JPH02258903A - Manufacture of clad metal tube - Google Patents

Manufacture of clad metal tube

Info

Publication number
JPH02258903A
JPH02258903A JP1127534A JP12753489A JPH02258903A JP H02258903 A JPH02258903 A JP H02258903A JP 1127534 A JP1127534 A JP 1127534A JP 12753489 A JP12753489 A JP 12753489A JP H02258903 A JPH02258903 A JP H02258903A
Authority
JP
Japan
Prior art keywords
deformation resistance
temperature
tube
powder
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1127534A
Other languages
Japanese (ja)
Other versions
JPH0733526B2 (en
Inventor
Yoshihisa Ohashi
大橋 善久
Mutsuo Nakanishi
中西 睦夫
Shigeharu Takai
高井 重治
Junichi Kikuchi
菊地 諄一
Tadashi Fukuda
匡 福田
Nobushige Hiraishi
平石 信茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to CA002003295A priority Critical patent/CA2003295C/en
Priority to KR1019890017982A priority patent/KR960006613B1/en
Priority to EP89312840A priority patent/EP0372999B1/en
Priority to DE68916383T priority patent/DE68916383T2/en
Priority to US07/448,010 priority patent/US5056209A/en
Publication of JPH02258903A publication Critical patent/JPH02258903A/en
Publication of JPH0733526B2 publication Critical patent/JPH0733526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a clad metal tube reducing the development of defect in the clad layer, such as variation in thickness, bamboo joint-like crack, by executing extrusion-work to two kinds of raw tubes constituting combined billet under applying temp. difference between the tubes. CONSTITUTION:Powder packing layer 4, etc., of Ni base alloy, etc., to be formed as the clad layer is arranged between a base material raw tube 1 of carbon steel, etc., and a thin metal tube (capsule) 5 to form the combined billet. The hot extrusion-work is executed to the clad layer of the Ni base alloy, which has higher deforming resistance in this billet under applying the heating temp. higher than that of the other base material. The temp. difference is made to >=50 deg.C and preferably adjusted so that the ratio of the deforming resistances of both raw materials in the deformation part becomes <=about 2.5.

Description

【発明の詳細な説明】 (産業上の利用分野り この発明は、熱間押出法によってクラッド金属管を製造
する方法であって、組み合わせる2種の金属(合金)の
変形抵抗差が大きく、熱間加工が困難な場合でも、表面
疵その他の欠陥のない健全なりラッド管を製造するため
の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention is a method of manufacturing a clad metal tube by hot extrusion, in which there is a large difference in deformation resistance between two metals (alloys) to be combined, and The present invention relates to a method for manufacturing a sound rad tube without surface flaws or other defects even when machining is difficult.

(従来の技術) 異なった性質を持つ2種以にの金属(ここでは純金属と
合金とを総称して金属という)を組み合わせて両方の長
所を生かすクラツド材は、すでに多方面で実用化されて
いる。用いられる金属の種類およびそれらの組合せは多
様であるが、最も生産量の多いのは、−JiJ (母N
)を炭素鋼や低合金鋼とし、これに耐食性の優れたステ
ンレス鋼やチタンなどを張り合わせたクラツド板である
(Prior art) Clad materials, which combine two or more metals with different properties (here, pure metals and alloys are collectively referred to as metals) to take advantage of the advantages of both, have already been put into practical use in many fields. ing. The types of metals used and their combinations are diverse, but the one with the highest production volume is -JiJ (mother N
) is made of carbon steel or low-alloy steel, and is laminated with highly corrosion-resistant stainless steel, titanium, etc.

板材だけでなく、管としてもクラッド製品は種々製造さ
れている。継目無しのクラツド管の製造方法としては、
熱間押出法(例えば、ユジンセジュルネ法)が最も一般
的である。その製造工程は、概略第1図に示すようなも
のである。
Various clad products are manufactured not only as plates but also as pipes. The method for manufacturing seamless clad pipes is as follows:
Hot extrusion methods (eg, the Eugene-Sejournet method) are the most common. The manufacturing process is schematically shown in FIG.

即ち、まず異種の金属の素管l、2を組み合わせたビレ
ット3を準備し、これを適当な温度に加熱して押出加工
するのである。ここで問題になるのは、製造コストと製
品クラツド管の品質である。
That is, first, a billet 3 is prepared by combining raw tubes 1 and 2 made of different metals, and this is heated to an appropriate temperature and extruded. The issues here are manufacturing costs and the quality of the clad pipe product.

例えば、高強度とともに優れた耐食性を要求される油送
管などの用途に、安価で強度の高い炭素鋼または低合金
鋼を母材層とし、耐食性に優れたニッケル基合金をクラ
フト層としたクラツド管が有望であるが、これを従来の
熱間押出法で製造しようとすれば、第1図の素管1を炭
素@(または低合金鋼)、素管2をニッケル基合金とし
て組み立てた複合ビレット3を準備することになる0通
常、中空円筒状の素管の作製は、溶解−鋳造一鍛造成形
一機械加工(孔明け)という工程を経てそれぞれ作製さ
れ、これらを嵌合して複合ビレットとする。この複合と
レットは、加熱炉または/および誘導加熱装置で所定温
度に加熱されて熱間押出されるのであるが、そのときの
大きな問題点は下記のとおりである。
For example, for applications such as oil pipes that require high strength and excellent corrosion resistance, we use cladding with a base material layer of inexpensive, high-strength carbon steel or low-alloy steel and a craft layer of a nickel-based alloy with excellent corrosion resistance. A tube is promising, but if we try to manufacture it using the conventional hot extrusion method, a composite tube in which the raw tube 1 in Figure 1 is made of carbon @ (or low-alloy steel) and the raw tube 2 is made of a nickel-based alloy will be used. 0 Normally, a hollow cylindrical raw pipe is manufactured through the following steps: melting, casting, forging, and machining (drilling), and these are then fitted together to form a composite billet. shall be. This composite and lettuce are heated to a predetermined temperature in a heating furnace and/or an induction heating device and then hot extruded, but the major problems at that time are as follows.

1) 製品表面品質上の問題 これは、2種の金属のうち、特にクラッド層となる難加
工性の金N層(炭素鋼とニッケル基合金の組合せの場合
にはニッケル基金金層ンの肉厚の変動とその表面におけ
る疵や割れの発生である。
1) Problems with product surface quality This is particularly due to the difficult-to-process gold N layer that forms the cladding layer of the two metals (in the case of a combination of carbon steel and nickel-based alloy, the nickel-base gold layer). These are variations in thickness and the occurrence of scratches and cracks on the surface.

2) 接合強度上の問題 母材層とクラッド層の間の接合が完全でなく、接合強度
が弱い0層間に剥離が生じるとそこに水素が侵入し、そ
の内圧によって剥離部が拡大し管の膨れや強度低下を来
たす。
2) Problems with bonding strength If the bonding between the base material layer and the cladding layer is not perfect, and separation occurs between the 0 layers, which have weak bonding strength, hydrogen will enter there, and the internal pressure will cause the separated area to expand and cause damage to the pipe. This causes swelling and a decrease in strength.

3) 製造コスト上の問題 複合ビレットを作製するまでの工数が多く、且つ材料歩
留りが低いため、製品に到るまでの製造コストが嵩む、
炭素鋼や低合金鋼のように比較的安価なものは、素管製
作時の歩留りが最終製品のコストに及ぼす影響も小さい
が、ニッケル基合金のように原材料費の高いものでは、
素管製作時の材料歩留りは製品コストに大きく影響する
。しかもニッケル基合金などは鍛造や機械加工も難しく
、素管を作るまでの鍛造、機械加工にも手間がかかる。
3) Problems with manufacturing costs Because it takes a lot of man-hours to create a composite billet and the material yield is low, the manufacturing costs up to the end of the product increase.
For relatively inexpensive materials such as carbon steel and low-alloy steel, the yield at the time of manufacturing the raw material has little effect on the cost of the final product, but for materials with high raw material costs such as nickel-based alloys,
The material yield during the production of raw tubes has a significant impact on product costs. Moreover, nickel-based alloys are difficult to forge and machine, and the forging and machining required to make the raw tubes is time-consuming.

上記の2)および3)の問題点に対する、一つの解決策
は、素管の材料として粉末を使用することである0例え
ば、母材の炭素鋼や低合金鋼としては溶製材を使用し、
クラッド層となる合金の材料として粉末を用いることが
考えられ、下記の明細書等に幾つかの提案がなされてい
る。
One solution to the above problems 2) and 3) is to use powder as the material for the raw pipe. For example, use molten material as the base material of carbon steel or low alloy steel,
It has been considered to use powder as a material for the alloy forming the cladding layer, and several proposals have been made in the following specifications and the like.

■米国特許第3.753.704号明細書■米国特許第
4.01.6,008号明細書(特公昭60−3716
2号公報) ■特開昭61−190006号公報 ■特開昭61−190007号公報 これらはいずれも、まず第2図に示すような複合ビレッ
トを準備し、これを加熱して熱間押出法によって製管す
る方法である。
■U.S. Patent No. 3.753.704 Specification ■U.S. Patent No. 4.01.6,008 (Japanese Patent Publication No. 60-3716
2) ■ JP-A-61-190006 ■ JP-A-61-190007 In each of these, a composite billet as shown in Fig. 2 is first prepared, then heated and hot extruded. This is a method of pipe manufacturing.

第2図に示す複合ビレットは、炭素鋼等からなる中空円
筒体(母材素管)lと、薄肉金属管(カプセルとも呼ば
れる)5と、中空円筒体1と薄肉金属管5との間に充填
された粉末充填層4とがらなり、上端と下端はそれぞれ
端板6−1および6−2で密封されている。
The composite billet shown in FIG. 2 consists of a hollow cylindrical body (base material tube) 1 made of carbon steel or the like, a thin-walled metal tube (also called a capsule) 5, and a space between the hollow cylindrical body 1 and the thin-walled metal tube 5. The packed powder layer 4 is made of a gasket, and its upper and lower ends are sealed with end plates 6-1 and 6-2, respectively.

組み立てられた複合ビレットは、必要に応じて冷間静水
圧加圧等で粉末充填層4の充填密度を高めた後、所定温
度に加熱され、熱間押出加工されてクラツド管となる。
The assembled composite billet is heated to a predetermined temperature and hot extruded to form a clad pipe, after increasing the packing density of the powder packed bed 4 by cold isostatic pressing or the like as required.

すなわち、熱間押出にともなう加熱と圧縮および剪断変
形により粉末充填層4は固化し、中空円筒体1が加工成
形された母材層の内周面に合金層としてクラッドされる
。端板6−1および6−2並びに薄肉金属管5は熱間押
出の後に酸洗などの方法で除去される。
That is, the powder packed layer 4 is solidified by the heating, compression, and shear deformation associated with hot extrusion, and the inner circumferential surface of the base material layer into which the hollow cylinder 1 has been formed is clad as an alloy layer. The end plates 6-1 and 6-2 and the thin metal tube 5 are removed by a method such as pickling after hot extrusion.

上記のように、複合ビレットを構成する中空円筒体(素
管)lは、最終製品のクラツド管の一方の構成材料(母
材層)となるものであり、通常、炭素鋼、低合金鋼のよ
うな比較的安価で熱間加工性のよい材料である。これは
、通常の溶製、鍛造、機械加工等の工程で所定形状に作
製される。一方、粉末充填層4は、第2図の例では上記
の母材層の内面のクラッド層となるものであり、特に優
れた耐食性などの機能を備えた合金の粉末である。この
ような合金の代表的なものは、ニッケル基合金であるが
、このような合金の粉末を使用すれば、使用した原材料
(粉末)は、そのほぼ100%が製品になり、経済的に
極めて有利である。
As mentioned above, the hollow cylindrical body (raw pipe) l that makes up the composite billet is one constituent material (base material layer) of the clad pipe of the final product, and is usually made of carbon steel or low alloy steel. It is a relatively inexpensive material with good hot workability. This is manufactured into a predetermined shape through ordinary processes such as melting, forging, and machining. On the other hand, the powder-filled layer 4, in the example shown in FIG. 2, serves as a cladding layer on the inner surface of the base material layer, and is made of an alloy powder having particularly excellent functions such as excellent corrosion resistance. A typical example of such an alloy is a nickel-based alloy, but if powder of such an alloy is used, almost 100% of the raw material (powder) used will become a product, making it extremely economical. It's advantageous.

第2図はクラッド層が管の内面にくる場合のビレットで
あるが、管の使用目的によってはクラッド層を管の外面
に設けることもあり、その場合は、カプセル5を母材素
管1の外側に配置し、それらの空隙に粉末充填層4を置
いた複合ビレットを用いる。なお、この明細書では、薄
肉金属管(カプセル)に充填された中空円筒状の粉末充
填層も、溶製材から機械加工によって作製された素管と
同じく、複合ビレットを構成する「素管Jと呼ぶことと
する。
Figure 2 shows a billet in which the cladding layer is on the inner surface of the tube, but depending on the purpose of the tube, the cladding layer may be provided on the outer surface of the tube, in which case the capsule 5 is placed on the base material tube 1. Composite billets are used which are arranged on the outside and have a powder filled layer 4 placed in their voids. In addition, in this specification, the hollow cylindrical powder filling layer filled in the thin-walled metal tube (capsule) is also referred to as the "Main Pipe J" that constitutes the composite billet, similar to the material pipe made by machining from melted material. I will call you.

上記のように、一方の素管の材料として粉末を使用すれ
ば、溶製材同士の複合ビレットを使用した場合に較べて
、界面の接合強度も高くなる。それは、押出加工の際に
、粉末が相手(溶製材)の表面に食い込むことによって
溶製材の表面に薄く形成されている酸化被膜を押し破り
、同時に金属粉末の表面酸化被膜も分断され、それぞれ
に新生面が生しるため溶製材同士では得られない強固で
信幀性の高い接合が得られるからである。
As mentioned above, if powder is used as the material for one of the raw pipes, the bonding strength at the interface will be higher than when a composite billet of melted materials is used. During extrusion, the powder bites into the surface of the other material (molten material) and breaks through the thin oxide film formed on the surface of the material. This is because new surfaces are formed, allowing for a strong and highly reliable bond that cannot be obtained with melt-sawn lumber.

一方の素管が粉末充填層からなる複合ビレットを使用す
る熱間押出製管法は、炭素鋼とステンレス鋼のクラツド
管の製造などに一部で実用化されている。しかしながら
、先に述べた1)の問題点は未だ解決されていない0例
えば、炭素鋼を母材層とし、A11oy 825あるい
はAl1oy 625等のニッケル基合金をクラッド層
とする管を熱間押出法で製造した場合、特にクラッド層
側に大きな肉厚変動が生じ、甚だしい場合は竹節状の割
れが生じることである。
The hot extrusion pipe manufacturing method, in which one of the raw pipes uses a composite billet made of a powder-filled bed, has been put into practical use in some cases, such as in the production of clad pipes made of carbon steel and stainless steel. However, the above-mentioned problem 1) has not yet been resolved. For example, a tube with a base material layer of carbon steel and a cladding layer of a nickel-based alloy such as A11oy 825 or Al1oy 625 can be produced by hot extrusion. When manufactured, large thickness variations occur, especially on the clad layer side, and in severe cases, bamboo knot-like cracks occur.

第15図は、上記の竹節状割れが発生したクラツド管の
一例を示す断面模式図である。母材層17は変形抵抗の
小さい炭素鋼で、クラッド層(この場合、管内面側)1
8は変形抵抗の大きいニッケル基合金である0図示のと
おり、母材層にも肉厚の変動があるが、変形抵抗の大き
いクラッド層の肉厚変動は著しく、部分的にはクラッド
層が完全に欠落してしまったところがある。このような
部分19は、竹の節のように管の長手方向に一定のピッ
チで現れるので、これを竹節状割れと呼ぶ、このような
欠陥は製品の手入れ(補修)では修復できないものであ
り、製品歩留りを大きく低下させる。
FIG. 15 is a schematic cross-sectional view showing an example of a clad pipe in which the bamboo knot-like cracks described above have occurred. The base material layer 17 is made of carbon steel with low deformation resistance, and the cladding layer (in this case, the inner surface of the tube) 1
8 is a nickel-based alloy with high deformation resistance.0 As shown in the figure, there are variations in the thickness of the base material layer, but the thickness variation of the cladding layer with high deformation resistance is significant, and in some parts the cladding layer is completely There are some parts that are missing. These portions 19 appear at a constant pitch in the longitudinal direction of the tube, like the knots of bamboo, and are called bamboo knot cracks. Such defects cannot be repaired by product maintenance (repair). , which greatly reduces product yield.

上記の竹節状割れは、ニッケル基合金の変形抵抗が大き
く熱間加工性の悪いことが一因であり、従って加工温度
を高めれば、変形抵抗が小さくなり、竹節状割れを少な
くすることができると考えられる。しかし、ビレットの
加熱温度がニッケル基合金の固相線温度を超えると、金
属間化合物等が結晶粒界に凝集し、或いは一部に液相が
生じ、製管不良と製品品質の悪化を招くから、むやみに
加熱温度を高めることはできない、のみならず単にビレ
ット加熱温度を高めるだけでは竹節状割れは完全には防
止できず、徒に加熱エネルギーの浪賢を招くだけである
The bamboo knot cracks mentioned above are caused in part by the high deformation resistance of the nickel-based alloy and poor hot workability. Therefore, by increasing the processing temperature, the deformation resistance becomes smaller and bamboo knot cracks can be reduced. it is conceivable that. However, if the heating temperature of the billet exceeds the solidus temperature of the nickel-based alloy, intermetallic compounds will aggregate at grain boundaries or a liquid phase will form in some parts, leading to poor tube manufacturing and deterioration of product quality. Therefore, it is not only impossible to increase the heating temperature unnecessarily, but also simply increasing the billet heating temperature cannot completely prevent bamboo knot-like cracking, and will only lead to wasted heating energy.

管表面に発生する疵や削れは、その手入れに多大の工数
を要する。特に内面の疵や割れは手入れが困難であり、
割れが発生した管は手入れをしても商品にならないこと
が多い。
It takes a lot of man-hours to clean up the scratches and scrapes that occur on the pipe surface. In particular, internal scratches and cracks are difficult to clean.
Even if pipes with cracks are taken care of, they are often not commercially available.

(発明が解決しようとする課題) 本発明のi!!!題の一つは、複合ビレットを用いて2
種の異なった金属からなるクラツド管を製造するに当た
り、その複合ビレットが溶製材から作られた素管の組合
せであっても、また少なくとも一方の素管が粉末を素材
として構成されたものであっても、いずれにしても、前
記の肉厚変動が少なく竹節状の割れの発生がない表面品
質に優れたクラツド管を製造する方法を提供することに
ある。
(Problem to be solved by the invention) The i! ! ! One of the issues is to use composite billets to
When manufacturing clad pipes made of different types of metals, even if the composite billet is a combination of raw pipes made from molten material, or at least one of the raw pipes is made of powder, In any case, it is an object of the present invention to provide a method for manufacturing a clad pipe with excellent surface quality, which has less variation in wall thickness and no bamboo knot-like cracks.

本発明のもう一つの課題は、複合ビレットを構成する素
管のうち、少なくとも一方がニジケル基合金のような変
形抵抗の大きい合金の粉末光MANからなる複合ビレッ
トを用い、M記のような欠陥のないクラツド管を製造す
る方法を提供することにある。
Another object of the present invention is to use a composite billet in which at least one of the blank tubes constituting the composite billet is made of powdered optical MAN made of an alloy with high deformation resistance such as a Ni-based alloy, and to prevent defects such as those shown in M. It is an object of the present invention to provide a method for manufacturing a cladding tube free of cladding.

(課題を解決するための手段) 本発明者らは、多数の試験と実生産の経験から、クラッ
ド層に発生する肉厚変動と竹節状割れの発生原因は、単
にクラツド管の一方の層になる金属の変形抵抗の大きさ
だけにあるのではなく、クラッド層になる2種の金属の
加工時点での変形抵抗の差が大きな原因であることを知
った。
(Means for Solving the Problems) Based on the experience of numerous tests and actual production, the present inventors have determined that the cause of wall thickness variation and bamboo knot cracks that occur in the cladding layer is simply due to one layer of the cladding pipe. I learned that the major cause is not just the magnitude of the deformation resistance of the metal that forms the cladding layer, but also the difference in deformation resistance at the time of processing of the two metals that form the cladding layer.

従来、クラツド管製造用の複合ビレット(第1図に3で
示すもの)は、単一材料のビレットと同様に全体が均一
温度になるように加熱されている。
Conventionally, composite billets (indicated by 3 in FIG. 1) for manufacturing clad pipes are heated to a uniform temperature throughout, similar to billets made of a single material.

後に詳しく説明する第8図に示すように、同じ加工温度
であっても変形抵抗は金g!4(合金)のfil rN
によって大きく異なる0例えば、炭素鋼とA11oy6
25の1000°Cでの変形抵抗を比べれば、後者のそ
れは前者の約4倍になる。このような2種の合金を組み
合わせた複合ビレットを均−1度に加熱して押出加工を
行うと竹節状割れの発生が避けられない。
As shown in Figure 8, which will be explained in detail later, even at the same processing temperature, the deformation resistance is gold! 4 (alloy) fil rN
For example, carbon steel and A11oy6
Comparing the deformation resistance of No. 25 at 1000°C, the latter is approximately four times that of the former. If such a composite billet made of a combination of two types of alloys is extruded by uniformly heating the billet to -1 degree, the occurrence of bamboo knot-like cracks is unavoidable.

そこで、本発明者は、複合ビレットを構成する素管の温
度を変えて加工することに着目し、多数の金属の組合せ
による試験を実施した結果、変形抵抗の大きい方の素管
を他方よりも高い温度にして押出加工を行うことによっ
て、クラッド層の肉厚変動を軽減し、竹節状割れを始め
とするクラッド層の欠陥を軽減できることを確認した。
Therefore, the present inventor focused on processing the raw tubes that make up the composite billet by changing the temperature, and as a result of conducting tests using a large number of metal combinations, the inventors found that one of the raw tubes with greater deformation resistance was selected than the other. It was confirmed that by performing extrusion processing at a high temperature, it was possible to reduce variations in the thickness of the cladding layer and reduce defects in the cladding layer, including bamboo knot cracks.

更に、このように温度差を付けて加工するに際し、加工
変形部での画素材の変形抵抗の比を2.5以下にするこ
とによって致命的な竹節状割れの発生は実質的に皆無に
することができることを知った。
Furthermore, when processing with a temperature difference like this, the occurrence of fatal bamboo joint cracks can be virtually eliminated by setting the deformation resistance ratio of the image material at the processing deformation part to 2.5 or less. I learned that it is possible.

このような知見に基づく本発明は下記のクラッド金属管
の製造方法をその要旨とする。
The gist of the present invention based on such knowledge is the following method for manufacturing a clad metal pipe.

r変形抵抗の異なる二種類の金属からなるクラッド金属
管の製造方法であって、これら二種類の金属の素管、即
ち中空円筒体、を同心円伏に配置した複合ビレットを作
製し、その複合ビレットの変形抵抗の大きい方の素管を
他方よりも高い温度にして熱間押出加工することを特徴
とするクラ・ンド金属管の製造方法」 本発明において、「金属」と称するものには、純金属お
よび合金だけでなく、金属間化合物または金属炭化物、
金属窒化物等を主体とする材料をも含む。
r A method for manufacturing a clad metal tube made of two types of metals with different deformation resistances, in which a composite billet is produced in which raw tubes of these two types of metals, that is, hollow cylinders, are arranged concentrically, and the composite billet is A manufacturing method for a clamped metal pipe, characterized in that the material pipe having a larger deformation resistance is subjected to hot extrusion processing at a higher temperature than the other material." In the present invention, the term "metal" refers to pure metals and alloys, as well as intermetallic compounds or metal carbides,
Also includes materials mainly composed of metal nitrides.

上記の本発明方法において使用する複合ビレットとは、
次の3種の組合せビレットである。
The composite billet used in the above method of the present invention is:
The billets are a combination of the following three types.

■ 素管がいずれも溶製材から機械加工によって作製さ
れたもの。
■ All raw pipes are manufactured by machining from melted lumber.

■ 素管の一方が溶製材製であり、他方が金属粉末充填
層から成るもの。
■ One part of the raw pipe is made of molten lumber and the other part is made of a layer of metal powder filling.

■ 素管のいずれもが粉末充填層から成るもの。■ All of the base tubes are made of a powder-filled bed.

■のビレットは、第1図に3で示したものであり、素管
1および2はそれぞれの金属の溶製材を鍛造および機械
加工して中空円筒状に成形し、これらを嵌合して作製す
る。
The billet ① is shown as 3 in Figure 1, and the base tubes 1 and 2 are made by forging and machining melted materials of the respective metals to form hollow cylinders, and then fitting them together. do.

■のビレットは、第2図に示したように、一方(この場
合は外側の母材素管1)が溶製材から作製されたもので
、他方(この場合内側4)が粉末充填層から成るもので
ある0通常は、溶製材が炭素鋼または低合金鋼で、粉末
充填層がニッケル基合金などの高価で難加工の材料であ
る。タラッド管の用途によっては、外層と内層とを逆に
することもある。
As shown in Figure 2, the billet (2) has one side (in this case, the outer base material tube 1) made from melted material, and the other side (inner side 4, in this case) made of a powder-filled layer. Normally, the ingot material is carbon steel or low alloy steel, and the powder filling layer is an expensive and difficult-to-process material such as a nickel-based alloy. Depending on the use of the TALLAD tube, the outer and inner layers may be reversed.

■のビレットは、第3図に示すように、内外層とも金属
粉末充填層であり、その境目は隔壁8で仕切られている
。このような粉末充填層は、内外周を覆う薄肉金属製の
カプセル5−1.5−2を使用し、かつその内部に隔壁
8となる薄肉金属管を配置してそれぞれの粉末を充填す
ることによって作製される。(なお、第3図の例では、
後述する目的で、内周側のカプセルの内側に断熱被覆管
9を設けている。) 上記■から■までの複合ビレットのうちで、最も実用価
値の高いのは、■のビレットである。即ち、例えば、油
送管用の継目無管などでは、強度を担う炭素鋼または低
合金鋼を母材層とし、耐食性を担うニッケル基合金など
を内側のクラッド層とした管が望まれるが、この場合、
安価な母材層の素管は溶製材料から機械加工して作製し
、高価なりラッド層となる素管を粉末充填層とするのが
最も合理的である。なお、UL熱回収ボイラ管などでは
、管の外側が強い腐食環境にさらされるので、外側にニ
ッケル基合金などのクラッド層をもつクラツド管が必要
とされる。この場合は、複合ビレットの構成は第2図と
は異なり、外側に粉末充填層を置いたものとなる。
As shown in FIG. 3, the billet (2) has metal powder-filled layers on both the inner and outer layers, and the boundary between them is partitioned by a partition wall 8. Such a powder-filled layer uses a thin-walled metal capsule 5-1.5-2 that covers the inner and outer peripheries, and arranges a thin-walled metal tube that becomes the partition wall 8 inside the capsule and fills it with each powder. Created by (In addition, in the example in Figure 3,
For the purpose described later, a heat insulating cladding tube 9 is provided inside the capsule on the inner peripheral side. ) Among the composite billets from ■ to ■ above, billet ■ has the highest practical value. In other words, for example, in seamless pipes for oil transmission pipes, it is desirable to have a base material layer made of carbon steel or low-alloy steel that provides strength, and an inner cladding layer made of a nickel-based alloy that provides corrosion resistance. case,
It is most rational to manufacture the inexpensive base material tube by machining it from a molten material, and to use the expensive base material tube as the rad layer as the powder-filled layer. Note that in UL heat recovery boiler tubes and the like, the outside of the tube is exposed to a strong corrosive environment, so a clad tube with a cladding layer of nickel-based alloy or the like on the outside is required. In this case, the structure of the composite billet is different from that shown in FIG. 2, with a powder filling layer placed on the outside.

以下、主に、第2図に示すような、内側にニッケル基台
金のような粉末の充填層を有する複合ビレットを使用す
る場合を例にして、本発明を説明する。
Hereinafter, the present invention will be mainly described using, as an example, a case where a composite billet as shown in FIG. 2 is used, which has a packed layer of powder such as nickel-based gold on the inside.

本発明方法の特徴は、複合ビレットを構成する2種類の
素管に温度差をつけて押出加工を行うことにある。具体
的には、変形抵抗が大きい方の素管を他方よりも高い温
度にして加工し、加工変形の際の変形抵抗の差をできる
だけ小さくするのである。特に、変形抵抗に大きな差が
ある2種の金属を用いる場合には、押出加工時の変形部
における画素材の変形抵抗の比が2.5以下、望ましく
は2.3以下になるように温度差をつけるのがよい。
The feature of the method of the present invention is that the extrusion process is performed by applying a temperature difference to the two types of raw tubes that make up the composite billet. Specifically, the raw tube with greater deformation resistance is processed at a higher temperature than the other to minimize the difference in deformation resistance during processing deformation. In particular, when using two types of metals with large differences in deformation resistance, the temperature should be adjusted so that the ratio of deformation resistance of the image material at the deformed part during extrusion is 2.5 or less, preferably 2.3 or less. It's good to make a difference.

第4図は、複合ビレットを用いて製管する場合の熱間押
出装置のダイス部分の加工変形状態を示す略断面図であ
る。コンテナー10に装入されたビレット3は図示のよ
うにマンドレル11とダイス12との間で加工されて所
定肉厚の管13となって出て行くのであるが、押出定常
変形時には押出変形域を図示のように3つの領域に分割
して考えることができる。領域1ば、据込まれたビレッ
トが変形することなくダイス入口に向かって移動する領
域、領域■は、ダイス人口に近づいたビレットの部分が
ダイスによって、主に剪断による塑性変形を受けながら
ダイス出口に至る塑性流動領域、そして領域■は、変形
が完了し、製品(クラッド継目無管)となってダイスか
ら離れていく領域である。
FIG. 4 is a schematic cross-sectional view showing the state of processing deformation of the die portion of the hot extrusion device when producing pipes using a composite billet. As shown in the figure, the billet 3 charged into the container 10 is processed between a mandrel 11 and a die 12 and exits as a tube 13 with a predetermined wall thickness. It can be divided into three areas as shown in the figure. Region 1 is a region in which the upturned billet moves toward the die entrance without deformation, and region 2 is a region in which the billet that has approached the die population is plastically deformed by the die, mainly due to shear, and moves toward the die exit. The plastic flow region reaches , and the region (2) is the region where the deformation is completed and the product (clad seamless pipe) separates from the die.

ビレットの変形抵抗が最も問題になるのは、領域■であ
る。クラツド管を製造する場合、ビレットを構成する2
種の金属素管のこの領域Hにおける変形抵抗の差が大き
いと、変形抵抗が大きい方の金属の層厚(肉厚)が周期
的に変動し、表面に前述の竹節状の割れが多発するので
ある8本発明において、「押出加工の変形部」というの
はこの領域Hのことである。なお、ビレットを構成する
素管の一部または全部が粉末であっても、領域Iでの据
込み加工によって領域Hに到るまでには充分に緻密化し
ているから、領域■での変形の挙動は溶製材と同じと考
えてよい。従って、以下の変形抵抗に関する説明は、溶
製材製の素管だけからなる複合ビレットおよび少なくと
も一方の素管が粉末充填層である複合ビレットのいずれ
にも当てはまる。
The area where the deformation resistance of the billet becomes most problematic is region (3). When manufacturing clad pipes, the two components that make up the billet
If the difference in deformation resistance in this region H of the seed metal tube is large, the layer thickness (wall thickness) of the metal with greater deformation resistance will fluctuate periodically, and the aforementioned bamboo knot-shaped cracks will occur frequently on the surface. 8 In the present invention, the term "deformed part of extrusion process" refers to this region H. Note that even if part or all of the raw pipe that makes up the billet is powder, it will be sufficiently densified by the upsetting process in region I to reach region H, so deformation in region ■ will not occur. The behavior can be considered to be the same as that of ingot lumber. Therefore, the following explanation regarding deformation resistance applies to both a composite billet consisting only of raw pipes made of molten material and a composite billet in which at least one raw pipe is a powder-filled layer.

次に、変形抵抗について説明する。Next, deformation resistance will be explained.

変形抵抗に関与する因子は、塑性歪量、歪速度および加
工温度である。
Factors involved in deformation resistance are the amount of plastic strain, strain rate, and processing temperature.

第5図は、塑性歪量を説明する図である。FIG. 5 is a diagram illustrating the amount of plastic strain.

−iに歪量は、第5図に示すように変形前の試験片14
の長さを111、変形後の試験片14′の長さをlとす
れば、次式のように表される。
−i is the strain amount of the test piece 14 before deformation, as shown in FIG.
If the length of is 111 and the length of the test piece 14' after deformation is l, then it is expressed as the following equation.

ε ε=Iln ビレットから管を製造する場合は、同しようにビレット
の長さを20、製品管の長さをP、押出比をTとすると
歪量は次式で示される。
ε ε=Iln When a tube is manufactured from a billet, the amount of strain is similarly expressed by the following equation, where the length of the billet is 20, the length of the product tube is P, and the extrusion ratio is T.

ε= i n      = l n yro 通常の熱間押出による金属管の製造では、押出比Tは4
〜30の範囲が多く、従って製管時の歪量εは1.4〜
3.4の範囲が多い。
ε= i n = l n yro In the production of metal tubes by normal hot extrusion, the extrusion ratio T is 4
〜30 is often in the range, so the amount of strain ε during pipe manufacturing is 1.4〜
There are many cases in the range of 3.4.

次に重要なのは歪速度(めである、歪速度とは単位時間
あたりの変形歪量であり、押出速度V(mm/5ee)
、ビレット長さno(+am)として次式で表される。
The next important thing is the strain rate, which is the amount of deformation strain per unit time, and the extrusion speed V (mm/5ee)
, billet length no (+am) is expressed by the following formula.

1@/v    l・ 通常の熱間押出による金属管の製造では、ioは500
〜1200mm、■は100〜400mm/secの範
囲が多いから、通常はニー o、i〜3sec−’程度
である。
1@/v l・In the production of metal tubes by normal hot extrusion, io is 500
~1200 mm, and ■ is often in the range of 100 to 400 mm/sec, so it is usually about knee o, i ~3 sec-'.

加工温度、即ち材料の変形時の温度は、高い程一般に変
形抵抗は小さくなる。加工温度は第4図の領域■の温度
である。実際の製管作業において領域Hの温度を測定す
るのは困難であるが、コンテナー人口におけるビレット
の温度から、領域Hの温度を推定することは容易である
0通常、コンテナーおよびマンドレルは300”C程度
に予熱して使用するのであるが、ビレットがこれらに接
触して抜熱されることを考慮して、加工変形部に到るま
でにおよそ50℃の温度降下があるものと見てよい 変形抵抗の測定は次のようにして行う。
Generally, the higher the processing temperature, that is, the temperature at which the material is deformed, the lower the deformation resistance. The processing temperature is the temperature in region (2) in FIG. Although it is difficult to measure the temperature of area H in actual pipe-making operations, it is easy to estimate the temperature of area H from the temperature of the billet in the container population. The billet is preheated to a certain degree before use, but considering that the billet comes into contact with these and removes heat, it can be assumed that there is a temperature drop of approximately 50°C before it reaches the processed deformation part. The measurement is performed as follows.

第6図に示すような試験装置により、一定温度で圧11
試験を行い、その時の変位、荷重を測定する。第6図に
おいて、14が試験片、15は誘導加熱用のコイル、1
6はプレスである。第7図は、このような試験によって
得られる応力−歪曲線である。
Using a test device as shown in Figure 6, a pressure of 11% was measured at a constant temperature.
Perform the test and measure the displacement and load at that time. In Fig. 6, 14 is a test piece, 15 is an induction heating coil, 1
6 is a press. FIG. 7 is a stress-strain curve obtained by such a test.

測定にあたっては、各温度において所定の歪速度で歪量
1.0までの圧縮試験を行い、応力×歪の総面積を歪で
除した平均変形抵抗を変形抵抗とする。なお、歪速度に
ついては歪量1.0に至るまでの所要時間から求めるこ
ととする。
In the measurement, a compression test is performed at each temperature at a predetermined strain rate up to a strain amount of 1.0, and the average deformation resistance obtained by dividing the total area of stress x strain by the strain is defined as the deformation resistance. Note that the strain rate is determined from the time required to reach the strain amount of 1.0.

第8図は、第1表に示す化学組成の炭素鋼(JISST
KM 19相当材)、ステンレス鋼(JIS、5IJS
−304)、ニッケル基合金(^1loy 825、A
l1oy 625 、C276)、およびコバルト基合
金(ステライト#1)について、上記の方法によって求
めた変形抵抗と加工温度との関係を示す図である。
Figure 8 shows the carbon steel (JISST) with the chemical composition shown in Table 1.
KM 19 equivalent material), stainless steel (JIS, 5IJS
-304), nickel-based alloy (^1loy 825, A
FIG. 3 is a diagram showing the relationship between deformation resistance and processing temperature determined by the above method for 11oy 625, C276) and a cobalt-based alloy (Stellite #1).

第8図に示すとおり、ニッケル基合金やコバルト合金の
変形抵抗は炭素鋼やステンレス鋼に較べて格段に大きく
、本質的に熱間加工性が悪い6例えば、熱間押出の際の
変形部の加工温度(第4図に示す領域nにおける材料温
度)を1100”Cとすると、炭素鋼の変形抵抗は9.
4kg4/+u+” 、5IJS 304の変形抵抗は
14.0 kgf/am”であるから、その比は約1.
5である。一方、ニッケル基合金のAl1oy625の
1100°Cでの変形抵抗は27.5 kgf/mm”
であるから、炭素鋼とA11oy 625との変形抵抗
の比は約2.9となる。炭素鋼とステンレス鋼のクラシ
ト管の製造が支障なくできて、炭素鋼とニッケル基合金
とのクラシト管の製造では前記のようなりラッド層の割
れが発生するのは、上記のような変形抵抗比の相違が主
因である。即ち、炭素w4(母材)に対するクラツド材
にニッケル基合金)の変形抵抗の比が大きいと、押出加
工時の材料の流動性が大幅に異なることになる。その結
果、変形抵抗の小さい材料の優先的流動現象と、変形抵
抗の大きい材料の強制的流動現象とが交互に生じ、クラ
ッド層の肉厚の周期的変動を伴いながら押し出されてい
くことになる。これがニッケル基合金本来の変形抵抗の
大きさと相俟って、ついにはグランドNにニッケル基合
金層)に竹節状割れを発生させるのである。
As shown in Figure 8, the deformation resistance of nickel-based alloys and cobalt alloys is much higher than that of carbon steel and stainless steel, and they inherently have poor hot workability6. When the processing temperature (material temperature in region n shown in Fig. 4) is 1100''C, the deformation resistance of carbon steel is 9.
4kg4/+u+", and the deformation resistance of 5IJS 304 is 14.0 kgf/am", so the ratio is approximately 1.
It is 5. On the other hand, the deformation resistance of Al1oy625, a nickel-based alloy, at 1100°C is 27.5 kgf/mm.
Therefore, the ratio of deformation resistance between carbon steel and A11oy 625 is approximately 2.9. The reason why cracks in the rad layer occur in the manufacturing of carbon steel and stainless steel Crasito tubes without any problems is due to the deformation resistance ratio as described above. The main reason is the difference in That is, if the ratio of deformation resistance of the cladding material (nickel-based alloy) to carbon w4 (base material) is large, the fluidity of the material during extrusion processing will be significantly different. As a result, a preferential flow phenomenon of materials with low deformation resistance and a forced flow phenomenon of materials with high deformation resistance occur alternately, and the cladding layer is pushed out with periodic fluctuations in thickness. . This, combined with the large deformation resistance inherent to the nickel-based alloy, eventually causes bamboo-knot-like cracks in the nickel-based alloy layer on the ground N.

本発明者は、上記のような肉厚変動と竹節状割れ発生の
原因を突きとめるともに、割れが発生しない限界条件を
求める試験を行った。
The present inventors ascertained the causes of the wall thickness variation and the occurrence of bamboo knot-like cracks as described above, and also conducted tests to determine the limit conditions under which cracks do not occur.

第9図は、試験に用いた複合ビレットの縦断面図である
。すなわち、母材層となる炭素鋼(第1表に示した組成
のJrS、STKM 19相当材)の溶製材製の素管1
の内側に軟鋼型の薄肉金属管(カプセル)5を同心に配
し、素管1とカプセル5の下端を端板6−2で固定する
。素管1とカプセル5との間の輪状の間隙にニッケル基
合金(第1表の組成の^l1oy 625)の粉末4を
充填し、素管lとカプセル5の上端を端板6−1で密封
して多層構造の複合ビレットを製作する。なお、9は断
熱被覆管で、ニッケル基合金粉末層4を高温に保つ目的
で使用している。
FIG. 9 is a longitudinal cross-sectional view of the composite billet used in the test. That is, a raw pipe 1 made of ingot carbon steel (JrS, STKM 19 equivalent material with the composition shown in Table 1) serving as the base material layer.
A mild steel thin metal tube (capsule) 5 is arranged concentrically inside the tube, and the lower ends of the raw tube 1 and the capsule 5 are fixed with an end plate 6-2. The annular gap between the raw tube 1 and the capsule 5 is filled with powder 4 of nickel-based alloy (^l1oy 625 with the composition shown in Table 1), and the upper ends of the raw tube 1 and the capsule 5 are connected with the end plate 6-1. It is sealed to produce a multi-layered composite billet. Note that 9 is a heat insulating cladding tube, which is used for the purpose of keeping the nickel-based alloy powder layer 4 at a high temperature.

上記のような複合ビレットを下記の条件で加熱し、熱間
押出を行った。
The composite billet as described above was heated and hot extruded under the following conditions.

■ ビレット全体を均一加熱。即ち、母材素管と粉末充
填層の加工温度は同一 ■ 粉末充填層4を、母材素管lよりも高温に加熱して
、前者の加工温度を後者のそれより50℃高くする。
■ Uniform heating of the entire billet. That is, the machining temperatures of the base material pipe and the powder-filled bed are the same. (1) The powder-filled bed 4 is heated to a higher temperature than the base material pipe l, so that the processing temperature of the former is 50° C. higher than that of the latter.

■ ■と同じく粉末充填層4を母材素管1よりも高温に
加熱してその加工温度を母材素管1の加工温度よりも1
00°C高くする。
■ Same as in ■, the powder packed layer 4 is heated to a higher temperature than the base material pipe 1, and the processing temperature is 1 higher than the processing temperature of the base material pipe 1.
Increase the temperature by 00°C.

なお、粉末充填層と母材素管とに温度差を持たせる場合
には、高温のビレット内側から低温の外側に向かって温
度勾配が生じるが、ここでの温度差は粉末充填層の厚み
中心温度と、母材素管の厚み中心温度の差である。また
、加工温度というのは、第4図に示したダイス直前での
温度、即ち加工変形部(領域■)での温度である。これ
は、温度計を埋め込んだビレットを加熱してコンテナー
に装入する直前の各部の温度を測定し、更に、コンテナ
ーおよびマンドレル(いずれも300°Cに予熱)の抜
熱による温度降下を算出してこれを差し引くことによっ
て求めた。前記のとおりこの温度降下は約50°Cであ
る。
Note that when there is a temperature difference between the powder-filled bed and the base material tube, a temperature gradient will occur from the high-temperature inside of the billet to the low-temperature outside, but the temperature difference here is at the center of the thickness of the powder-filled bed. It is the difference between the temperature and the temperature at the center of the thickness of the base material pipe. Further, the processing temperature is the temperature immediately before the die shown in FIG. 4, that is, the temperature at the processing deformation part (region 2). This involves heating a billet with a thermometer embedded in it, measuring the temperature of each part immediately before charging it into a container, and then calculating the temperature drop due to heat removal from the container and mandrel (both preheated to 300°C). It was calculated by subtracting this. As mentioned above, this temperature drop is about 50°C.

第2表は、上記の試験における母材素管と粉末充填層の
加工温度から、それぞれの組合せの変形抵抗比(母材素
管の変形抵抗を1とした場合の粉末充填層の変形抵抗値
)を示すものである。
Table 2 shows the deformation resistance ratio of each combination (the deformation resistance value of the powder-filled layer when the deformation resistance of the base material pipe is 1) based on the processing temperatures of the base material pipe and the powder-filled layer in the above test. ).

(以下、余白) 第2表 (変形抵抗比) 第2表中、*印を付したのは、竹節状割れの発生なく押
出製管ができたものを示す。
(Hereinafter, blank space) Table 2 (Deformation resistance ratio) In Table 2, those marked with an asterisk (*) indicate extrusion pipes that were made without the occurrence of bamboo knot-like cracks.

第1O図は、上記の試験製管における竹節状割れの有無
を、粉末充填層の温度、母材素管と粉末充填層の加工温
度の差、および母材素管の変形抵抗に対する粉末充填層
の変形抵抗の比との関係で示したものであり、図中の○
は、肉厚変動が殆どなく、割れが皆無、Δは肉厚変動と
割れが僅かにあるが手入れによって補修できる程度、・
は補修不能の割れ発生、をそれぞれ表す。
Figure 1O shows the presence or absence of bamboo knot-shaped cracks in the above test tubes, the temperature of the powder-filled layer, the difference in processing temperature between the base material tube and the powder-filled layer, and the deformation resistance of the base material tube against the powder-filled layer. It is shown in relation to the ratio of deformation resistance of ○ in the figure.
:There is almost no variation in wall thickness and no cracking, Δ:There is slight variation in wall thickness and cracking, but it can be repaired with care.・
represents the occurrence of cracks that cannot be repaired.

母材素管と粉末充填層の加工温度に差がない場合、すな
わち均一加熱を受けた場合(第10図の■の線)は、加
工温度が約1100″C1約1200’cのいずれの場
合もニッケル基合金層(クラッド層)に竹節状割れが生
じた。加工温度が約1200°Cということはビレット
加熱温度は1250℃に達し、ニッケル基合金の固相線
温度まで加熱されたことになり、変形抵抗比の影響より
も一部液相が生じたことによる延性低下が原因でニッケ
ル基合金層に割れが生じたものと考えられる。なお、こ
の時のむ)未充填層の変形抵抗は、第2表に示すように
母材素管の2.3倍である。これに対し、粉末充填層の
加工温度を母材素管より50°C高くした場合(第10
図の■の線)は、粉末充填層の加工温度が約i、oso
°C(母材素管の加工温度は約1000°C)では竹節
状割れが生じたが、母材素管の加工温度を約1150°
Cとした場合は竹筒状割れのない安定製管が行われた。
When there is no difference in the processing temperature between the base material tube and the powder-filled bed, that is, when they are heated uniformly (■ line in Figure 10), the processing temperature is about 1100"C1 and about 1200"C. Bamboo knot cracks also occurred in the nickel-based alloy layer (cladding layer).The processing temperature was approximately 1200°C, which means that the billet heating temperature reached 1250°C, which means that the billet was heated to the solidus temperature of the nickel-based alloy. Therefore, it is thought that the cracks occurred in the nickel-based alloy layer due to the decrease in ductility due to the formation of a partial liquid phase rather than the influence of the deformation resistance ratio.In addition, the deformation resistance of the unfilled layer at this time As shown in Table 2, the temperature is 2.3 times that of the base material pipe.On the other hand, when the processing temperature of the powder-filled bed is 50°C higher than that of the base material pipe (10th
(■ line in the figure) indicates that the processing temperature of the powder packed bed is approximately i, oso
°C (the processing temperature of the base material pipe is approximately 1000°C), bamboo knot cracks occurred, but the processing temperature of the base material pipe was approximately 1150°C.
In the case of C, a stable bamboo tube without cracking was produced.

粉末充填層の温度が約1050°Cの時に竹節状割れが
生じたのは、粉末充填層の変形抵抗が母材素管の変形抵
抗の約3倍に達しているためである。ニッケル基合金層
の加工温度が約1150’cであれば、その変形抵抗は
第8図から約21.7kgf/mm” テア/)、一方
これより50℃低い1100℃での炭素鋼の変形抵抗は
、同じく第8図から約9.4 kgf/mm”であるか
ら、押出加工の際の変形抵抗比は約2.3まで低下して
いる。これが竹節状割れの発生しない理由である。
The bamboo knot-like cracks occurred when the temperature of the powder-filled bed was approximately 1050°C because the deformation resistance of the powder-filled bed was approximately three times that of the base pipe. If the processing temperature of the nickel-based alloy layer is approximately 1150'C, its deformation resistance is approximately 21.7 kgf/mm'' tear/) from Figure 8, whereas the deformation resistance of carbon steel at 1100°C, which is 50°C lower than this, is is approximately 9.4 kgf/mm'' from FIG. 8, so the deformation resistance ratio during extrusion processing has decreased to approximately 2.3. This is the reason why bamboo joint cracks do not occur.

粉末充填層の温度を母材素管の温度より100°C高く
した場合(第6図の■の線)は、粉末充填層の加工温度
が約1100℃の場合も約1150°Cの場合も竹節状
削れは防止された。この時の母材素管に対する粉末充填
層の変形抵抗比は、それぞれ約2.3.2.1である。
When the temperature of the powder-filled bed is set 100°C higher than the temperature of the base material tube (the ■ line in Figure 6), the processing temperature of the powder-filled bed is approximately 1100°C and 1150°C. Bamboo knot-like shavings were prevented. At this time, the deformation resistance ratios of the powder-filled layer to the base material tube were approximately 2.3 and 2.1, respectively.

第10図中、Δで示したのは、クラッド層には肉厚変動
と多少の欠陥(微細割れ)が発生したが、補修手入れに
よって製品にできる程度のものである。この場合の変形
抵抗比は、2.3〜2.5であった。
In FIG. 10, Δ indicates that the cladding layer had thickness variations and some defects (microcracks), but these were such that they could be made into products by repair. The deformation resistance ratio in this case was 2.3 to 2.5.

上記のような試験を、組み合わせる金属の種類(母材素
管と粉末充填層の材料)を変えて繰り返し実施した結果
、金属の種類を問わず、また金属が溶製材であるか粉末
充填層であるかを問わず、変形抵抗の大きい素管を他方
よりも高い温度にして押出加工を行えば、クラッド層の
肉厚変動と竹節状割れの発生が軽減できることが確認さ
れた。
As a result of repeating the above tests by changing the types of metals used (base material tube and powder-filled bed material), we found that regardless of the type of metal, whether the metal is molten material or powder-filled bed material, It has been confirmed that, regardless of whether the material has a large deformation resistance or not, if the extrusion processing is carried out at a temperature higher than that of the other material, the variation in wall thickness of the cladding layer and the occurrence of bamboo joint cracks can be reduced.

このときの温度差は、複合ビレットの画素管のうちの変
形抵抗の大きいほうが、他方よりも50℃以上高い温度
になるようにするのが望ましい、aみ合わせる金属の種
類にもよるが、50℃以上の温度差を設ければ、殆どの
場合に竹節状割れのないクラツド管が製造できる。
It is desirable that the temperature difference at this time is such that the one with greater deformation resistance of the composite billet pixel tube has a temperature that is at least 50 degrees Celsius higher than the other. By providing a temperature difference of ℃ or more, clad pipes without bamboo knot cracks can be produced in most cases.

温度差をつけるもう一つの基準は、画素材の加工変形部
における変形抵抗の比を2.5以下、望ましくは2.3
以下になるようにすることである。
Another criterion for determining the temperature difference is to set the deformation resistance ratio at the processed deformed part of the image material to 2.5 or less, preferably 2.3.
The following should be achieved.

第2表および第10図に示したとおり、両者の変形抵抗
比が2.5以下であれば、竹節状割れの発生は殆ど防止
でき、欠陥が出ても軽微であり、2.3以下であれば竹
Jiff 4ffiの割れを皆無にすることができる。
As shown in Table 2 and Figure 10, if the deformation resistance ratio of both is 2.5 or less, the occurrence of bamboo joint cracks can be almost prevented, and even if defects occur, they are minor; If you have it, you can completely eliminate the cracking of bamboo Jiff 4ffi.

変形抵抗比を2.3以下にすれば、竹節状割れの発生が
完全に防止できるだけでなく、第15図に示したような
母材層およびクラッド層の肉厚変動も極めて小さくする
ことができる。
By setting the deformation resistance ratio to 2.3 or less, not only can the occurrence of bamboo knot cracks be completely prevented, but also variations in the thickness of the base material layer and cladding layer as shown in Figure 15 can be extremely minimized. .

第8図に示したように、−aに製管温度が上がるほど変
形抵抗の差は小さくなる傾向にある。そこで、複合ビレ
ット全体の加熱温度を高くしてやれば、ニッケル基合金
やコバルト基合金でも変形抵抗は急激に小さくなるから
、炭素鋼に対する変形抵抗比は小さくなる。しかし、ビ
レットの加熱温度を上げ過ぎると、融点の低い金属の固
相線を超えて液相が現われ、前記のような障害が出る。
As shown in FIG. 8, the difference in deformation resistance tends to become smaller as the tube manufacturing temperature increases to -a. Therefore, if the heating temperature of the entire composite billet is increased, the deformation resistance of nickel-based alloys and cobalt-based alloys will decrease rapidly, and the deformation resistance ratio with respect to carbon steel will decrease. However, if the heating temperature of the billet is raised too high, the solidus line of the metal with a low melting point is exceeded and a liquid phase appears, causing the above-mentioned problems.

また、加熱温度を高くすることは、エネルギーコストの
上昇、ビレットのスケールロスの増加、製品クラッド管
の材質悪化、押出ダイスの1貝偏増大などの弊害もある
In addition, increasing the heating temperature has disadvantages such as an increase in energy costs, an increase in billet scale loss, a deterioration in the quality of the product clad pipe material, and an unbalanced increase in the number of extrusion dies.

従って、工業的に望ましいのは、変形抵抗の小さい方の
素管を製管可能な範囲でできるだけ低温にし、変形抵抗
の大きい方の素管の温度をそれより高温にすることであ
る。再び第8図に帰って、仮に炭素鋼を1100°C5
^11oy625を1150°Cにすれば、それぞれの
変形抵抗ハ21.7kgf/mm”、9.4 kgf/
mm”となり、変形抵抗比は2.3となる。このような
条件を組立ビレットにおいて実現させればよい、このよ
うに、炭素鋼または低合金鋼とニッケル合金との組合せ
の場合は、ニッケル基合金素材層の肉厚方向中央部温度
を、炭素鋼または低合金鋼の素材(素管)の肉厚方向中
央部温度よりおおむね50°C以上高くすることによっ
て変形抵抗比を2.3以下に抑えることができる。
Therefore, it is industrially desirable to keep the mother tube with lower deformation resistance as low as possible within the range that allows for pipe production, and to raise the temperature of the mother tube with greater deformation resistance to a higher temperature. Returning to Figure 8 again, suppose that carbon steel is heated to 1100°C5.
^ If 11oy625 is heated to 1150°C, the respective deformation resistances will be 21.7 kgf/mm" and 9.4 kgf/
mm", and the deformation resistance ratio is 2.3. It is sufficient to realize these conditions in the assembled billet. In this way, in the case of a combination of carbon steel or low alloy steel and nickel alloy, nickel-based The deformation resistance ratio is reduced to 2.3 or less by increasing the temperature at the center of the alloy material layer in the thickness direction by approximately 50°C or more higher than the temperature at the center of the thickness direction of the carbon steel or low alloy steel material (base pipe). It can be suppressed.

熱間押出の加工温度での変形抵抗の比が、元々2.5以
下、或いは2.3以下である2種の金属を素材とする場
合でも、前記の温度差を設けることは意義がある。即ち
、製品クラツド管の特性は製管温度が低い程(金属学的
&[l織が好ましいものになって)良くなる。従って、
仮に同一加工温度にしても変形抵抗比が2.3以下であ
るような素材の組合わせでも、温度差をつけて製管すれ
ば従来よりも低温での製管が可能になり、製品品質の向
上と、前記の加熱エネルギーの節減などの実際的な利益
が得られる。
Even when the materials are made of two metals whose deformation resistance ratio at the hot extrusion processing temperature is originally 2.5 or less, or 2.3 or less, it is meaningful to provide the above-mentioned temperature difference. That is, the properties of the product clad pipe become better as the pipe forming temperature becomes lower (metallurgical & [l-weave becomes more preferable). Therefore,
Even if a combination of materials has a deformation resistance ratio of 2.3 or less even if processed at the same temperature, if the tubes are made at different temperatures, it will be possible to make tubes at a lower temperature than before, which will improve product quality. improvements and practical benefits such as the aforementioned savings in heating energy are obtained.

さらに、画素材に温度差をつけて変形抵抗の差をできる
だけ小さくしてやれば、製品管の肉厚変動を小さくでき
る0例えば、第8図に示すA11oy825と炭素鋼の
1100°Cにおける変形抵抗比は2.3以下であるか
ら、同一温度で加工しても竹節状割れは発生しない、し
かし、この場合でも、A11oy825の方を高めに加
熱してその変形抵抗を炭素鋼のそれに近づけてやれば、
肉厚変動の殆どない優れた品質のクラツド管が製造でき
る。
Furthermore, if the difference in deformation resistance is made as small as possible by creating a temperature difference in the image material, the variation in wall thickness of the product tube can be reduced. Since it is 2.3 or less, bamboo knot cracks will not occur even if processed at the same temperature.However, even in this case, if A11oy825 is heated to a higher temperature to bring its deformation resistance closer to that of carbon steel,
It is possible to manufacture clad pipes of excellent quality with almost no variation in wall thickness.

本発明の方法は、複合ビレットを二種類の金属の溶製材
の素管を組み合わせて作製し、これを加熱して熱間押出
する製管法にも適用できる。例えば、炭素鋼と、ニッケ
ル基合金、コバルト基合金、チタンまたはチタン合金、
金属間化合物や金属炭化物、窒化物などを主成分とする
複合材料などの炭素鋼に較べて変形抵抗の大きい金属か
ら、第1図に示したような素管1と2を作製して、これ
らを組み合わせた複合ビレット3とし、熱間押出の際に
変形抵抗が大きい方の素管を高温にして製管する。それ
によって、変形抵抗が大きい方(通常、クラッド層にな
る)に発生する肉厚変動と竹節状割れの発生を抑制する
ことができる。
The method of the present invention can also be applied to a pipe manufacturing method in which a composite billet is produced by combining raw pipes made of two types of metals, and the billet is heated and hot extruded. For example, carbon steel and nickel-based alloys, cobalt-based alloys, titanium or titanium alloys,
The base tubes 1 and 2 shown in Fig. 1 are made from metals that have higher deformation resistance than carbon steel, such as composite materials whose main components are intermetallic compounds, metal carbides, and nitrides. A composite billet 3 is prepared by combining the above, and during hot extrusion, the raw pipe with greater deformation resistance is heated to a high temperature to form a pipe. Thereby, it is possible to suppress wall thickness fluctuations and bamboo knot-like cracks that occur in the side with greater deformation resistance (usually the cladding layer).

複合ビレットの画素材(素管)に温度差を与える具体的
な方法は、例えば次のようなものである。
A specific method of applying a temperature difference to the composite billet picture material (raw tube) is as follows, for example.

(a)  高周波誘導加熱の隙に周波数と昇温速度とを
調節して、変形抵抗の大きい金属の層を他方より高温に
加熱する。
(a) Adjust the frequency and heating rate during high-frequency induction heating to heat the metal layer with higher deformation resistance to a higher temperature than the other layer.

(b)  ガス加熱炉においてガスバーナーの方向調節
により変形抵抗の大きい金属の層を他方より高温に加熱
する。
(b) In a gas heating furnace, the metal layer with higher deformation resistance is heated to a higher temperature than the other layer by adjusting the direction of the gas burner.

(C1高周波誘導加熱炉、ガス燃焼加熱炉、電気炉等で
複合ビレットを均一加熱した後、押出加工に到るまでの
間に変形抵抗の小さい方の素管が他方よりも低温になる
ように冷却する0例えば、水、不活性ガス、空気等の冷
却媒体で変形抵抗の小さい金属の層を冷却する。
(After uniformly heating the composite billet in a C1 high-frequency induction heating furnace, gas combustion heating furnace, electric furnace, etc., the material tube with lower deformation resistance is kept at a lower temperature than the other one before extrusion processing. Cooling 0 For example, a metal layer with low deformation resistance is cooled with a cooling medium such as water, inert gas, or air.

上記(a)〜(C)の効果を補うために、第3図および
第9図に示したような断熱被覆管9を使用してもよい、
これらの複合ビレットを加熱して押出加工する場合に、
ビレット内面が低温のマンドレルに接触すると冷却され
る。従って、粉末充填層4側を母材素管1側より高温に
加熱しておいても、加工変形部では温度差が無くなって
しまうことがある。断熱被覆管は、それを防止するのに
を効であり、且つまた粉末充填層自体の表面温度の低下
による欠陥発生防止の効果もある。粉末充填層が複合ビ
レットの外側にある場合には、断熱被覆管もその外側に
おくことはいうまでもない。
In order to supplement the effects of (a) to (C) above, a heat insulating cladding tube 9 as shown in FIGS. 3 and 9 may be used.
When heating and extruding these composite billets,
When the inner surface of the billet contacts the cold mandrel, it is cooled. Therefore, even if the powder-filled layer 4 side is heated to a higher temperature than the base material tube 1 side, the temperature difference may disappear at the processed deformed part. The heat insulating cladding tube is effective in preventing this, and is also effective in preventing the occurrence of defects by lowering the surface temperature of the powder-filled layer itself. When the powder filling layer is placed outside the composite billet, it goes without saying that the heat insulating cladding tube is also placed outside the composite billet.

なお、断熱被覆管は、本願出願人の提案した特願昭63
−331600号の明細書に記載したような二層以上の
金属(例えば低炭素鋼)の薄板で構成し、その界面に熱
伝達係数の小さい物質を介在させたものを使用するのが
よい。
The heat insulating cladding tube is based on the patent application proposed by the applicant in 1983.
It is preferable to use a material made of two or more thin metal plates (for example, low carbon steel) as described in the specification of No. 331600, with a substance having a small heat transfer coefficient interposed at the interface thereof.

上記のように、複合ビレットの各層に温度差を与えるに
あたっては、各層の肉厚方向中央部に穴を明け、ここに
熱電対を挿入して試験的な加熱を繰り返し、加熱温度と
押出加工時の加工温度との相関関係をビレットサイズ毎
に予め把渥しておけば、実際の製管作業の際には、加熱
温度の制御だけで加工温度の調整を行うことができる。
As mentioned above, in order to give a temperature difference to each layer of the composite billet, a hole is made in the center of each layer in the thickness direction, a thermocouple is inserted into the hole, and trial heating is repeated. If the correlation with processing temperature is known in advance for each billet size, processing temperature can be adjusted by simply controlling the heating temperature during actual pipe manufacturing work.

なお、複合ビレットの画素材の温度差を50°C以上に
するのが望ましいことは前述のとおりであるが、この温
度差は、加熱工程での温度差、ビレットを押出製管機の
コンテナーに装入する直前の温度差、前記の加工変形部
での温度差、のいずれで管理してもよい、理想的なのは
加工変形部の温度差を管理することであるが、実操業上
、それは困難である0例えばコンテナー人口での画素管
の温度差を50°C以上としておけば、加工変形部でも
概ねこの温度差が保たれる。加熱の絶対温度は、金属の
種類ど、加工変形部に到るまでの冷却を考慮して定める
べきであることはいうまでもない0例えば、ニッケル基
合金の場合は1000〜1250°Cの範囲とし、これ
と組み合わせる例えば炭素鋼の加熱温度をこれよりも5
0°C低い温度にする。
As mentioned above, it is desirable to have a temperature difference of 50°C or more between the composite billet image materials. The temperature difference can be controlled either by the temperature difference immediately before charging or the temperature difference at the processing deformation part.The ideal is to control the temperature difference at the processing deformation part, but it is difficult to do so in actual operation. For example, if the temperature difference of the pixel tube in the container population is set to 50° C. or more, this temperature difference will generally be maintained even in the processed deformed part. It goes without saying that the absolute heating temperature should be determined in consideration of the type of metal and the cooling required to reach the processed deformed part.For example, in the case of a nickel-based alloy, it is in the range of 1000 to 1250 °C. For example, the heating temperature of carbon steel combined with this should be set to 5
Reduce the temperature to 0°C.

本発明方法は、クラッド層になる金属の少なくとも一方
の素材として金属粉末を用いる製管法に適用する場合に
一層実益が大きい、そして、この場合は、加熱する前の
複合ビレットに冷間静水圧加圧(CIP)を施して、粉
末充填層を高密度化しておくことが望ましい。
The method of the present invention is even more beneficial when applied to pipe manufacturing methods that use metal powder as the material for at least one of the metals forming the cladding layer, and in this case, cold isostatic pressure is applied to the composite billet before heating. It is desirable to densify the packed powder bed by applying pressure (CIP).

通常、母材素管とカプセルとの間の空隙に金属粉末を充
填した場合、振動を加えながら充填する方法を採っても
充填層の見掛は密度は、真密度の高々70%程度である
。これをそのまま熱間押出加工すると、製品になるまで
の粉末層の圧縮代が大きいため、クラッド層の偏肉が生
じやすい。特にわずかでも粉末層に温度の不均一がある
場合には偏肉が助長される。また、粉末層の圧縮代が大
きいと加工を受けたときにカプセルの薄肉金属管が座屈
してm疵の発止を招き、竹lIr5状割れの起点になる
Normally, when the gap between the base material tube and the capsule is filled with metal powder, the apparent density of the filled layer is at most about 70% of the true density, even if the filling method is performed while applying vibration. . If this is hot-extruded as is, the compression of the powder layer is large until it becomes a product, so uneven thickness of the cladding layer is likely to occur. In particular, if there is even a slight unevenness in temperature in the powder layer, uneven thickness will be promoted. Furthermore, if the compression allowance of the powder layer is large, the thin metal tube of the capsule will buckle during processing, leading to the formation of m-flaws and becoming the starting point for bamboo lIr5-shaped cracks.

冷間静水圧加工を施せば、粉末充填層の見掛は密度を真
密度の80%程度まで上げることができる。
By applying cold isostatic pressure processing, the apparent density of the powder packed bed can be increased to about 80% of the true density.

それによって、粉末層の密度が低い場合に発生する上記
の欠陥が防止でき、製品歩留りが向上し、また製品設計
とビレット設計が容易になる。
Thereby, the above-mentioned defects that occur when the density of the powder bed is low can be avoided, product yield is improved, and product design and billet design are facilitated.

冷間静水圧加工を施すもう一つの利点は、粉末層の高密
度化によって、誘導加熱の効率が上がることである。空
孔の多い粉末層は電気抵抗が大きい上に熱電導性が悪く
、誘導加熱の際の投入電力に対する発熱量が小さくなる
。しかし、高密度化によってこれらの弊害が除かれ、特
に高温加熱が必要なお)末層の加熱に誘導加熱を利用す
る際に、エネルギー効率の改善と加熱時間短縮による生
産性の向上が得られる。
Another advantage of cold isostatic processing is that the densification of the powder bed increases the efficiency of induction heating. A powder layer with many pores has high electrical resistance and poor thermal conductivity, resulting in a small amount of heat generated with respect to input power during induction heating. However, by increasing the density, these disadvantages are eliminated, and productivity can be improved by improving energy efficiency and shortening heating time, especially when induction heating is used to heat the final layer (which requires high-temperature heating).

複合ビレットは、第3図に記載したような異種金属が共
に粉末であるものとしてもよい。このように、一方また
は両方の素材として使用する金属粉末としては、ガスア
トマイズ法によって製造したものが望ましい、ガスアト
マイズ粉末は本質的に球形であり、充填密度を高くする
ことができる。
The composite billet may be one in which dissimilar metals as shown in FIG. 3 are both powders. As described above, it is desirable that the metal powder used as one or both of the materials be produced by the gas atomization method.Gas atomized powder is essentially spherical and can have a high packing density.

製品の材質を特に重視する場合には、酸素をはじめとす
るガス成分の含有量が少ない粉末を選ぶのがよい。
If the quality of the material of the product is particularly important, it is best to choose a powder with a low content of gas components such as oxygen.

先に述べたとおり、炭素鋼または低合金鋼の母材層とニ
ッケル基合金のクラッド層とからなる継目無管は、高耐
食性油送管、ボイラ管1.化学プラント用管などに広い
用途が期待されている。以下、このようなりラッド管を
製造する場合を例として、本発明方法をさらに詳しく説
明する。
As mentioned above, seamless pipes consisting of a base material layer of carbon steel or low alloy steel and a cladding layer of nickel-based alloy are highly corrosion-resistant oil pipes and boiler pipes. It is expected to have a wide range of applications, including pipes for chemical plants. Hereinafter, the method of the present invention will be explained in more detail using the case of manufacturing such a rad tube as an example.

〔実施例I〕[Example I]

(A)第11図に示すように、外径208+am、内径
150amの0.08%C−0,35%5i−1,5%
Mn −Feの炭素鋼溶製材製の中空円筒状素管(母材
素管)1の内側に内径77.31!I11、肉厚311
Ilの0.004%C低炭素鋼製の薄肉金属管(カプセ
ル)5を同心に配し、母材素管1とカプセル5の下端を
JIS−5541相当材の端板6−2で固定した。なお
、カプセル5は、後述する冷間静水圧加圧による収縮代
を見込んで内側にやや張り出した形状にした。
(A) As shown in Figure 11, 0.08%C-0.35%5i-1.5% with outer diameter 208+am and inner diameter 150am
The inner diameter of the hollow cylindrical tube (base material tube) 1 made of Mn-Fe carbon steel is 77.31 mm! I11, wall thickness 311
A thin metal tube (capsule) 5 made of 0.004% C low carbon steel of Il was arranged concentrically, and the lower ends of the base material tube 1 and capsule 5 were fixed with an end plate 6-2 made of a material equivalent to JIS-5541. . The capsule 5 was shaped to slightly protrude inward in consideration of shrinkage due to cold isostatic pressurization, which will be described later.

母材素管1とカプセル5との間の輪状の間隙に粒径25
0 /7 II以下の21%Cr−8%Mo−3,4%
Nb−62%Ni−4%FeのA11oy 625のア
ルゴンガスアトマイズ粉末を充填し、母材素管lとカプ
セル5の上端に端板6−1を取付け、10− ’Tor
rまで真空引きしたのち溶接して封止した。その後、外
表面を薄く酸化させ断熱層として厚み11m1lの5S
41製薄肉の断熱被覆管9をカプセル5の内側に取付け
て複合ビレットとした。この時の粉末充填密度(真密度
に対する百分率、以下同じ)は73%であったが、より
高密度化するために5000気圧で2分保持する冷間静
水圧加圧処理を行った。この加圧後のビレットの重量と
体積から求めた粉末充填層の密度は82%であった。
In the annular gap between the base material tube 1 and the capsule 5, particles with a diameter of 25
0 /7 II or less 21%Cr-8%Mo-3,4%
Nb-62%Ni-4%Fe A11oy 625 argon gas atomized powder is filled, an end plate 6-1 is attached to the upper end of the base material tube l and the capsule 5, and a 10-' Tor
After evacuation to r, it was sealed by welding. After that, the outer surface was thinly oxidized to form a heat insulating layer with a thickness of 11ml and 5S.
A thin-walled heat insulating cladding tube 9 made of No. 41 was attached to the inside of the capsule 5 to form a composite billet. At this time, the powder packing density (percentage of true density, same hereinafter) was 73%, but in order to achieve higher density, a cold isostatic pressurization treatment was performed at 5000 atm and held for 2 minutes. The density of the powder packed layer determined from the weight and volume of the billet after this pressurization was 82%.

上記の複合ビレットを、1000°Cのガス燃焼加熱炉
中で約1時間半保持して加熱し、さらに誘導コイルによ
り周波数をItしてビレット外側の母材素管の肉厚中心
温度を1170”CXA11oy 625粉末充填層温
度を1230°Cとなるように加熱して、押出比11、
押出速度110+w+w/seeで押出加工を行い、外
径100III11、内径79mm、クラッド厚3.4
mmのクラツド管とした。
The above composite billet was heated in a gas-fired heating furnace at 1000°C for about 1.5 hours, and then the frequency was set to It by an induction coil to bring the temperature at the center of the wall thickness of the base material tube outside the billet to 1170". CXA11oy 625 powder packed bed temperature was heated to 1230°C, extrusion ratio 11,
Extrusion processing was performed at an extrusion speed of 110+w+w/see, outer diameter 100III11, inner diameter 79mm, cladding thickness 3.4
It was made into a clad tube of mm.

製管時の加工変形部の推定温度は母材素管の肉厚中心が
1120°C5粉末充填層の肉厚中心が1180°Cで
変形抵抗比は第8図から約2.2となる。!!!遺した
クラツド管を酸洗してカプセルを除去し、内外面をマク
ロ的ならびにミクロ的に観察し、さらに超音波検査によ
ってクラッド層の肉厚変動を調査した。その結果、割れ
などの表面欠陥は見られず、肉厚変動も平均肉厚に対し
て10%以内(±5%以内)であった。
The estimated temperature of the processed deformed part during pipe manufacturing is that the center of the wall thickness of the base material tube is 1120°C5.The center of the wall thickness of the powder packed bed is 1180°C, and the deformation resistance ratio is approximately 2.2 from FIG. ! ! ! The remaining cladding tube was pickled to remove the capsule, the inner and outer surfaces were observed macroscopically and microscopically, and changes in the thickness of the cladding layer were investigated using ultrasonic testing. As a result, no surface defects such as cracks were observed, and the variation in wall thickness was within 10% (within ±5%) of the average wall thickness.

(B)上記と同じ複合ビレットを、母材素管の肉厚中心
温度が1125°Cで、粉末充填層肉厚中心温度が11
75°Cになるように加熱して熱間押出を行った。
(B) Using the same composite billet as above, the temperature at the center of the thickness of the base material tube is 1125°C, and the temperature at the center of the thickness of the powder-filled layer is 1125°C.
Hot extrusion was performed by heating to 75°C.

この場合の加工変形部における温度は、それぞれ107
5°C,1125°Cと推定され、母材素管に対する粉
末充填層の変形抵抗比は第8図から見て約2.4である
。この場合、クラッド層には肉厚変動と多少の微細割れ
があったが、この程度の欠陥は切削および研削による手
入れで修復可能であった。
In this case, the temperature at the processed deformed part is 107
5°C and 1125°C, and the deformation resistance ratio of the powder-filled layer to the base material tube is about 2.4 as seen in FIG. In this case, the cladding layer had thickness variations and some microcracks, but these defects could be repaired by cutting and grinding.

(C)比較例として冷間静水圧加圧まで(A)と全く同
し条件で作製した複合ビレットを、1000°Cで1時
間半保持してから誘導加熱により母材素管および粉末充
填層を1200℃の均一温度に加熱したものを同じ押出
条件で製管した。この場合、加工変形部でのビレットの
温度は全体が約1150°Cと推定され、第8図からみ
て画素管の変形抵抗比は約2.8である。このビレット
の押出加工時には大きな押出力の変動があり、製品検査
の結果、甚だしいクラッド層の肉厚変動があり、約30
01ピツチで手入れ不能な竹節状割れの発生が見られた
(C) As a comparative example, a composite billet prepared under exactly the same conditions as in (A) up to cold isostatic pressurization was held at 1000°C for 1.5 hours, and then heated by induction heating to form a base material tube and a powder-filled layer. was heated to a uniform temperature of 1200° C. and pipe-made under the same extrusion conditions. In this case, the temperature of the billet in the processing deformation portion is estimated to be approximately 1150° C. as a whole, and the deformation resistance ratio of the pixel tube is approximately 2.8 as seen from FIG. During the extrusion process of this billet, there were large fluctuations in the extrusion force, and as a result of product inspection, there was a significant fluctuation in the wall thickness of the cladding layer.
At the 01 pitch, cracks in bamboo joints that could not be repaired were observed.

〔実施例2〕 (A)第12図に示すように外径143mm、内径62
m+wの0.45%Cの炭素鋼の溶製材製母材素管1の
外側に外径177mm、肉厚411111の0.004
%C低炭素鋼製カプセル5を同心に配し、母材素管1と
カプセル5の下端を5S41相当材の端板6−2で固定
した。この場合は、カプセル5を前と同じ理由で外側に
やや張り出した形状にした。
[Example 2] (A) As shown in Fig. 12, the outer diameter is 143 mm and the inner diameter is 62 mm.
On the outside of the base material pipe 1 made of 0.45% C of m+w carbon steel, an outer diameter of 177 mm and a wall thickness of 411111 mm is 0.004 mm.
%C low carbon steel capsules 5 were arranged concentrically, and the lower ends of the base material pipe 1 and the capsules 5 were fixed with an end plate 6-2 made of a material equivalent to 5S41. In this case, the capsule 5 was shaped to protrude slightly outward for the same reason as before.

母材素管1とカプセル5の間の間隙に粒径1259m以
下の31%Cr−4%W−1.1%C−1%Si −5
6%Coのステライト#6の窒素ガスアトマイズ粉末を
充填し、母材素管1とカプセル5の上端に端板6−1を
取付け、実施例1と同じく真空引きして脱気し溶接封止
した。その後、内側表面に窒化ホウ素粉末を塗布した厚
み1ma+の5S41製薄肉の断熱被覆管9をカプセル
5の外側に取付けて複合ビレットとした。この時の粉末
充填密度は68%であったが、これを高密度化するため
5000気圧2分保持の冷間静水圧加圧処理をして密度
79%とした。
31%Cr-4%W-1.1%C-1%Si-5 with a grain size of 1259m or less is placed in the gap between the base material pipe 1 and the capsule 5.
Filled with nitrogen gas atomized powder of Stellite #6 containing 6% Co, an end plate 6-1 was attached to the upper ends of the base material tube 1 and the capsule 5, and the tube was evacuated and degassed as in Example 1, and sealed by welding. . Thereafter, a thin-walled heat-insulating cladding tube 9 made of 5S41 with a thickness of 1 ma+ whose inner surface was coated with boron nitride powder was attached to the outside of the capsule 5 to form a composite billet. The powder packing density at this time was 68%, but in order to increase the density, a cold isostatic pressure treatment was performed at 5000 atm for 2 minutes to achieve a density of 79%.

次いでこのビレットを1170℃のガス燃焼加熱炉中で
約2時間保持した後、母材素管と粉末層の間に温度差を
つけるために製管直前にビレット内面に高圧水を12秒
間噴きつけた。この複合ビレットを押出比9.1、押出
速度125 taTa/secで押出加工し、外径81
1I11、内径59an、クラッド厚2.1mmのクラ
フト管とした。
Next, this billet was held in a gas-fired heating furnace at 1170°C for about 2 hours, and then high-pressure water was sprayed on the inside of the billet for 12 seconds just before pipe making to create a temperature difference between the base material tube and the powder layer. Ta. This composite billet was extruded at an extrusion ratio of 9.1 and an extrusion speed of 125 taTa/sec, and the outer diameter was 81.
A kraft tube having a size of 1I11, an inner diameter of 59 ann, and a cladding thickness of 2.1 mm was used.

製管時の加工変形部の推定温度を、別に行ったビレット
の実測実験結果から求めたところ、炭素鋼(母材素管)
の肉厚中心が1030℃1粉末充填層肉厚中心が112
0°Cで変形抵抗比は約2.2となっており、欠陥のな
い良好な継目無管が製造できた。
The estimated temperature of the deformed part during pipe manufacturing was determined from the results of a separate billet measurement experiment, and it was found that carbon steel (base material pipe)
The center of the wall thickness is 1030℃ 1 The center of the wall thickness of the powder-filled layer is 112℃
The deformation resistance ratio was approximately 2.2 at 0°C, and a good seamless pipe with no defects could be manufactured.

(B)比較例として冷間静水圧加圧まで(^)と同じ条
件で複合ビレットを作製し、1150°Cでガス燃焼加
熱炉で加熱してそのまま、即ち、均一温度で押出加工を
行った。その製品では外側のクラッド層に一定のピッチ
で竹筒状割れが発生していた。なお、この時の変形抵抗
比は約2,9であった。
(B) As a comparative example, a composite billet was produced under the same conditions as in (^) up to cold isostatic pressing, heated in a gas combustion heating furnace at 1150°C, and extruded as it was, that is, at a uniform temperature. . In that product, bamboo tube-shaped cracks occurred at a constant pitch on the outer cladding layer. Note that the deformation resistance ratio at this time was approximately 2.9.

〔実施例3〕 第13図に示すように、外径250mm、内径1251
111の0.1%C−2,2%Cr−0,9%Moの低
合金′@溶製材製の母材素管1−1の内側に外径124
mm、内径105+*11の15%C「−5%Fe−1
6%Mo−4%W−58%NiのC276の溶製材製の
中空円筒状素材(クラッド素管)■−2を配し、両端に
JIS−SO5304の端板6−1と6−2を固定して
、母材素管1−1とクラッド素管1−2との間隙を10
−’Torrまで真空引きして脱気し溶接封止した0次
いで、外表面を薄く酸化させ断熱層とした厚み4■Iの
5IIS 304製薄肉の断熱被覆管9をクラッド素管
1−2の内側に取付けて複合ビレットとした。
[Example 3] As shown in Fig. 13, the outer diameter is 250 mm and the inner diameter is 1251 mm.
111 0.1%C-2,2%Cr-0.9%Mo low alloy'
mm, inner diameter 105+*11 15%C"-5%Fe-1
A hollow cylindrical material (clad raw pipe) ■-2 made of C276 melted lumber of 6% Mo-4% W-58% Ni is arranged, and end plates 6-1 and 6-2 of JIS-SO5304 are attached at both ends. Fix the base material pipe 1-1 and clad material pipe 1-2 with a gap of 10
-'Torr, degassed and welded the outer surface of the thin-walled 5IIS 304 heat-insulating cladding tube 9 with a thickness of 4mm, which was thinly oxidized and made into a heat-insulating layer, to the cladding material tube 1-2. It was attached to the inside to form a composite billet.

このビレ、ットを、1100℃のガス燃焼加熱炉中で約
1時間半保持して加熱し、さらに誘導コイルにより周波
数を調整してビレット外側の母材素管の肉厚中心温度を
1180℃、クラッド素管の肉厚中心温度を1230°
Cとなるように加熱し、更に外面を約15sec間強制
水冷してから、押出比7.3、押出速度110+wm/
secで押出し、外径128mm、内径941I11、
クラッド厚3.4 mmのクラツド管とした。
This billet is heated in a gas-fired heating furnace at 1100°C for about 1.5 hours, and the frequency is adjusted using an induction coil to bring the temperature at the center of the wall thickness of the base material tube outside the billet to 1180°C. , the temperature at the center of the thickness of the clad tube is 1230°.
C, the outer surface was forcedly cooled with water for about 15 seconds, and then the extrusion ratio was 7.3 and the extrusion speed was 110+wm/
Extruded in sec, outer diameter 128mm, inner diameter 941I11,
A clad pipe with a cladding thickness of 3.4 mm was used.

製管時の加工変形部の推定温度は母材素管の肉厚中心が
1050”Cであり、クラッド素管の肉厚中心は、厚肉
のSOS 304製断熱被覆管9の保温効果により約1
190°Cであった。この場合の変形抵抗比は約2.3
となっており、得られたクラツド管の内外面を実施例1
と同様°にして観察した結果、割れその他の欠陥のない
ものであった。
The estimated temperature of the processed deformed part during pipe manufacturing is 1050"C at the center of the wall thickness of the base material pipe, and the center of the wall thickness of the clad pipe is approximately 1
The temperature was 190°C. The deformation resistance ratio in this case is approximately 2.3
The inner and outer surfaces of the obtained clad pipe are shown in Example 1.
When observed under the same conditions as above, it was found that there were no cracks or other defects.

〔実施例4〕 (A)第14図に示すように、外径218nua、肉厚
1.61の5S41製の外側カプセル5−1 と外径1
43Il1m、肉厚lll1+1の0.004%C低炭
素鋼製円筒隔壁8と内径68a+m、肉厚3+i1の0
.004%C低炭素鋼製内側カプセル5−2を同心に配
し、それぞれを5S41製の端板6−2で固定した。内
、外のカプセルはそれぞれ内側および外側にやや張り出
した形状とした。
[Example 4] (A) As shown in FIG. 14, an outer capsule 5-1 made of 5S41 with an outer diameter of 218 nua and a wall thickness of 1.61 mm;
0.004%C low carbon steel cylindrical partition wall 8 with 43Il1m, wall thickness lll1+1 and inner diameter 68a+m, wall thickness 3+i1
.. 004%C low carbon steel inner capsules 5-2 were arranged concentrically, and each was fixed with an end plate 6-2 made of 5S41. The inner and outer capsules were shaped to slightly protrude inward and outward, respectively.

外側カプセル5−1 と隔壁8の間の輪状間隙には粒径
100 p aa以下の0.08%C−0,3%5i−
1,5%Mn−Feの炭素鋼水アトマイズ粉末4−1を
充填し、内側カプセル5−2と隔壁8の間の輪状間隙に
は粒径250 u va以下の21%Cr−8%Mo−
3,4%Nb −62%Ni−4%FeのA11ay 
625のアルゴンガスアトマイズ粉末4−2を充填し、
各円筒5−1.5−2.8の他端部を5S41製の端板
6−1で固定し、10−’Torrで真空引きして脱気
したのち溶接封止した。この時の各粉末層の密度は炭素
鋼粉末側が65%、A11oy 625朽)側が74%
であった。これに5000気圧2分間保持の冷間静水圧
加圧処理を施して密度をそれぞれ78%と82%まで高
めた。
The annular gap between the outer capsule 5-1 and the partition wall 8 contains 0.08% C-0.3% 5i- with a particle size of 100 paa or less.
A carbon steel water atomized powder 4-1 of 1,5% Mn-Fe is filled, and the annular gap between the inner capsule 5-2 and the partition wall 8 is filled with 21% Cr-8% Mo- with a particle size of 250 u va or less.
A11ay of 3,4%Nb-62%Ni-4%Fe
Filled with 625 argon gas atomized powder 4-2,
The other end of each cylinder 5-1.5-2.8 was fixed with an end plate 6-1 made of 5S41, and after being evacuated and degassed at 10-' Torr, the cylinder was sealed by welding. At this time, the density of each powder layer is 65% on the carbon steel powder side and 74% on the A11oy 625 rot) side.
Met. This was subjected to cold isostatic pressurization at 5,000 atmospheres for 2 minutes to increase the density to 78% and 82%, respectively.

こうして得られた複合ビレットを、1000°Cのガス
燃焼炉中で約2時間保持して加熱し、さらに誘導コイル
により周波数を調整してビレット外側炭素鋼粉末層の肉
厚中心温度を1170℃,A11oシロ25粉末層の肉
厚中心温度を1230℃となるように加熱して、押出比
11、押出速度115mm/secで押出し、外径97
mm、内径75IIIN、クラッド厚9+uwのクラツ
ド管とした。
The composite billet thus obtained was heated by holding it in a gas combustion furnace at 1000°C for about 2 hours, and the frequency was further adjusted by an induction coil to bring the temperature at the center of thickness of the carbon steel powder layer on the outside of the billet to 1170°C. A11o white 25 powder layer was heated to a thickness center temperature of 1230°C, extruded at an extrusion ratio of 11 and an extrusion speed of 115 mm/sec, and the outer diameter was 97.
A clad pipe with a diameter of 75mm, an inner diameter of 75mm, and a cladding thickness of 9+uw was used.

製管時の加工変形部の推定温度は炭素鋼粉末層の肉厚中
心が1120℃1八l1oy 625粉末層の肉厚中心
温度が1180°Cで変形抵抗比は約2.2となってい
た。製造されたクラツド管の内外面を実施例1と同様に
して観察した結果、欠陥の発生は見られなかった。
The estimated temperature of the deformed part during pipe manufacturing was that the center of the thickness of the carbon steel powder layer was 1120°C, the center of the thickness of the 625 powder layer was 1180°C, and the deformation resistance ratio was approximately 2.2. . As a result of observing the inner and outer surfaces of the manufactured clad pipe in the same manner as in Example 1, no defects were observed.

(B)外側カプセルの外径のみ208+mにして、他の
条件は(^)と同じにし、冷間静水圧加圧をしないで作
製した複合ビレットを、同じ加熱温度、同じ押出条件で
加工し、同寸法のクラツド管を得た。
(B) Only the outer diameter of the outer capsule is set to 208+ m, other conditions are the same as in (^), and a composite billet produced without cold isostatic pressing is processed at the same heating temperature and the same extrusion conditions, Clad tubes of the same dimensions were obtained.

そのクラッド層の肉厚測定と内外面の観察を行ったとこ
ろ、クラッド層肉厚のバラツキは概ね平均肉厚の5%以
内(±2.5%以内)であったが、管の端部には大きな
皺疵があって、この部分を切り捨てたため製管歩留りは
95%であった。ただし、竹筒状割れは皆無であった。
When we measured the thickness of the cladding layer and observed the inner and outer surfaces, we found that the variation in the thickness of the cladding layer was generally within 5% (within ±2.5%) of the average thickness. There were large wrinkles and these parts were cut off, resulting in a pipe production yield of 95%. However, there were no bamboo tube cracks.

なお、この冷間静水圧加圧を行わないビレットの加熱は
、熱伝導性の悪さから全体の温度上昇に時間がかかるだ
けでなくビレット外側が内側に比べて温度が高くなる傾
向を示す、従って、前記の冷間静水圧加圧処理をしたも
のに較べて投入電力を小さくして約1.5倍の時間をか
けて加熱した。
Furthermore, when heating a billet without this cold isostatic pressing, not only does it take time to raise the overall temperature due to poor thermal conductivity, but the temperature on the outside of the billet tends to be higher than the inside. The heating time was reduced and the heating time was about 1.5 times that of the one subjected to the cold isostatic pressure treatment described above.

(発明の効果) 本発明は、変形抵抗に差のある2種類の金属を組み合わ
せたクラツド管を製造するに当たって、変形抵抗の大き
い難加工性金属の層の肉厚の変動を軽減し、表面に発生
する竹節状の割れを防止して表面品質のよいクラツド管
を製造する方法を提供するものである。
(Effects of the Invention) When manufacturing a clad pipe made of a combination of two types of metals with different deformation resistances, the present invention reduces fluctuations in the thickness of a layer of a difficult-to-process metal with high deformation resistance, and To provide a method for manufacturing a clad pipe with good surface quality by preventing bamboo knot-like cracks from occurring.

本発明の方法は、クラッド層としてニッケル基やコバル
ト基のような高価で且つ加工性に劣る合金を使用する場
合にを効であり、特に、これらの合金の素材として粉末
を使用する場合に、製造コストの低減などの利点が大き
い。
The method of the present invention is effective when using expensive and poorly workable alloys such as nickel-based or cobalt-based alloys as the cladding layer, and is particularly effective when using powder as the material for these alloys. It has great advantages such as reduced manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、熱間押出法によるクラツド管製造の工程略図
である。 第2図および第3図は、一方または両方の素材(素管)
として金属粉末を使用する場合の複合ビレットの縦断面
図である。 第4図は、押出加工におけるビレットの加工変形状態を
模式的に示す概略断面図である。 第5図は、塑性変形量を説明する図である。 第6図は、熱間での変形抵抗の測定方法を説明する略図
である。 第7図は、変形抵抗を算出するための応カー歪曲線の例
を示す図である。 第8図は、各種の合金の加工温度と変形抵抗との関係を
示す図である。 第9図は、試験に用いた複合ビレットの縦断面図である
。 第1θ図は、母材層とクラッド素材層(粉末充填層)の
変形抵抗比と、クラッド素材層の加工温度が竹筒状割れ
の発生に及ぼす影響を調べた試験結果を示す図である。 第11図、第12図、第13図および第14図は、実施
例で使用した各種の複合ビレットを示す縦断面図である
。 第15図は、肉厚変動と竹節状割れを説明するクラッド
金属管の長手方向の一部断面図である。
FIG. 1 is a schematic diagram of the process for manufacturing a clad pipe using a hot extrusion method. Figures 2 and 3 show one or both materials (raw pipe)
FIG. 3 is a vertical cross-sectional view of a composite billet in which metal powder is used as a material. FIG. 4 is a schematic cross-sectional view schematically showing the deformation state of the billet during extrusion processing. FIG. 5 is a diagram illustrating the amount of plastic deformation. FIG. 6 is a schematic diagram illustrating a method for measuring hot deformation resistance. FIG. 7 is a diagram showing an example of a stress strain curve for calculating deformation resistance. FIG. 8 is a diagram showing the relationship between processing temperature and deformation resistance of various alloys. FIG. 9 is a longitudinal cross-sectional view of the composite billet used in the test. FIG. 1θ is a diagram showing the test results of examining the effects of the deformation resistance ratio of the base material layer and the cladding material layer (powder-filled layer) and the processing temperature of the cladding material layer on the occurrence of bamboo tubular cracks. FIG. 11, FIG. 12, FIG. 13, and FIG. 14 are longitudinal cross-sectional views showing various composite billets used in Examples. FIG. 15 is a partial cross-sectional view in the longitudinal direction of the clad metal tube, illustrating wall thickness variation and bamboo knot-like cracks.

Claims (10)

【特許請求の範囲】[Claims] (1)変形抵抗の異なる二種類の金属からなるクラッド
金属管の製造方法であって、これら二種類の金属の素管
を同心円状に配置した複合ビレットを作製し、その複合
ビレットの変形抵抗の大きい方の素管を他方よりも高い
温度にして熱間押出加工することを特徴とするクラッド
金属管の製造方法。
(1) A method for manufacturing a clad metal tube made of two types of metals with different deformation resistances, in which a composite billet is produced in which raw tubes of these two types of metals are arranged concentrically, and the deformation resistance of the composite billet is A method for producing a clad metal pipe, which comprises hot extruding the larger raw pipe at a higher temperature than the other.
(2)複合ビレットを加熱するに際して、変形抵抗の大
きい方の素管を他方よりも50℃以上高い温度に加熱す
ることを特徴とする請求項(1)のクラッド金属管の製
造方法。
(2) The method for manufacturing a clad metal tube according to claim (1), characterized in that when heating the composite billet, the raw tube having a higher deformation resistance is heated to a temperature 50° C. or more higher than the other.
(3)複合ビレットを均一に加熱した後、押出加工まで
の間に変形抵抗の小さい方の素管が他方よりも50℃以
上低い温度になるように冷却することを特徴とする請求
項(1)のクラッド金属管の製造方法。
(3) After uniformly heating the composite billet, the material tube having the smaller deformation resistance is cooled to a temperature 50° C. or more lower than the other material until extrusion processing. ) manufacturing method for clad metal pipes.
(4)複合ビレットの押出加工の変形部における画素管
の変形抵抗の比が2.5以下となるように画素管の温度
差を調整することを特徴とする請求項(1)から(3)
までのいずれかのクラッド金属管の製造方法。
(4) Claims (1) to (3) characterized in that the temperature difference of the pixel tubes is adjusted so that the ratio of deformation resistance of the pixel tubes at the deformation part of the extrusion process of the composite billet is 2.5 or less.
Any method of manufacturing clad metal pipes up to.
(5)複合ビレットを構成する素管が、いずれも溶製材
から機械加工によって作製されたものである請求項(1
)から(4)までのいずれかのクラッド金属管の製造方
法。
(5) Claim (1) wherein the raw pipes constituting the composite billet are all produced by machining from melted material.
) to (4).
(6)複合ビレットを構成する画素管が、いずれも粉末
充填層から成るものである請求項(1)から(4)まで
のいずれかのクラッド金属管の製造方法。
(6) The method for manufacturing a clad metal tube according to any one of claims (1) to (4), wherein each of the pixel tubes constituting the composite billet is made of a powder-filled layer.
(7)変形抵抗が小さい方の素管が溶製材から機械加工
によって作製されたものであり、変形抵抗の大きい方の
素管は、上記変形抵抗が小さい方の素管の内周または外
周に配置された粉末充填層から成る請求項(1)から(
4)までのいずれかのクラッド金属管の製造方法。
(7) The raw pipe with lower deformation resistance is produced by machining from melted material, and the raw pipe with higher deformation resistance is attached to the inner or outer periphery of the raw pipe with lower deformation resistance. Claims (1) to (1) consisting of a powder-filled bed arranged in
4) The method for manufacturing a clad metal pipe according to any one of the above.
(8)複合ビレットを予め冷間静水圧加圧して粉末充填
層の密度を上げてから加熱し熱間押出する請求項(6)
または(7)のいずれかのクラッド金属管の製造方法。
(8) Claim (6) wherein the composite billet is cold isostatically pressed in advance to increase the density of the powder packed bed, and then heated and hot extruded.
or (7) the method for manufacturing a clad metal tube.
(9)変形抵抗が小さい方の素管の材料が炭素鋼または
低合金鋼であり、変形抵抗の大きい方の素管の材料がニ
ッケル基合金である請求項(1)から(8)までのいず
れかのクラッド金属管の製造方法。
(9) Claims (1) to (8) above, wherein the material of the raw pipe with lower deformation resistance is carbon steel or low alloy steel, and the material of the raw pipe with higher deformation resistance is a nickel-based alloy. A method of manufacturing any clad metal tube.
(10)請求項(1)から(9)までのいずれかの方法
で製造された表面欠陥の少ないクラッド金属管。
(10) A clad metal tube with few surface defects produced by the method according to any one of claims (1) to (9).
JP1127534A 1988-12-09 1989-05-19 Clad metal tube manufacturing method Expired - Lifetime JPH0733526B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002003295A CA2003295C (en) 1988-12-09 1989-11-17 Process for manufacturing clad metal tubing
KR1019890017982A KR960006613B1 (en) 1988-12-09 1989-12-05 Process for manufacturing clad metal tubing
EP89312840A EP0372999B1 (en) 1988-12-09 1989-12-08 Process for manufacturing clad metal tubing
DE68916383T DE68916383T2 (en) 1988-12-09 1989-12-08 Process for producing a clad metal pipe.
US07/448,010 US5056209A (en) 1988-12-09 1989-12-08 Process for manufacturing clad metal tubing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31233888 1988-12-09
JP63-312338 1988-12-09

Publications (2)

Publication Number Publication Date
JPH02258903A true JPH02258903A (en) 1990-10-19
JPH0733526B2 JPH0733526B2 (en) 1995-04-12

Family

ID=18028039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127534A Expired - Lifetime JPH0733526B2 (en) 1988-12-09 1989-05-19 Clad metal tube manufacturing method

Country Status (1)

Country Link
JP (1) JPH0733526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374402A (en) * 1992-04-27 1994-12-20 Usui Kokusai Sangyo Kaisha, Ltd. Metal-made honeycomb carrier body
JP2011518952A (en) * 2008-04-24 2011-06-30 ボディコート・アイエムティー,インコーポレイテッド Composite preform having controlled porosity in at least one layer and methods of making and using the same
CN113182373A (en) * 2021-05-18 2021-07-30 山西太钢不锈钢股份有限公司 Extrusion method of nickel-based alloy seamless steel pipe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549449B1 (en) * 2002-10-07 2008-12-03 MAN B & W Diesel A/S Method of manufacturing a nozzle for a fuel valve in a diesel engine, and a nozzle
CN102667135B (en) * 2009-10-30 2015-06-17 曼恩柴油机涡轮股份公司曼恩柴油机涡轮德国分公司 A nozzle for a fuel valve in a diesel engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632514A (en) * 1986-06-20 1988-01-07 Nippon Light Metal Co Ltd Manufacture of aluminum hollow extruded shape for ultrahigh vacuum use
JPH01241322A (en) * 1988-03-23 1989-09-26 Sumitomo Metal Ind Ltd Hot extrusion method for outer surface clad steel stock
JPH02270948A (en) * 1989-04-12 1990-11-06 Kobe Steel Ltd Production of zirconium alloy tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632514A (en) * 1986-06-20 1988-01-07 Nippon Light Metal Co Ltd Manufacture of aluminum hollow extruded shape for ultrahigh vacuum use
JPH01241322A (en) * 1988-03-23 1989-09-26 Sumitomo Metal Ind Ltd Hot extrusion method for outer surface clad steel stock
JPH02270948A (en) * 1989-04-12 1990-11-06 Kobe Steel Ltd Production of zirconium alloy tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374402A (en) * 1992-04-27 1994-12-20 Usui Kokusai Sangyo Kaisha, Ltd. Metal-made honeycomb carrier body
JP2011518952A (en) * 2008-04-24 2011-06-30 ボディコート・アイエムティー,インコーポレイテッド Composite preform having controlled porosity in at least one layer and methods of making and using the same
CN113182373A (en) * 2021-05-18 2021-07-30 山西太钢不锈钢股份有限公司 Extrusion method of nickel-based alloy seamless steel pipe
CN113182373B (en) * 2021-05-18 2023-05-09 山西太钢不锈钢股份有限公司 Extrusion method of nickel-based alloy seamless steel tube

Also Published As

Publication number Publication date
JPH0733526B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US5056209A (en) Process for manufacturing clad metal tubing
US4795078A (en) Method for producing a clad steel pipe
US4844863A (en) Method of producing clad metal
EP0388968B1 (en) Method of producing clad metals
US20050058851A1 (en) Composite tube for ethylene pyrolysis furnace and methods of manufacture and joining same
JP6558588B2 (en) Method for producing multilayer pipes with metaradical bonds by drawing and multilayer pipes produced by the process
US6691397B2 (en) Method of manufacturing same for production of clad piping and tubing
JP2011518952A5 (en)
JP2011518952A (en) Composite preform having controlled porosity in at least one layer and methods of making and using the same
EP0028763B1 (en) Method for pressure bonding metal members by utilizing eutectic reaction
US20110017339A1 (en) Method for rolled seamless clad pipes
JPH02258903A (en) Manufacture of clad metal tube
US20110017807A1 (en) Method for rolled seamless clad pipes
EP0255382B1 (en) A method of manufacturing a clad bar
JP2746014B2 (en) Manufacturing method of metal double tube
JPH058057A (en) Manufacture of double metal tube
Chadwick The hot extrusion of non-ferrous metals
KR960006613B1 (en) Process for manufacturing clad metal tubing
US10124443B2 (en) Brazing and soldering alloy wires
RU2625372C2 (en) Method of metallic and composite blanks manufacture from sheet materials
JPS5853685B2 (en) Manufacturing method of inner liner for hot extrusion
EP1025919A2 (en) Method for producing multilayer thin-walled bellows
JPH11300459A (en) Sleeve for die casting machine
JPH0751809A (en) Production of corrosion resistant and heat resistant super alloy thin sheet
WO2013119767A1 (en) Brazing alloy and processes for making and using