JPS61163247A - High alloy stainless steel excelling in hot workability as well as corrosion resistance - Google Patents

High alloy stainless steel excelling in hot workability as well as corrosion resistance

Info

Publication number
JPS61163247A
JPS61163247A JP411885A JP411885A JPS61163247A JP S61163247 A JPS61163247 A JP S61163247A JP 411885 A JP411885 A JP 411885A JP 411885 A JP411885 A JP 411885A JP S61163247 A JPS61163247 A JP S61163247A
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
hot workability
stainless steel
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP411885A
Other languages
Japanese (ja)
Other versions
JPH0463146B2 (en
Inventor
Masanori Ueda
上田 全紀
Masayuki Abe
雅之 阿部
Shigehiro Yamaguchi
山口 重裕
Harumi Tsuboi
坪井 晴己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP411885A priority Critical patent/JPS61163247A/en
Publication of JPS61163247A publication Critical patent/JPS61163247A/en
Publication of JPH0463146B2 publication Critical patent/JPH0463146B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve corrosion resistance and hot workability by incorporating prescribed percentage of C, Si, Mn, P, Cr, Ni, N, Mo, S, O, Al, Ti, and Ca. CONSTITUTION:The titled stainless steel consists of, by weight, 0.005-0.3% C, <=5% Si, <=8% Mn, <=0.04% P, 15-35% Cr, 5-40% Ni, 0.01-0.5% N, 5.5-10% Mo, 0.01-0.1% Al and/or Ti, 0.001-0.008% Ca, <=30ppm S, <=50ppm O, and the balance Fe, and satisfies the following conditions: 3(Cr+1.5Si+ Mo)-28(Ni+0.5Mn+0.5Cu)-84(C+N)-19.8>-10% (where each component is represented by wt.%); and S+O-0.8Ca<=40 (where each component is represented by ppm).

Description

【発明の詳細な説明】 (産業上の利用分桁) 本発明は耐食性と熱間加工性がすぐれた高合金ステンレ
ス鋼に関するものであり、特に海水に対する耐食性がす
ぐれた高合金ステンレス鋼に関するものである。
[Detailed description of the invention] (Industrial applications) The present invention relates to a high alloy stainless steel with excellent corrosion resistance and hot workability, and in particular to a high alloy stainless steel with excellent corrosion resistance to seawater. be.

(従来の技術) 高合金ステンレス鋼は特にきびしい耐食性、耐熱性、耐
酸化性が要求される場合に使用され、耐海水ステンレス
鋼は今後益々重要性が増大する傾向にある。これらの合
金は多くの場合Cr HNi +Mo 、 Sl等を多
量に含有し、又Nはステンレス鋼の強度と耐食性改善元
素として、積極的に活用が望まれる成分である。
(Prior Art) High-alloy stainless steel is used particularly when severe corrosion resistance, heat resistance, and oxidation resistance are required, and seawater-resistant stainless steel is likely to become increasingly important in the future. These alloys often contain large amounts of Cr HNi + Mo, Sl, etc., and N is a component that is desired to be actively utilized as an element that improves the strength and corrosion resistance of stainless steel.

(発明が解決しようとする問題点) ところがこれらの高合金のうち特にNi、N。(Problem that the invention attempts to solve) However, among these high alloys, especially Ni and N.

Mo等々を多量含有する合金においては、熱間での加工
性が劣り、熱間加工中に割れを生じたシするいはへr状
の疵を生じて歩留シの低下をきたす。特に高合金鋼を連
続鋳造化(以後CC化と略す)した場合、次工程の熱間
圧延中に、鋳造時のデンドライトの粒界で割れを起こし
て製造が不可能となるため、CC化されていない高合金
鋼が多いのが現状である。
Alloys containing a large amount of Mo and the like have poor hot workability, and cracks or curved flaws occur during hot working, resulting in a decrease in yield. In particular, when high-alloy steel is continuously cast (hereinafter referred to as CC), cracks occur at the grain boundaries of dendrites during casting during the next step of hot rolling, making production impossible. Currently, there are many high-alloy steels that have not been tested.

一方、これらの高合金鋼では次の点から特にCC化が望
まれ、CC化にともなう効果はきわめて大きい。
On the other hand, for these high alloy steels, conversion to CC is particularly desired from the following points, and the effects associated with conversion to CC are extremely large.

1)高合金鋼は高価々合金元素を含むため、歩留シ向上
が特に望ましく、この点でインゴット−分塊圧延法に対
してCC化法が強く望まれている。
1) Since high-alloy steel contains expensive alloying elements, it is particularly desirable to improve the yield, and in this respect, the CC method is strongly desired over the ingot-blubber rolling method.

2)高合金鋼のインゴット・分塊法での製造で、長時間
均熱により、熱間の加工性は改善されるが、長時間均熱
による表面スケール生成が犬で脱Cr層等の生成が大と
なり、製品表面の耐食性、耐酸化性を劣化する。したが
って耐隙間腐食性を要求される耐海水ステンレス鋼にお
いては表面に脱Cr層等が少ないCC化が望ましい。
2) In the production of high-alloy steel using the ingot/blubber method, hot workability is improved by soaking for a long time, but surface scale formation due to long soaking is difficult, and the formation of a Cr-free layer, etc. becomes large and deteriorates the corrosion resistance and oxidation resistance of the product surface. Therefore, for seawater-resistant stainless steel that requires crevice corrosion resistance, it is desirable to use CC with less chromium-free layer etc. on the surface.

(問題点を解決するだめの手段) 本発明者らは先に鋼塊法における熱間加工性の改善法を
特開昭49−135812号公報に開示し、Al、 C
a処理法を明らかにしたが、更に一歩進めてCC化をね
らい種々の検討を実施した結果、高合金鋼CC鋳片の熱
間加工性を改善し、かつすぐれた耐食性、耐海水性を保
有した製品を得るだめには合金組成としてS、O量を厳
密に規制するととが必要であることが明らかになった。
(Means for solving the problem) The present inventors previously disclosed a method for improving hot workability in the steel ingot method in JP-A-49-135812, and
We have clarified the a treatment method, but as a result of various studies aimed at taking it one step further and converting it into CC, we have improved the hot workability of high-alloy steel CC slabs and have excellent corrosion resistance and seawater resistance. It has become clear that in order to obtain a product with a high temperature, it is necessary to strictly control the amounts of S and O in the alloy composition.

本発明はその規制限界と手段を明らかにしたものである
The present invention clarifies its regulatory limits and means.

即ち本発明の要旨とするところは下記のとおシである。That is, the gist of the present invention is as follows.

(1)重量バーセントチC0.005〜0.3%、81
5%以下、 Mn 8%以下、P0.04%以下、cr
15〜35L%、Ni5〜40%、N0.01〜0.5
%、M0.5.5〜10.0%でSを30 ppm以下
、0を50 ppm以下。
(1) Weight basis C0.005-0.3%, 81
5% or less, Mn 8% or less, P 0.04% or less, cr
15-35L%, Ni5-40%, N0.01-0.5
%, M0.5.5-10.0%, S is 30 ppm or less, 0 is 50 ppm or less.

Alあるいは利の1種又は2種を0.01〜0.i。One or two types of Al or aluminum at 0.01 to 0. i.

チ含み、更にCaを0.o o i 〜0.o o s
%金含有、残部実質的にFeと不可避の不純物より成る
合金において、各成分の重量パーセントで示した δ−@)=3 (Cr+1.5 S i +Mo )−
28(N i+0.5Mn+0.5c u )−84(
C+N)−19,8が一10%以上で、かつ各成分をp
pmで表示した(S+O−0.8Ca) ≦40である
ことを特徴とする耐食性がすぐれ、熱間加工性のすぐれ
り高合金ステンレス鋼。
Contains 0.0% Ca. o o i ~0. o o s
In an alloy containing % gold and the balance essentially consisting of Fe and unavoidable impurities, δ-@) = 3 (Cr+1.5 Si + Mo)- expressed in weight percent of each component.
28(N i+0.5Mn+0.5c u )−84(
C+N)-19,8 is -10% or more, and each component is p
A high alloy stainless steel with excellent corrosion resistance and excellent hot workability, characterized in that (S+O-0.8Ca) expressed in pm is ≦40.

′(2)重量/4− + 7トテC0.005〜0.3
%、815%以下、 Mn 8%以下、P0.04%以
下、0115〜35%、 Nl 5〜40% 、 N 
0.01〜0.5% 、 Mo 5.5〜100%で更
に、 Cu 3%以下、 Nb 1 %以下。
'(2) Weight/4- + 7 tote C0.005~0.3
%, 815% or less, Mn 8% or less, P 0.04% or less, 0115-35%, Nl 5-40%, N
0.01-0.5%, Mo 5.5-100%, Cu 3% or less, Nb 1% or less.

V1%以下、W2%以下、 Zr 0.5%以下、 S
n0、196以下の各成分の1種又は2種以上を含有し
、830 ppm以下、 050 ppm以下、 Al
あるいはTiの1種又は2種を0.01〜0.10チ含
み、更にCILを0.001〜0.oos%含有し、残
部実質的にFeと不可避の不純物より成る合金において
、各成分の重量パーセントで表示した δa11$)=3(Cr+1.5Si+Mo)−28(
Ni+0.5Mn+0.5cu)−84(C+N)−1
9,8が一10%以上で、かつ各成分をppmで表示し
た( S +0−0.8 Ca ’II ≦40  で
あることを特徴とする耐食性がすぐれ、熱間加工性のす
ぐれた高合金ステンレス鋼。
V1% or less, W2% or less, Zr 0.5% or less, S
Contains one or more of the following components: n0, 196 or less, 830 ppm or less, 050 ppm or less, Al
Alternatively, it contains 0.01 to 0.10 of one or two kinds of Ti, and further contains 0.001 to 0.0 of CIL. oos%, with the balance essentially consisting of Fe and unavoidable impurities, δa11$) = 3(Cr+1.5Si+Mo)-28( expressed as weight percent of each component)
Ni+0.5Mn+0.5cu)-84(C+N)-1
A high alloy with excellent corrosion resistance and excellent hot workability, characterized by 9,8 being 10% or more, and each component expressed in ppm (S + 0-0.8 Ca 'II ≦ 40) stainless steel.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

すでに前述した通シ、耐食性2%に耐海水性等のきびし
い要求に対しては、Cr、Ni、M0.Siをはじめと
して多量の合金元素を添加することが必要となシ、又N
の添加も極めて有効である。しかもこれらの高合金鋼を
歩留シの点及び表面脱Cr層の点で連続鋳造により多量
に生産するためには、CC鋳片の熱間加工性の向上が極
めて重要な課題となる。すなわち鋳造時のデンドライト
の粒界延性をより一層向上させる必要のあることが判明
し、よりきびしい合金組成の規制が必要となる。これら
の要請に対して特開昭49−135812号公報ではA
l脱酸とCa添加法が示され更に特公昭59−1042
6号公報においてはMg脱酸や、Ce等の希土類金属の
添加が示されている。更に合金組成としては特公昭57
−61104号公報に示される様にの間に制御すること
が知られている。
In order to meet the stringent requirements such as corrosion resistance, corrosion resistance of 2%, and seawater resistance as mentioned above, Cr, Ni, M0. It is necessary to add large amounts of alloying elements such as Si, and N
The addition of is also extremely effective. Moreover, in order to produce large quantities of these high alloy steels by continuous casting in terms of yield and surface chromium-free layer, improving the hot workability of CC slabs is an extremely important issue. That is, it has been found that it is necessary to further improve the grain boundary ductility of the dendrite during casting, and stricter regulation of the alloy composition is required. In response to these requests, Japanese Patent Application Laid-open No. 49-135812
The method of deoxidizing and adding Ca was shown and further published in Japanese Patent Publication No. 1042/1983
No. 6 discloses Mg deoxidation and the addition of rare earth metals such as Ce. Furthermore, the alloy composition is
It is known to control the distance between the two as shown in Japanese Patent No. 61104.

本発明者らはCC7M片の熱間加工性向上と耐海水性の
向上をねらいに詳細な研究を実施した結果、耐海水性と
熱間加工性に対して主成分の規制はもちろん脱酸脱硫の
制御が大きな影響を示すことを明らかにし、ことに本発
明に到ったものである。
The present inventors conducted detailed research with the aim of improving hot workability and seawater resistance of CC7M pieces, and found that they not only controlled the main components, but also deoxidized and desulfurized the seawater resistance and hot workability. This study revealed that the control of

すなわち、高合金鋳片の熱間加工性には多くの要因が関
連しているが、最も大きな影響を与える要因は、鋼中の
S、0量及びCa量であり、これらは多くの実験から各
元素をppmで表示して〔S十〇−0.8Ca:]の形
で熱間加工性に影響することが判明した。次いで大きな
影響を与える要因はN量、M。
In other words, many factors are related to the hot workability of high-alloy slabs, but the factors that have the greatest influence are the amounts of S, O, and Ca in the steel, and these have been determined from many experiments. It was found that each element affects hot workability in the form of [S10-0.8Ca:] expressed in ppm. The next most influential factor is N amount and M.

掛、更にはNb 、 V 、 W 、 Cu ii等で
あり、又次式に定義するδ−←)も熱間加工性に影響す
ることがわかった。δcnl1m)=3 (Cr−1−
1,5Si+Mo )−2,8(Ni−0.SMn+0
.5 Cu )−84(e+N ) −19,8(この
場合には各成分は重量1?−セント表示である。)第1
図は、鋳片表面部分から、熱間衝撃試験片を採取して加
熱後空冷中に衝撃温度を変えて熱間衝撃試験(加熱条件
1250℃、衝撃温度1200〜10.00℃各50℃
おき)を実施し、それらの総合評点で熱間加工性を評価
した結果を示している。
It was found that Nb, V, W, Cu ii, etc., as well as δ-←) defined by the following formula, also affected hot workability. δcnl1m)=3 (Cr-1-
1,5Si+Mo)-2,8(Ni-0.SMn+0
.. 5 Cu) -84 (e+N) -19,8 (In this case, each component is expressed in weight 1?-cents.) 1st
The figure shows a hot impact test piece taken from the surface of a slab, heated and then air cooled while changing the impact temperature (heating condition 1250℃, impact temperature 1200-10.00℃ each 50℃
The figure shows the results of evaluating hot workability based on the overall score.

合金(、)は21 Cr −18Ni −0.3ON−
6,0Moの組成でそのS、0.Ca歇と熱間加工性と
の関連を示している。こりして(、)合金の場合各元素
をppmで表示して[S −1−0−0.8Ca ) 
(ppm)は40以下で熱間加工性がすぐれている。も
ちろんCaを多く活用すれば有効であるがCaO量が多
すぎると耐食性をそこなうことがあり、Ca址は0.’
001〜0.008チとする。
Alloy (,) is 21 Cr -18Ni -0.3ON-
With a composition of 6,0Mo, its S, 0. It shows the relationship between Ca remission and hot workability. In the case of Korikishite (,) alloy, each element is expressed in ppm [S -1-0-0.8Ca)
(ppm) is 40 or less and has excellent hot workability. Of course, it is effective if a large amount of Ca is used, but if the amount of CaO is too large, corrosion resistance may be impaired, and the amount of Ca remaining is 0. '
001 to 0.008 chi.

第9図は合金25 Cr −(18〜21 )Nl −
(0.3〜0.4)N  5.9Moのδ−@)の熱間
加工性に対する影響を示している。δ−@)は上述した
ごとく、δdじ)−3(Cr+1.58i+Mo )−
2,8(Ni+0.5Mn+0.5Cu )−84(C
+N)−19,8で定義している。この場合は熱間加工
性として、鋳片よりグリープル試片を採取し、950〜
1250℃間で引張シ、最小の絞シ値を指標としている
。絞り値が60%以上あれば熱間加工性が良好である。
Figure 9 shows the alloy 25Cr-(18~21)Nl-
(0.3-0.4) The influence of δ-@) of N 5.9Mo on hot workability is shown. As mentioned above, δ−@) is δdji)−3(Cr+1.58i+Mo)−
2,8(Ni+0.5Mn+0.5Cu)-84(C
+N)-19,8. In this case, for hot workability, a Greeple test piece was taken from the slab, and 950~
The tensile shear and minimum shrinkage values at 1250°C are used as indicators. If the reduction of area is 60% or more, hot workability is good.

該合金において(S+O−0.8Ca )≦40 (図
中(B)領域)でかつδ−(%)〉−10%の場合熱間
加工性は良好となる。[S+O−0.8Ca](ppm
)>40 (図中(A)領域)ではδ、、i+1)を0
に近づけると改良されるが、その程度が不足である。
In this alloy, when (S+O-0.8Ca)≦40 (region (B) in the figure) and δ-(%)>-10%, the hot workability is good. [S+O-0.8Ca] (ppm
) > 40 (region (A) in the figure), δ,,i+1) is set to 0.
It will be improved if it gets closer to , but the extent is still insufficient.

以上の実験事実から合金組成として(:S十〇−0.8
Ca)を低減することが重要であυ、耐海水ステンレス
鋼として含N−Cr −Ni −Mo系合金では〔S−
ト0−0.8 Ca ) (ppm)≦40が必要であ
る。更にNb 。
From the above experimental facts, the alloy composition (:S10-0.8
It is important to reduce Ca) υ, and in N-Cr-Ni-Mo alloys as seawater-resistant stainless steels, [S-
0-0.8 Ca) (ppm)≦40 is required. Furthermore, Nb.

Cu 、 Sn等々を含有する場合にも[S 十〇−0
.80a]≦4oが必要となる。これらの条件と共に更
に δd@)= 3  (Cr  +  1.5  S
 i  +Mo  )    2.8  (Ni−t−
0.5Mn−1−0.5Cu )−84(C+N)−1
9,8は大きい方が望ましく、δ−@)≧−10%が必
要である。ここに、S量は合金そのもののS量を低下さ
せ含有t 30 ppm以下、望ましくは15 ppm
未満である。0′!:はAlやTi等の脱酸元素で脱酸
され、Total酸素量として50 ppm以下、望ま
しくは40 ppm未満である。
Even when containing Cu, Sn, etc. [S 〇-0
.. 80a]≦4o. In addition to these conditions, δd@) = 3 (Cr + 1.5 S
i + Mo ) 2.8 (Ni-t-
0.5Mn-1-0.5Cu)-84(C+N)-1
9 and 8 are preferably larger, and δ-@)≧-10% is required. Here, the amount of S is reduced by reducing the amount of S in the alloy itself, and the content t is 30 ppm or less, preferably 15 ppm.
less than 0'! : is deoxidized with a deoxidizing element such as Al or Ti, and the total oxygen content is 50 ppm or less, preferably less than 40 ppm.

更に、Caを添加して硫黄や酸素を固定することが望ま
しい。
Furthermore, it is desirable to add Ca to fix sulfur and oxygen.

これらの対策を実施した合金の鋳造後の介在物組成を調
査した結果、熱間加工性と耐食性の劣る合金では介在物
中にMnS +Mn 、 Siの酸化物が認められるの
に対し熱間加工性の良好な合金では介在物中に硫化物は
認められず、かつ酸化物中にもS I +Mnはなく、
Al、 Ti 、 Ca等の極めて安定な酸化物のみが
認められた。これらの結果は鋳造後のデンドライト粒界
にもSはなく、かつ酸素もきわめて安定な酸化物の形で
固定される結果、粒界の清浄度が向上し、高温ですぐれ
た延性が得られ、高温延性の改善に結びついたものと考
えられる。
As a result of investigating the inclusion composition after casting of alloys in which these measures were implemented, it was found that oxides of MnS + Mn and Si were observed in the inclusions of alloys with poor hot workability and corrosion resistance, whereas hot workability was poor. In a good alloy, no sulfide is observed in the inclusions, and there is no S I +Mn in the oxide,
Only extremely stable oxides such as Al, Ti, and Ca were observed. These results show that there is no S in the dendrite grain boundaries after casting, and oxygen is fixed in the form of extremely stable oxides, resulting in improved grain boundary cleanliness and excellent ductility at high temperatures. This is thought to be linked to the improvement of high-temperature ductility.

このような介在物の変化は又耐食性の改善にも寄与する
ところ大であった。
Such changes in inclusions also greatly contributed to improving corrosion resistance.

以下に各成分の限定理由について述べる。The reason for limiting each component will be described below.

C:Cはステンレス鋼の耐食性には有害であるが、強度
の点では望ましい。したがって0.3%tでとした。0
.3 %をこえると耐食性を大巾に劣化させる。下限の
0.005%は工業的な経済性で決まる下限である。
C: C is detrimental to the corrosion resistance of stainless steel, but is desirable in terms of strength. Therefore, it was set at 0.3% t. 0
.. If it exceeds 3%, corrosion resistance will be significantly deteriorated. The lower limit of 0.005% is determined by industrial economics.

SI:Slはステンレス鋼の耐食性を増し、耐酸化性を
増す。上限5%はこれをこえると効果が飽和すると共に
熱間加工性を劣化させる。
SI: Sl increases the corrosion resistance and oxidation resistance of stainless steel. If the upper limit is 5%, the effect will be saturated and hot workability will deteriorate.

Mn : MnはNの固溶度を増すが耐食性を劣化させ
るので上限を8%とした。8%をこえると耐食性、耐酸
化性を損う。
Mn: Mn increases the solid solubility of N but deteriorates corrosion resistance, so the upper limit was set at 8%. If it exceeds 8%, corrosion resistance and oxidation resistance will be impaired.

P:Pは耐食性、熱間加工性の点では少ない方が良好で
0.04 %以下とした。これをこえると両特性が劣化
する。
P: In terms of corrosion resistance and hot workability, less P is better, so it was set to 0.04% or less. If this value is exceeded, both characteristics deteriorate.

S:Sは本発明の熱間加工性向上のだめの重要成分で、
低ければ低い程よ(30ppm以下、望ましくは15 
ppm以下とする。特に後述するように0と共に低くし
て、高温での粒界延性を向上させることか重要である。
S: S is an important component for improving hot workability in the present invention,
The lower the better (30 ppm or less, preferably 15
Less than ppm. In particular, it is important to improve grain boundary ductility at high temperatures by lowering it to 0 as will be described later.

又耐食性の点でも低い方が良(30ppm以下とした。Also, in terms of corrosion resistance, the lower the better (30 ppm or less).

0:Oも本発明の熱間加工性向上のだめの重要成分で、
低ければ低い程よ(50ppm以下、望ましくは40 
ppm以下とする。Sと共に低くして高温での粒界延性
を向上させることが重要である。
0:O is also an important component for improving hot workability in the present invention,
The lower the better (50 ppm or less, preferably 40 ppm or less)
Less than ppm. It is important to lower S and improve grain boundary ductility at high temperatures.

Cr: Crはステンレス鋼の基本成分で15%以上が
特に効果が大きく、多い程耐食性、耐酸化性を増すが3
5チをこえると高価となる。
Cr: Cr is a basic component of stainless steel, and 15% or more is particularly effective, and the higher the amount, the higher the corrosion resistance and oxidation resistance.
If it exceeds 5 inches, it becomes expensive.

Ni : NlはCrと共にステンレス鋼、耐熱鋼の基
本成分である。5%未満では耐食性が不十分で、多けれ
ば多い程効果的であるが、40%をこえるときわめて高
価となる。
Ni: Along with Cr, Nl is a basic component of stainless steel and heat-resistant steel. If it is less than 5%, the corrosion resistance is insufficient, and the more it is, the more effective it is, but if it exceeds 40%, it becomes extremely expensive.

N:Nはステンレス鋼の強度と耐食性を増し特に耐海水
性に有効で0.011以上で効果を示すが0、5 %を
こえると、固溶度をこえ気泡となる。
N: N increases the strength and corrosion resistance of stainless steel, and is particularly effective in seawater resistance, and is effective at 0.011 or more, but if it exceeds 0.5%, the solid solubility is exceeded and bubbles form.

Mo : Moはステンレス鋼の耐食性特に耐海水性を
増し5.5チ〜10.0%で効果が顕著となる。5,5
チ未満では耐海水性が不足し10.0q6をこえると効
果が飽和し、高価となる。
Mo: Mo increases the corrosion resistance, especially the seawater resistance, of stainless steel, and the effect becomes noticeable at 5.5% to 10.0%. 5,5
If it is less than 10.0q6, the seawater resistance will be insufficient, and if it exceeds 10.0q6, the effect will be saturated and it will become expensive.

Cu : Cuはステンレス鋼の耐食性を増し用途によ
って3%以下で選択添加する。3チをこえると熱間加工
性を劣化させる。
Cu: Cu increases the corrosion resistance of stainless steel and is selectively added in an amount of 3% or less depending on the application. If it exceeds 3 inches, hot workability deteriorates.

Nb : NbはNと共にステンレス鋼の強度を増し、
用途によって1%以下で選択添加する。1%をこえると
熱間加工性を劣化させる。
Nb: Together with N, Nb increases the strength of stainless steel.
Selectively add 1% or less depending on the application. If it exceeds 1%, hot workability deteriorates.

Al 、 Tl : Al+Tiは強力な脱酸剤として
0.01〜0.10 %の範囲で添加する。0.10 
%をこえると、耐食性を劣化させる。AAやTiは低S
鋼中でCaと共存して0を固定しSlやMnの酸化物を
出現させず熱間加工性と耐食性を著しく改善する。
Al, Tl: Al+Ti is added in the range of 0.01 to 0.10% as a strong deoxidizing agent. 0.10
%, corrosion resistance deteriorates. AA and Ti are low S
It coexists with Ca in steel and fixes the value 0, preventing the appearance of oxides of Sl and Mn, significantly improving hot workability and corrosion resistance.

Ca : Caは強力な脱酸、脱硫剤として0001〜
0.008%の範囲で添加する。0.oossをこえる
と耐食性を劣化させる。Caは低S鋼中でAl1.やT
iと共存してSやOを固定しMnSの生成を防止し含N
・高Cr −Nl −Mo合金の熱間加工性を大幅に改
善すると共に耐海水性を改善する。
Ca: Ca is a powerful deoxidizing and desulfurizing agent from 0001 to
Add in a range of 0.008%. 0. If it exceeds ooss, corrosion resistance will deteriorate. Ca is Al1. YaT
It coexists with i, fixes S and O, prevents the formation of MnS, and contains N.
- Significantly improves hot workability of high Cr-Nl-Mo alloys and improves seawater resistance.

Sn : Snはステンレス鋼の耐酸性を向上し、01
チ以下で選択添加する。これをこえると熱間加工性が劣
化する。
Sn: Sn improves the acid resistance of stainless steel and
Selectively add less than If this value is exceeded, hot workability deteriorates.

W:Wはステンレス鋼の耐食性を向上し、用途によって
2チ以下で選択添加する。2%をこえると効果が飽和す
る。
W: W improves the corrosion resistance of stainless steel, and is selectively added in an amount of 2 or less depending on the application. When it exceeds 2%, the effect is saturated.

V:Vはステンレス鋼の耐食性を向上し、用途によって
1チ以下で選択添加する。1%をこえると効果が飽和す
る。
V: V improves the corrosion resistance of stainless steel, and is selectively added in an amount of 1 g or less depending on the purpose. When it exceeds 1%, the effect is saturated.

Zr : Zrはステンレス鋼の耐食性を向上し、用途
によって0.5チ以下で選択添加する。0.5%をこえ
ると効果が飽和する。
Zr: Zr improves the corrosion resistance of stainless steel, and is selectively added in an amount of 0.5 or less depending on the application. When it exceeds 0.5%, the effect is saturated.

以上の各元素の限定に加えて、更に次の2点が必要であ
る。すなわち ■ 含N高Cr−Ni−Moステンレス鋼においては、
鋳造組織の熱間加工性の向上と耐海水性の向上のために
、ppmで表示しだ(SIO−0.8Cal≦40が必
要である。
In addition to the above limitations on each element, the following two points are required. In other words, ■ In high N-containing Cr-Ni-Mo stainless steel,
In order to improve the hot workability and seawater resistance of the cast structure, it is expressed in ppm (SIO-0.8 Cal≦40 is required).

■ 各元素を重量ノ4−セントで表示したδ4=3(C
r’+1.5Si+Mo)  2.8(Nl+0.5M
n+0.5Cu)−84(C+N)−19,8は、凝固
組織中のδ1o量の比率を表わし、δ1.が現われると
、Sや00γ粒界への偏析を軽減する。したがってJ、
nl(イ)を−10%よりも大きくすることが必要で、
このδFeの作用と[S+O−0.8Ca]を低減する
作用は相乗作用を示して熱間加工性を大幅に改善する。
■ δ4 = 3 (C
r'+1.5Si+Mo) 2.8(Nl+0.5M
n+0.5Cu)-84(C+N)-19,8 represents the ratio of the amount of δ1o in the coagulated tissue, and δ1. appears, it reduces segregation to S and 00γ grain boundaries. Therefore J,
It is necessary to make nl(a) larger than -10%,
The action of δFe and the action of reducing [S+O-0.8Ca] show a synergistic effect and greatly improve hot workability.

なお本式に含まれないNb 、 W 、 V 、 Zr
等々はδフエライト生成元素であるが、本発明の添加量
範囲では影響が小さいので、本式からは除いた。
Note that Nb, W, V, and Zr are not included in this formula.
etc. are δ ferrite-forming elements, but they are excluded from this formula because their influence is small within the range of addition amount of the present invention.

(実施例) 以下に本発明の実施例について述べる。(Example) Examples of the present invention will be described below.

表1は、本発明鋼並びに比較鋼の化学成分組成を示すも
ので、電気炉−AOD法、及び電気炉−VAC法によっ
て溶製し、脱硫を十分にし、Al、 Ti、 Caを使
用して脱酸した。本発明鋼はいづれもSが30ppm以
下、050 ppm以下で[:S+O−0.8Ca)が
40以下、でありかつδ−〉−10%を満たしている。
Table 1 shows the chemical composition of the present invention steel and comparative steel, which were melted by the electric furnace-AOD method and the electric furnace-VAC method, sufficiently desulfurized, and using Al, Ti, and Ca. Deoxidized. All of the steels of the present invention have S of 30 ppm or less, 0.050 ppm or less, [:S+O-0.8Ca) of 40 or less, and satisfy δ->-10%.

比較鋼ではS、Oが高(kl 、 Caの活用が不満足
でCS十〇−0.8Ca ]は40をこえておシかつδ
返−10チのものもある。
Comparative steel has high S and O (kl, Ca utilization is unsatisfactory and CS10-0.8Ca) exceeds 40 and δ
There are also ones that are 10 inches long.

これらの溶鋼を、連鋳スラブに通常条件で鋳造した。通
常通シ手入後、厚板圧延向け、及びホットストリップ圧
延向けに振シ分け、それぞれ通常のステンレス鋼用条件
で熱間圧延した結果は表2の通りである。比較鋼に対し
て本発明鋼は熱間圧延によって割れや、ヘダ疵を発生す
ることなく、きわめて良好であり、本発明の効果を立証
した。
These molten steels were cast into continuous cast slabs under normal conditions. Table 2 shows the results of hot rolling after normal rolling treatment, sorting into thick plate rolling and hot strip rolling, and hot rolling under normal stainless steel conditions. Compared to the comparative steel, the steel of the present invention did not cause any cracks or sag defects during hot rolling, proving the effectiveness of the present invention.

更に製品板を使用し、隙間腐食試験を実施した。Furthermore, a crevice corrosion test was conducted using the product plate.

10%F e CL3・6H20溶液中で、テフロンと
の隙間に発生する限界・隙間腐食発生温度(C,C,T
)を求めた。結果を表3に示す。この結果通常の831
6Lで約10℃である。C1C,Tが高Cr−6%Mo
の比較鋼で約60℃まで上昇するが、本発明鋼では#丘
ぼ同一合金組成においても、脱酸処理の効果等により約
70℃以上に上昇し、本発明の効果を立証した。
The critical crevice corrosion occurrence temperature (C, C, T
) was sought. The results are shown in Table 3. As a result, the normal 831
The temperature is approximately 10°C for 6L. C1C,T is high Cr-6%Mo
The temperature rises to about 60°C in the comparative steel, but the steel of the present invention, even with the same alloy composition, rises to about 70°C or more due to the effect of deoxidation treatment, proving the effect of the present invention.

(発明の効果) 本発明によって、高Cr 、高Ni 、高Mofかつ高
Nを含有する耐海水性ステンレス鋼を連続鋳造で製造し
て、短時間加熱で熱間圧延しても割れを生ずることなく
製造出来かつ歩留υも大きく向上する。
(Effects of the Invention) According to the present invention, a seawater-resistant stainless steel containing high Cr, high Ni, high Mof, and high N can be produced by continuous casting, and cracks will not occur even if it is hot rolled with short heating. It can be manufactured easily and the yield υ is greatly improved.

更に本発明によればインゴット・分塊法に比較して、加
熱時間が短かいので、表面スケール生成量が少なく、そ
れにともなう表面脱Cr層が小さく、製品表面の耐食性
がすぐれている。
Furthermore, according to the present invention, since the heating time is shorter than in the ingot/blosking method, the amount of surface scale produced is small, the resulting surface chromium-free layer is small, and the product surface has excellent corrosion resistance.

以上の如く本発明によって達成される高温延性の向上に
よる効果は、製造性の点並びに耐食性の点で、従来法に
比較してはかシ知れないものであシ、本発明は産業界に
碑益するところが極めて大である。
As described above, the effect of the improvement in high-temperature ductility achieved by the present invention is incomparable compared to conventional methods in terms of manufacturability and corrosion resistance, and the present invention is a monument in the industrial world. The benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高合金鋼の熱間加工性に対するS、0゜Ca 
、の影響を示す図、第2図はC25Cr (18〜21
 )Ni−(0.3−0.4)N−5,9Mo )合金
の熱間加工性(最小絞シ値)に対するδ−(チ)及び(
S+O−0.8Ca −0.3Ce )値との関係を示
す図である。 − 寸 力 へ ト一 〇 K」〆      属宙 羽・TllケL’il■ 樽   C3C4B (%)lAi嬬ω\ll情
Figure 1 shows S, 0°Ca for hot workability of high alloy steel.
, Figure 2 shows the influence of C25Cr (18-21
)Ni-(0.3-0.4)N-5,9Mo) δ-(chi) and (
It is a figure showing the relationship with S+O-0.8Ca-0.3Ce) value. - To one 〇K to the power of power''

Claims (2)

【特許請求の範囲】[Claims] (1)重量パーセントでC0.005〜0.3%、Si
5%以下、Mn8%以下、P0.04%以下、Cr15
〜35%、Ni5〜40%、N0.01〜0.5%、M
o5.5〜10.0%でSを30ppm以下、Oを50
ppm以下、AlあるいはTiの1種又は2種を0.0
1〜0.10%含み、更にCaを0.001〜0.00
8%含有し、残部実質的にFeと不可避の不純物より成
る合金において、各成分の重量パーセントで表示した δcal(%)=3(Cr+1.5Si+Mo)−2.
8(Ni+0.5Mn+0.5Cu)−84(C+N)
−19.8が−10%以上で、かつ各成分をppmで表
示した〔S+O−0.8Ca〕(ppm)≦40である
ことを特徴とする耐食性がすぐれ、熱間加工性のすぐれ
た高合金ステンレス鋼
(1) C0.005-0.3% by weight percent, Si
5% or less, Mn 8% or less, P 0.04% or less, Cr15
~35%, Ni5~40%, N0.01~0.5%, M
O 5.5-10.0%, S 30 ppm or less, O 50
ppm or less, 0.0 of one or both of Al or Ti
Contains 1 to 0.10%, and further contains 0.001 to 0.00 Ca
8%, and the remainder substantially consists of Fe and unavoidable impurities, δcal (%) expressed as weight percent of each component = 3 (Cr + 1.5Si + Mo) - 2.
8(Ni+0.5Mn+0.5Cu)-84(C+N)
-19.8 is -10% or more, and each component is expressed in ppm [S+O-0.8Ca] (ppm) ≦40.It has excellent corrosion resistance and excellent hot workability. alloy stainless steel
(2)重量パーセントでC0.005〜0.3%、Si
5%以下、Mn8%以下、P0.04%以下、Cr15
〜35%、Ni5〜40%、N0.01〜0.5%、M
o5.5〜10.0%で更にCu3%以下、Nb1%以
下、V1%以下、W2%以下、Zr0.5%以下、Sn
0.1%以下の各成分の1種又は2種以上を含有し、S
30ppm以下、O50ppm以下、AlあるいはTi
の1種又は2種を0.01〜0.10%含み、更にCa
を0.001〜0.008%含有し、残部実質的にFe
と不可避の不純物より成る合金において、各成分の重量
パーセントで表示した δcal(%)=3(Cr+1.5Si+Mo)−2.
8(Ni+0.5Mn+0.5Cu)−84(C+N)
−19.8が−10%以上で、かつ各成分をppmで表
示した〔S+O−0.8Ca〕(ppm)≦40である
ことを特徴とする耐食性がすぐれ、熱間加工性のすぐれ
た高合金ステンレス鋼
(2) C0.005-0.3% by weight percent, Si
5% or less, Mn 8% or less, P 0.04% or less, Cr15
~35%, Ni5~40%, N0.01~0.5%, M
o5.5 to 10.0% and further Cu3% or less, Nb1% or less, V1% or less, W2% or less, Zr0.5% or less, Sn
Contains 0.1% or less of one or more of each component, S
30ppm or less, O50ppm or less, Al or Ti
Contains 0.01 to 0.10% of one or two of the following, and further contains Ca
0.001 to 0.008%, and the remainder is substantially Fe.
In an alloy consisting of unavoidable impurities, δcal (%) expressed in weight percent of each component = 3 (Cr + 1.5 Si + Mo) - 2.
8(Ni+0.5Mn+0.5Cu)-84(C+N)
-19.8 is -10% or more, and each component is expressed in ppm [S+O-0.8Ca] (ppm) ≦40.It has excellent corrosion resistance and excellent hot workability. alloy stainless steel
JP411885A 1985-01-16 1985-01-16 High alloy stainless steel excelling in hot workability as well as corrosion resistance Granted JPS61163247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP411885A JPS61163247A (en) 1985-01-16 1985-01-16 High alloy stainless steel excelling in hot workability as well as corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP411885A JPS61163247A (en) 1985-01-16 1985-01-16 High alloy stainless steel excelling in hot workability as well as corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61163247A true JPS61163247A (en) 1986-07-23
JPH0463146B2 JPH0463146B2 (en) 1992-10-08

Family

ID=11575869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP411885A Granted JPS61163247A (en) 1985-01-16 1985-01-16 High alloy stainless steel excelling in hot workability as well as corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61163247A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157838A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Two-phase stainless steel excellent in crevice corrosion resistance
JPS6468450A (en) * 1987-09-09 1989-03-14 Nippon Kokan Kk Austenitic stainless steel for seawater corrosion resistance
JPH01165747A (en) * 1987-12-21 1989-06-29 Kawasaki Steel Corp Austenitic stainless steel having superior hot workability and corrosion resistance
US4851059A (en) * 1987-03-12 1989-07-25 Nippon Steel Corp. Non-magnetic high hardness austenitic stainless steel
US4883544A (en) * 1987-12-12 1989-11-28 Nippon Steel Corporation Process for preparation of austenitic stainless steel having excellent seawater resistance
JPH0554329U (en) * 1991-12-26 1993-07-20 株式会社イナバエクステリア Beverage container
US5858129A (en) * 1996-08-15 1999-01-12 Nippon Yakin Kogyo Co., Ltd. Austenite stainless steel
JP2004156126A (en) * 2002-11-08 2004-06-03 Nippon Steel Corp High corrosion resistant austenitic stainless steel with excellent cold workability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424364A (en) * 1977-07-25 1979-02-23 Spodig Heinrich Magnet type separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424364A (en) * 1977-07-25 1979-02-23 Spodig Heinrich Magnet type separator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157838A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Two-phase stainless steel excellent in crevice corrosion resistance
US4851059A (en) * 1987-03-12 1989-07-25 Nippon Steel Corp. Non-magnetic high hardness austenitic stainless steel
JPS6468450A (en) * 1987-09-09 1989-03-14 Nippon Kokan Kk Austenitic stainless steel for seawater corrosion resistance
US4883544A (en) * 1987-12-12 1989-11-28 Nippon Steel Corporation Process for preparation of austenitic stainless steel having excellent seawater resistance
JPH01165747A (en) * 1987-12-21 1989-06-29 Kawasaki Steel Corp Austenitic stainless steel having superior hot workability and corrosion resistance
JPH0554329U (en) * 1991-12-26 1993-07-20 株式会社イナバエクステリア Beverage container
US5858129A (en) * 1996-08-15 1999-01-12 Nippon Yakin Kogyo Co., Ltd. Austenite stainless steel
JP2004156126A (en) * 2002-11-08 2004-06-03 Nippon Steel Corp High corrosion resistant austenitic stainless steel with excellent cold workability

Also Published As

Publication number Publication date
JPH0463146B2 (en) 1992-10-08

Similar Documents

Publication Publication Date Title
EP2677055A1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
JPH0214419B2 (en)
JPS6230860A (en) Free-cutting austenitic stainless steel
US5868875A (en) Non-ridging ferritic chromium alloyed steel and method of making
US9816163B2 (en) Cost-effective ferritic stainless steel
RU2650467C2 (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength and good formability
JPS61163247A (en) High alloy stainless steel excelling in hot workability as well as corrosion resistance
JPH08193240A (en) Steel material excellent in temper embrittlement resistance and its production
JP7469714B2 (en) Steel
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JP3172848B2 (en) High Cr ferritic steel with excellent creep strength
JPH057457B2 (en)
JP3574903B2 (en) High alloy austenitic stainless steel with excellent hot workability
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
AU760756B2 (en) Non-ridging ferritic chromium alloyed steel
KR100215727B1 (en) Super duplex stainless steel with high wear-resistance
JPH0545661B2 (en)
WO2022145061A1 (en) Steel material
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
WO2023166926A1 (en) HIGH-Ni ALLOY THICK STEEL SHEET HAVING EXCELLENT WELD HIGH-TEMPERATURE CRACKING RESISTANCE, AND METHOD FOR PRODUCING SAME
JPH0545655B2 (en)
JP3363628B2 (en) Stainless steel excellent in corrosion resistance to molten salt and method for producing the same
JPH04110419A (en) Production of high ni stainless steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees