JPS61163223A - Manufacture of copper-chromium alloy product - Google Patents

Manufacture of copper-chromium alloy product

Info

Publication number
JPS61163223A
JPS61163223A JP463785A JP463785A JPS61163223A JP S61163223 A JPS61163223 A JP S61163223A JP 463785 A JP463785 A JP 463785A JP 463785 A JP463785 A JP 463785A JP S61163223 A JPS61163223 A JP S61163223A
Authority
JP
Japan
Prior art keywords
wall surface
alloy powder
rod
copper
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP463785A
Other languages
Japanese (ja)
Other versions
JPH0520491B2 (en
Inventor
Kazuo Sawada
澤田 和夫
Takeshi Miyazaki
健史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP463785A priority Critical patent/JPS61163223A/en
Publication of JPS61163223A publication Critical patent/JPS61163223A/en
Publication of JPH0520491B2 publication Critical patent/JPH0520491B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture Cu-Cr alloy product superior in high temp. softening resistance, by moving a specified Cu-Cr rapidly cooled alloy powder continuously between driving wall surface and fixed wall surface to extrude it from dies, then cold working said material. CONSTITUTION:The driving wall surface 3 is composed at the surface of a groove 2 at outer circumference of a driving wheel 1 being revolved, and pipe path is formed between said surface and a fixed wall surface 5 of a fixing pressing tool 4. An alloy powder 8 contg. at least 0.1-1.5% Cr and the balance Cu and cooled rapidly at >=10<3> deg.C/sec rate is supplied to pipe path continuously by a supplying tool 7. The powder 8 is moved in pipe path by friction force with the surface 3, and worked to rod or wire shaped body continuously by an extruding dies 9 at termination part. The rod or wire shaped body is left at 400-600 deg.C for 30min-24hr, then cold worked.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、銅−クロム系合金からなり、かつ耐軟化性
に優れた製品を得るための製造方法に関し、特に、たと
えば抵抗溶接器に用いられる電極チップを製造するため
の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manufacturing method for obtaining a product made of a copper-chromium alloy and having excellent softening resistance. The present invention relates to a method for manufacturing chips.

従来の技術 たとえば、抵抗溶接器に用いられる電極チップ等は、良
好な溶接作業を行なうために、導電性、耐軟化性、高温
強度性が必要とされる。従来、この電極チップは、C1
1−Or金合金らなる鋳塊や中間加工品を、900°C
以上の温度から急冷して焼入処理し、その後時効析出熱
処理覆る方法によって作られてぎた。
BACKGROUND OF THE INVENTION For example, electrode tips used in resistance welders are required to have electrical conductivity, softening resistance, and high-temperature strength in order to perform a good welding operation. Conventionally, this electrode tip is C1
Ingots and intermediate products made of 1-Or gold alloy are heated to 900°C.
It was made by rapidly cooling from above temperature, quenching, and then aging precipitation heat treatment.

発明が解決しようどする問題点 しかしながら、−ト述の方法によって製造された銅−ク
ロム系合金製品には以下のような問題点があった。たと
えば抵抗溶接器に用いられる電極チップを例にとると、
そこに大電流が流れて高温になると軟化してしまい、そ
のためこの高温のままで溶接作業を行なえば電極チップ
の先端が大ぎく変形し、その結果溶接部の強度が不足す
るという問題点が生じていた。
Problems to be Solved by the Invention However, the copper-chromium alloy products manufactured by the method described above have the following problems. For example, if we take the electrode tip used in a resistance welder as an example,
When a large current flows through it and the temperature rises, it becomes soft, so if welding is carried out at this high temperature, the tip of the electrode tip will be severely deformed, resulting in the problem that the strength of the welded part will be insufficient. was.

それゆえに、この発明の目的は、高温になったとしても
耐軟化性に優れ大ぎな荷重にも耐え得るような銅−クロ
ム系合金製品の製造方法を提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing a copper-chromium alloy product that has excellent softening resistance and can withstand heavy loads even at high temperatures.

問題点を解決づ−るための手段 この発明による銅−クロム系合金製品の製造方法では、
まず、少なくともOrを0.1〜1.5%含有し残部が
Cuよりなる組成の急冷合金粉末を、回転駆動されてい
る駆動壁面と固定されている固定壁面との間に形成され
る管路内に連続的(こ供給する。その後、駆動壁面との
摩擦力によって管路内を移動づる上記合金粉末を、管路
の終端部に設けられた押出しダイスによって連続的に棒
状体もしくは線状体として押出す。ぞしてその後、棒状
体または線状体を冷間加工することによって耐軟化性に
優れた製品を得る。
Means for Solving the Problems In the method of manufacturing copper-chromium alloy products according to the present invention,
First, rapidly solidified alloy powder having a composition containing at least 0.1 to 1.5% of Or with the remainder being Cu is applied to a conduit formed between a rotationally driven driving wall surface and a fixed fixed wall surface. After that, the alloy powder, which is moved inside the pipe by the frictional force with the driving wall surface, is continuously fed into a rod-shaped or linear body by an extrusion die installed at the end of the pipe. Then, by cold working the rod or linear body, a product with excellent softening resistance is obtained.

「少なくともCrを含有Jするのは、Crが耐軟化性に
対して良好な影響をもたら覆からである。
``The reason for containing at least Cr is that Cr has a good effect on softening resistance.

Cr含右伍を10.1〜1.5%jとしたのは、0.1
%未満であるならば耐軟化性に対して効果がなく、1.
5%を越えれば耐軟化性に対する効果が飽和するからで
ある。[残部がCu Jであるのは、OL+が良好な導
電性を有するからである。
The reason for setting the Cr content to 10.1 to 1.5% is 0.1
%, there is no effect on softening resistance, and 1.
This is because if it exceeds 5%, the effect on softening resistance will be saturated. [The remainder is Cu J because OL+ has good conductivity.

「合金粉末」状に急冷するのは、たとえば棒状(こする
ことに比べて良好な焼入性が得られるからである。
The reason for rapidly cooling into the form of "alloy powder" is that better hardenability can be obtained compared to, for example, rubbing it into a bar shape.

合金粉末を、駆動壁面との摩擦力によって移動させ、そ
の後押出しダイスによって連続的に棒状体もしくは線状
体として押出すのは、以下の理由による。すなわち、管
路内に供給された合金粉末は、管内の摩擦に基づく内部
塑性流動によって生ずる粉末間でのすべり力によって発
熱する。この発熱に加えて、合金粉末に押込み力による
外部からの圧縮力が加わると、合金粉末は互いに金属接
合される。そしてこの際、Crかほど良く時効析出され
る。
The reason why the alloy powder is moved by the frictional force with the driving wall surface and then continuously extruded as a rod or linear body by an extrusion die is as follows. That is, the alloy powder supplied into the pipe generates heat due to the sliding force between the powders caused by internal plastic flow based on friction within the pipe. In addition to this heat generation, when an external compressive force due to a pushing force is applied to the alloy powder, the alloy powder is metallurgically bonded to each other. At this time, Cr is properly aged and precipitated.

また、押出し後に熱間加工ではなく「冷間加工」するの
は、再結晶による過時効を避けるためである。
Furthermore, the reason why "cold working" is performed instead of hot working after extrusion is to avoid overaging due to recrystallization.

合金粉末は、好ましくは、Crに加えて、Ao。The alloy powder preferably contains Ao in addition to Cr.

3n、ΔQ、Si、MO,Zr、Feからなる群から選
ばれた1または2以上の元素を合計で0〜1%含有する
。なぜなら、これらの元素の付加は、強度や耐軟化性等
を向上させる効果があるからである。
It contains one or more elements selected from the group consisting of 3n, ΔQ, Si, MO, Zr, and Fe in a total amount of 0 to 1%. This is because addition of these elements has the effect of improving strength, softening resistance, etc.

また、好ましくは、過飽和に固溶したCrを析出させる
ために、押出しダイスによって押出された棒状体または
線状体は、冷間加工の前工程、途中工程または模工程で
、400〜600℃の湿度下に30分〜24時間置かれ
る。これにJ:す、熱・電気の伝導性や耐軟化性等に好
影響をもたらづ一0また、急冷粉末は、たとえば10 
 ℃/seC,以上の速度で冷却されて製造される。
Preferably, in order to precipitate supersaturated solid solution Cr, the rod or linear body extruded by an extrusion die is heated at 400 to 600°C in a pre-process, intermediate process, or mock process of cold working. It is left under humidity for 30 minutes to 24 hours. This has a positive effect on thermal and electrical conductivity and softening resistance.
It is manufactured by cooling at a rate of ℃/secC or more.

実施例 第1図には、この発明を実施するのに用いられる装置の
一例が示されている。図示される装置は、いわゆるコン
フォーム装置と呼ばれるものである。
Embodiment FIG. 1 shows an example of an apparatus used to carry out the invention. The illustrated device is what is called a conform device.

図において、回転する駆動ホイール1はその外周部に溝
2を有している。そして溝2の表面は、駆動壁面3を構
成する。この駆動壁面3と、固定抑え貝4の固定壁面5
との間に、管路が形成される。
In the figure, a rotating drive wheel 1 has a groove 2 on its outer circumference. The surface of the groove 2 constitutes a driving wall surface 3. This driving wall surface 3 and the fixed wall surface 5 of the fixed holding shell 4
A conduit is formed between the two.

急冷凝固された合金粉末8は、粉末供給具7から管路内
に連続的に供給される。そして、管路内の合金粉末8は
、駆動壁面3との摩擦力によって管路内を移動する。管
路の終端部には押出しダイス9が設けられており、この
押出しダイス9によつ6一 て合金粉末8は連続的に棒状体または線状体として押出
される。なお図中、6は突起である。
The rapidly solidified alloy powder 8 is continuously supplied into the pipe from the powder supply tool 7. The alloy powder 8 in the pipe is moved within the pipe by the frictional force with the drive wall surface 3. An extrusion die 9 is provided at the end of the conduit, and the extrusion die 9 continuously extrudes the alloy powder 8 into a rod-shaped body or a linear body. In addition, in the figure, 6 is a protrusion.

合金粉末8は、管路内の内部塑性流動によって生ずる粉
末間のすべり力によって発熱する。この発熱に加えて、
合金粉末8には押込み力に伴う圧縮力が与えられ、これ
により合金粉末8は互いに金属接合される。
The alloy powder 8 generates heat due to sliding force between the powders caused by internal plastic flow within the pipe. In addition to this fever,
A compressive force accompanying the pushing force is applied to the alloy powder 8, whereby the alloy powder 8 is metallurgically bonded to each other.

第1図に示すいわゆるコンフォーム装置を用いてこの発
明を実施した。以下には、その説明を行なう。
This invention was carried out using a so-called conform device shown in FIG. This will be explained below.

Cl−1,0%Cr合金からなる溶湯を、細孔ノズルか
ら噴出させて冷却用回転板に衝突させ、それによって急
冷粉末を生成した。この急冷粉末を、第1図に示すいわ
ゆるコンフォーム装置によって連続的に押出して直径2
5mmの丸棒を作った。
A molten metal consisting of a Cl-1,0% Cr alloy was ejected from a fine-hole nozzle and collided with a cooling rotary plate, thereby producing a quenched powder. This rapidly cooled powder is continuously extruded by a so-called conform device shown in Fig.
I made a 5mm round bar.

なお、このときの湿度は約450℃であった。このよう
にして作られた丸棒を、第2A図、第2B図、第2C図
で示されているそれぞれの製造工程を経て直径16mm
の丸棒に加工した。第2A図に示す工程は本発明例1で
あり、いわゆるコンフォーム装置にJ:る連続押し出し
の後、時効処理および冷間加工が施される。第2B図に
示J一工程は本発明例2であり、いわゆるコンフォーム
装置による連続押し出しの後、冷間加工、時効処理およ
び冷間加工が施される。第2C図に示す製造工程は本発
明例3であり、いわゆるコンフォーム装置による連続押
出しの後、冷間加工および時効処理が施される。上記各
製造工程を経て作られた直径1(3mmの丸棒を、切断
i)で第3A図および第3B図に示づ−ような抵抗溶接
用電極に加工した。なお、第3A図はそのような電極の
平面図であり、第3B図は正面図である。便宜上第3B
図では部分的に断面で示されている。
Note that the humidity at this time was about 450°C. The round bar made in this way was processed through the manufacturing processes shown in Figures 2A, 2B, and 2C to a diameter of 16 mm.
It was processed into a round bar. The process shown in FIG. 2A is Example 1 of the present invention, in which after continuous extrusion in a so-called conforming device, aging treatment and cold working are performed. Step J shown in FIG. 2B is Example 2 of the present invention, in which cold working, aging treatment, and cold working are performed after continuous extrusion using a so-called conforming device. The manufacturing process shown in FIG. 2C is Example 3 of the present invention, in which cold working and aging treatment are performed after continuous extrusion using a so-called conform device. A round bar with a diameter of 1 (3 mm) made through the above manufacturing steps was processed into a resistance welding electrode as shown in FIGS. 3A and 3B. Note that FIG. 3A is a plan view of such an electrode, and FIG. 3B is a front view. 3B for convenience
The figure is shown partially in section.

比較のため、鋳造(口100+nm)後に熱間圧延(φ
25mm)l、た同一組成の合金を、920℃から水焼
入し、その後第4A図、第4B図、第4C図に示すそれ
ぞれの工程を経て第3A図および第3B図に示すのと同
一形状の電極を作った。第4A図に示す工程は比較例1
であり、溶体化処理(水焼入)後に時効処理および冷間
加■を施している。第4B図に示す工程は比較例2であ
り、溶体化処理後に冷間加工、時効処理および冷間加工
を施している。第4C図に示す工程は比較例3であり、
溶体化処理後に冷間加工および時効処理を施している。
For comparison, hot rolling (φ
An alloy of the same composition as shown in Figs. 3A and 3B was water-quenched at 920°C and then subjected to the respective steps shown in Figs. 4A, 4B, and 4C. I made an electrode shaped like this. The process shown in FIG. 4A is Comparative Example 1.
After solution treatment (water quenching), aging treatment and cold working are performed. The process shown in FIG. 4B is Comparative Example 2, in which cold working, aging treatment, and cold working are performed after solution treatment. The process shown in FIG. 4C is Comparative Example 3,
After solution treatment, cold working and aging treatment are performed.

上述の各工程を経て製造された電極チップを用いて、厚
さimmの鋼板を5000000点スポラ1〜接した。
Using the electrode tips manufactured through the above-mentioned steps, 5,000,000 spots of a steel plate having a thickness of imm were brought into contact with Spora 1 to 1.

この溶接後の電極チップの先端部の変形エリアの大ぎさ
を測定し、さらに状況を観察して、以下の結果を得た。
The size of the deformed area at the tip of the electrode tip after welding was measured, and the situation was further observed, and the following results were obtained.

なお、電極チップ先端部の溶接前の大きさはφ5mmで
あった。
Note that the size of the tip of the electrode tip before welding was φ5 mm.

本発明例1 先端変形エリアの大きさ:φ5,1mm状況:変形がほ
とんどな(、割れなどの発生もなかった。その後も良好
な溶接が可能である。
Example 1 of the present invention Size of tip deformation area: φ5, 1 mm Condition: There was almost no deformation (no cracks or the like occurred). Good welding was still possible after that.

支11九り 先端変形エリアの大きさ:φ5,2mm状況:変形がほ
とんどなく、割れなどの発生もなかった。その後も良好
な溶接が可能である。
Size of deformed area at the tip of support 11: φ5, 2 mm Condition: There was almost no deformation and no cracking occurred. Good welding is possible even after that.

11吐九エ 先端変形例の大きさ:φ5,1mm 状況:変形がほどんどなく、割れなどの発生もなかった
。その後も良好な溶接が可能である。
Size of deformed tip of No. 11 spout: φ5, 1 mm Condition: There was almost no deformation and no cracking occurred. Good welding is possible even after that.

監良乳工 先端変形エリアの大きさ:φ7.2111111状況:
先端が大きく変形した。また、この溶接作業の終了近く
に行なった溶接部は、強度不足が発生していた。
Size of the tip deformation area of Kanra Milk Industry: φ7.2111111 Status:
The tip was greatly deformed. Furthermore, the strength of the welded part, which was performed near the end of this welding work, was insufficient.

比較例2 先端変形エリアの大きさ:φ7,1mm状況:先端が大
ぎく変形した。また、上記溶接作業の終了近くに行なっ
た溶接部は、強度不足が発生した。
Comparative Example 2 Size of tip deformation area: φ7, 1 mm Situation: The tip was severely deformed. In addition, the strength of the welded part that was performed near the end of the welding work was insufficient.

北」L匠」− 先端変形エリアの大きさ:φ7,3mm状況:先端が大
きく変形した。また、上記溶接作業の終了近くに行なっ
た溶接部は、強度不足が発生した。
Kita "L Takumi" - Size of tip deformation area: φ7.3mm Status: The tip was significantly deformed. In addition, the strength of the welded part that was performed near the end of the welding work was insufficient.

発明の効果 以−ヒのように、この発明によれば、急冷台金粉末を、
いわゆるコンフォーム装置によって連続的に棒状体また
は線状体として押出し、その後にそれを冷間加工するも
のであるので、Crがほど良く時効析出する。したがっ
て、耐軟化性および高温高度性に優れた銅−クロム系合
金製品を得ることができる。また、時効析出した銅合金
であるので、他の材料に比べて、13電率が高く熱伝導
性が良好である。さらに、セラミック等に比べて靭性が
高いのは言うまでもない。
Effects of the Invention According to this invention, as shown in FIG.
Since the material is continuously extruded as a rod or wire using a so-called conforming device and then cold-worked, Cr is aged to precipitate just the right amount. Therefore, a copper-chromium alloy product having excellent softening resistance and high temperature stability can be obtained. In addition, since it is a copper alloy that has been precipitated by aging, it has a higher 13 electrical conductivity and good thermal conductivity than other materials. Furthermore, it goes without saying that it has higher toughness than ceramics and the like.

このような効果を秦するこの発明は、耐軟化性に優れた
製品を得るために広く利用される。そのような製品の一
例として、たとえば抵抗溶接器用電極チップが挙げられ
る。
This invention, which achieves such effects, is widely used to obtain products with excellent softening resistance. An example of such a product is, for example, an electrode tip for a resistance welder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を実施するのに用いられる装置の一
例を示す図である。第2A図はこの発明に従った製造工
程の一例(本発明例1)を示す図である。第2B図はこ
の発明に従った製造工程の他の例(本発明例2)を示す
図である。第2C図は、この発明に従った製造工程のさ
らに他の例(本発明例3)を示4図である。第3A図は
、抵抗溶接器用電極チップの平面図である。第3B図は
、第3A図に示された電極チップの正面図である。第4
A図は、従来の製造工程の一例(比較例1)を示す図で
ある。第4B図は、従来の製造工程の他の例(比較例2
)を示す図である。第4C図は、従来の製造工程のざら
に他の例(比較例3)を示す図である。 図において、1は駆動ホイール、2は溝、3は駆#J壁
面、4は固定抑え具、5は固定壁面、6は突起、7は粉
末供給具、8は急冷合金粉末、9は押出しダイスを示す
。 第4A図  第4B図 鋼rL      ar L 熱r5圧迫   塾開圧え ミ陀豪体イしメユエ里       ミ$もクトイ乙ヌ
S工里←水ツ秦入*)       <水力党XれEl
奇fj“スジ理      ンン閂カロ1(2玉0’C
x l IIr。 時効処理 玲戸41力0工((soooc  X 3  hy:)
〉くンT繋」力0工ど 3A図 38 ロ 第40閃 171;−
FIG. 1 is a diagram showing an example of an apparatus used to carry out the present invention. FIG. 2A is a diagram showing an example of the manufacturing process according to the present invention (Example 1 of the present invention). FIG. 2B is a diagram showing another example of the manufacturing process according to the present invention (Example 2 of the present invention). FIG. 2C is a fourth diagram showing still another example of the manufacturing process according to the present invention (Example 3 of the present invention). FIG. 3A is a plan view of an electrode tip for a resistance welder. FIG. 3B is a front view of the electrode tip shown in FIG. 3A. Fourth
FIG. A is a diagram showing an example of a conventional manufacturing process (Comparative Example 1). FIG. 4B shows another example of the conventional manufacturing process (Comparative Example 2).
). FIG. 4C is a diagram roughly showing another example (Comparative Example 3) of the conventional manufacturing process. In the figure, 1 is a drive wheel, 2 is a groove, 3 is a drive #J wall, 4 is a fixed restraint, 5 is a fixed wall, 6 is a protrusion, 7 is a powder supply tool, 8 is a rapidly solidified alloy powder, 9 is an extrusion die shows. Fig. 4A Fig. 4B Steel rL ar L Heat r5 compression Cram school opening pressure Emi Daogai Ishi Meyueri Mi$mo Kutoi Otsunu S Kori ← Mizutsu Hata entry *) < Hydropower Party Xre El
Odd fj “suji ri nn barkaro 1 (2 balls 0'C
x l IIr. Aging treatment Reido 41 power 0 works ((soooc X 3 hy:)
〉Kun T connection” Force 0 work 3A Figure 38 B 40th flash 171;-

Claims (4)

【特許請求の範囲】[Claims] (1)少なくともCrを0.1〜1.5%含有し残部が
Cuよりなる組成の急冷合金粉末を、回転駆動されてい
る駆動壁面と固定されている固定壁面との間に形成され
る管路内に連続的に供給し、 前記駆動壁面との摩擦力によって前記管路内を移動する
前記合金粉末を、前記管路の終端部に設けられた押出し
ダイスによって連続的に棒状体または線状体として押出
し、その後 前記棒状体または線状体を冷間加工することによって耐
軟化性に優れた製品を得る、銅−クロム系合金製品の製
造方法。
(1) A tube formed between a rotating driving wall surface and a fixed fixed wall surface in which rapidly solidified alloy powder containing at least 0.1 to 1.5% Cr and the remainder is Cu is used. The alloy powder, which is continuously supplied into the pipe and moves within the pipe due to frictional force with the driving wall surface, is continuously shaped into a rod-shaped body or a wire by an extrusion die provided at an end of the pipe. 1. A method for manufacturing a copper-chromium alloy product, which comprises extruding the rod or wire as a body, and then cold working the rod or wire to obtain a product with excellent softening resistance.
(2)前記合金粉末は、Ag、Sn、Al、Si、Mg
、Zr、Feからなる群から選ばれた1または2以上の
元素を合計で0〜1%を含有している、特許請求の範囲
第1項に記載の銅−クロム系合金製品の製造方法。
(2) The alloy powder includes Ag, Sn, Al, Si, Mg
, Zr, and Fe in a total amount of 0 to 1%.
(3)前記押出しダイスによって押出された棒状体また
は線状体は、前記冷間加工の前工程、途中工程または後
工程で、400〜600℃の温度下に30分〜24時間
置かれる、特許請求の範囲第1項または第2項に記載の
銅−クロム系合金製品の製造方法。
(3) The rod-shaped body or linear body extruded by the extrusion die is placed at a temperature of 400 to 600°C for 30 minutes to 24 hours in a pre-process, intermediate process, or post-process of the cold working. A method for manufacturing a copper-chromium alloy product according to claim 1 or 2.
(4)前記合金粉末は、溶湯を10^3℃/sec.以
上の速度で急冷することによって作られる、特許請求の
範囲第1項ないし第3項のいずれかに記載の銅−クロム
系合金製品の製造方法。
(4) The alloy powder is heated at 10^3°C/sec. A method for producing a copper-chromium alloy product according to any one of claims 1 to 3, which is produced by rapid cooling at a rate above.
JP463785A 1985-01-14 1985-01-14 Manufacture of copper-chromium alloy product Granted JPS61163223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP463785A JPS61163223A (en) 1985-01-14 1985-01-14 Manufacture of copper-chromium alloy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP463785A JPS61163223A (en) 1985-01-14 1985-01-14 Manufacture of copper-chromium alloy product

Publications (2)

Publication Number Publication Date
JPS61163223A true JPS61163223A (en) 1986-07-23
JPH0520491B2 JPH0520491B2 (en) 1993-03-19

Family

ID=11589512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP463785A Granted JPS61163223A (en) 1985-01-14 1985-01-14 Manufacture of copper-chromium alloy product

Country Status (1)

Country Link
JP (1) JPS61163223A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129905A (en) * 1987-11-13 1989-05-23 Sumitomo Heavy Ind Ltd Method and device for treatment of atomized powder of aluminum alloy
CN1298452C (en) * 2005-07-25 2007-02-07 西安理工大学 Continuously extruding method of magnesium alloy silk material
CN103639414A (en) * 2013-12-13 2014-03-19 哈尔滨理工大学 Method for preparing high-hardness and low- abrasion copper-based friction material
JP2017036508A (en) * 2016-09-23 2017-02-16 株式会社ダイヘン Metal powder, manufacturing method of laminate molded article and laminate molded article
KR20180002833A (en) * 2015-05-13 2018-01-08 가부시키가이샤 다이헨 METHOD FOR MANUFACTURING METAL POWDER, LAMINATED ART, AND LAMINATED ART
CN107671299A (en) * 2017-08-30 2018-02-09 西安理工大学 A kind of method that vacuum aerosolization prepares Cu Cr alloy powders
EP3315229A1 (en) * 2016-10-25 2018-05-02 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
WO2018079002A1 (en) * 2016-10-25 2018-05-03 株式会社ダイヘン Laminated molding production method and laminated molding
JP2018197389A (en) * 2016-10-25 2018-12-13 株式会社ダイヘン Copper alloy powder, production method of laminated molding, and laminated molding
CN112008080A (en) * 2020-10-19 2020-12-01 陕西斯瑞新材料股份有限公司 Preparation method of powder-laying type 3D printing copper alloy water cooling jacket

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129905A (en) * 1987-11-13 1989-05-23 Sumitomo Heavy Ind Ltd Method and device for treatment of atomized powder of aluminum alloy
CN1298452C (en) * 2005-07-25 2007-02-07 西安理工大学 Continuously extruding method of magnesium alloy silk material
CN103639414A (en) * 2013-12-13 2014-03-19 哈尔滨理工大学 Method for preparing high-hardness and low- abrasion copper-based friction material
KR20180002833A (en) * 2015-05-13 2018-01-08 가부시키가이샤 다이헨 METHOD FOR MANUFACTURING METAL POWDER, LAMINATED ART, AND LAMINATED ART
US11077495B2 (en) 2015-05-13 2021-08-03 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
US10843260B2 (en) 2015-05-13 2020-11-24 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
KR20200123292A (en) * 2015-05-13 2020-10-28 가부시키가이샤 다이헨 Metal powder, method for producing multilayer shaped structure, and multilayer shaped structure
US10421122B2 (en) 2015-05-13 2019-09-24 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
JP2017036508A (en) * 2016-09-23 2017-02-16 株式会社ダイヘン Metal powder, manufacturing method of laminate molded article and laminate molded article
EP3482856A1 (en) * 2016-10-25 2019-05-15 Daihen Corporation Copper alloy powder
JP2018197389A (en) * 2016-10-25 2018-12-13 株式会社ダイヘン Copper alloy powder, production method of laminated molding, and laminated molding
KR20190075987A (en) * 2016-10-25 2019-07-01 가부시키가이샤 다이헨 Copper alloy powder, method of producing laminated molding, and laminated molding
WO2018079304A1 (en) * 2016-10-25 2018-05-03 株式会社ダイヘン Copper alloy powder, laminate molding production method, and laminate molding
EP3315229B1 (en) 2016-10-25 2020-03-04 Daihen Corporation Use of a copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
WO2018079002A1 (en) * 2016-10-25 2018-05-03 株式会社ダイヘン Laminated molding production method and laminated molding
EP3315229A1 (en) * 2016-10-25 2018-05-02 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
US10981226B2 (en) 2016-10-25 2021-04-20 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
EP3854503A1 (en) * 2016-10-25 2021-07-28 DAIHEN Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
CN107671299A (en) * 2017-08-30 2018-02-09 西安理工大学 A kind of method that vacuum aerosolization prepares Cu Cr alloy powders
CN112008080A (en) * 2020-10-19 2020-12-01 陕西斯瑞新材料股份有限公司 Preparation method of powder-laying type 3D printing copper alloy water cooling jacket
CN112008080B (en) * 2020-10-19 2021-01-29 陕西斯瑞新材料股份有限公司 Preparation method of powder-laying type 3D printing copper alloy water cooling jacket

Also Published As

Publication number Publication date
JPH0520491B2 (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JPS61163223A (en) Manufacture of copper-chromium alloy product
CN104588653A (en) Preparation method of TiAl alloy profile
CN102303216A (en) Method for producing copper-clad aluminum bar
CN106735844A (en) For the wrapping structure and spin friction soldering method of dissimilar metal spin friction weldering
CN107999998A (en) A kind of silicon bronze solder wire and its production technology
WO2004009859A1 (en) Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
CN1818108A (en) High-strength and conductive thin band of copper alloy and production thereof
JP7008391B2 (en) Manufacturing method of extruded composite material
CN103273271A (en) Production process of high-strength high-conductivity copper-chromium-zirconium alloy long wire
JPS599137A (en) Production of age-precipitation type alloy
US3657804A (en) Method of making beryllium-aluminum wrought material
JP3414473B2 (en) Mold for resin molding
CN112122377A (en) Semi-solid forming method for copper-clad aluminum composite material
US5119660A (en) Method for manufacturing metal objects
US3693394A (en) Process in continuous extrusion of metals and the like
US3180024A (en) Metal working process and apparatus
JPS6261106B2 (en)
JPH02258903A (en) Manufacture of clad metal tube
JP7000145B2 (en) Manufacturing method of extruded composite material
CN112126817B (en) Preparation method of copper-based multi-element high-temperature hard-to-deform alloy wire for engine
CN1477651A (en) Metal Contact wire bar blank, metal contact wire and method for producing said bar blank
JP2005081371A (en) Electrode material and its production method
JPH04339575A (en) Manufacture of resistance welding electrode
CN112171199A (en) Welding process for stainless steel pipe fitting
JPH02274849A (en) Production of oxide dispersion-strengthened copper alloy stock