS61163763A (en) 1985-01-14 1985-01-14 Carrier wave recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003376A JPS61163763A (en) 1985-01-14 1985-01-14 Carrier wave recovery system

Publications (1)

Publication Number Publication Date
JPS61163763A true JPS61163763A (en) 1986-07-24

Family

ID=11555633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003376A Pending JPS61163763A (en) 1985-01-14 1985-01-14 Carrier wave recovery system

Country Status (1)

Country Link
JP (1) JPS61163763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427283A2 (en) * 1989-11-10 1991-05-15 Nec Corporation Fast PSK carrier recovery in a mobile satellite communication network
CN110445735A (en) * 2019-07-24 2019-11-12 南京理工大学 Burst short data carrier synchronization method based on signal backtracking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323649A (en) * 1976-08-18 1978-03-04 Dainippon Printing Co Ltd Liquid crystal display cell
JPS5528454A (en) * 1978-08-22 1980-02-29 Sanika Denki Kk Vaporizer
JPS572220A (en) * 1980-06-09 1982-01-07 Toray Ind Inc Production of interferon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323649A (en) * 1976-08-18 1978-03-04 Dainippon Printing Co Ltd Liquid crystal display cell
JPS5528454A (en) * 1978-08-22 1980-02-29 Sanika Denki Kk Vaporizer
JPS572220A (en) * 1980-06-09 1982-01-07 Toray Ind Inc Production of interferon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427283A2 (en) * 1989-11-10 1991-05-15 Nec Corporation Fast PSK carrier recovery in a mobile satellite communication network
CN110445735A (en) * 2019-07-24 2019-11-12 南京理工大学 Burst short data carrier synchronization method based on signal backtracking
CN110445735B (en) * 2019-07-24 2022-04-01 南京理工大学 Burst short data carrier synchronization method based on signal backtracking

Similar Documents

Publication Publication Date Title
JPH021675A (en) Carrier recovering circuit for offset qpsk system
US3984777A (en) Carrier wave reproducer device for use in the reception of a multi-phase phase-modulated wave
JPS61163763A (en) Carrier wave recovery system
JPH0142537B2 (en)
JPS6211347A (en) Four-phase psk demodulating device
US3343090A (en) Receiving device for pulses modulated by phase jump modulation on a carrier oscillation
JPS6210950A (en) Digital radio communication system
JPS6342991B2 (en)
JPS62102636A (en) Clock recovery circuit
JPH0222583B2 (en)
JPS62142442A (en) Carrier recovery equipment of burst psk
JPS6096051A (en) Bit timing regenerating system
JP3377858B2 (en) Clock recovery circuit and demodulator using the same
JPS6159579B2 (en)
JPS63108839A (en) Demodulator
JPH01240024A (en) Clock reproducing circuit
JPH03155237A (en) Bit timing regeneration circuit
JPH0612902B2 (en) Carrier wave regeneration circuit
JPH08223238A (en) Burst signal demodulation circuit
JPH0422378B2 (en)
JPH0213984B2 (en)
JPH01117451A (en) Demodulation circuit
JPS6351752A (en) Carrier recovery device
JPH02228849A (en) Quadruple phase shift keying detection circuit
JPH01152846A (en) Phase demodulation system for tdma data transmission system