JPH0520491B2 - - Google Patents
Info
- Publication number
- JPH0520491B2 JPH0520491B2 JP463785A JP463785A JPH0520491B2 JP H0520491 B2 JPH0520491 B2 JP H0520491B2 JP 463785 A JP463785 A JP 463785A JP 463785 A JP463785 A JP 463785A JP H0520491 B2 JPH0520491 B2 JP H0520491B2
- Authority
- JP
- Japan
- Prior art keywords
- rod
- alloy powder
- copper
- wall surface
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 claims description 27
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 238000001125 extrusion Methods 0.000 claims description 12
- 238000005482 strain hardening Methods 0.000 claims description 12
- 229910000599 Cr alloy Inorganic materials 0.000 claims description 10
- 239000011651 chromium Substances 0.000 claims description 10
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000788 chromium alloy Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000003466 welding Methods 0.000 description 10
- 230000032683 aging Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000000837 restrainer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Extrusion Of Metal (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、銅−クロム系合金からなり、かつ
耐軟化性に優れた製品を得るための製造方法に関
し、特に、たとえば抵抗溶接器に用いられる電極
チツプを製造するための方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manufacturing method for obtaining a product made of a copper-chromium alloy and having excellent softening resistance, and particularly relates to an electrode used in a resistance welder, for example. The present invention relates to a method for manufacturing chips.
従来の技術
たとえば、抵抗溶接器に用いられる電極チツプ
等は、良好な溶接作業を行なうために、導電性、
耐軟化性、高温強度性が必要とされる。従来、こ
の電極チツプは、Cu−Cr合金からなる鋳塊や中
間加工品を、900℃以上の温度から急冷して焼入
処理し、その後時効析出熱処理する方法によつて
作られてきた。Conventional technology For example, electrode tips used in resistance welders must have electrical conductivity,
Softening resistance and high temperature strength are required. Conventionally, this electrode chip has been made by a method in which an ingot or an intermediate product made of a Cu-Cr alloy is rapidly cooled from a temperature of 900° C. or higher, quenched, and then subjected to an aging precipitation heat treatment.
発明が解決しようとする問題点
しかしながら、上述の方法によつて製造された
銅−クロム系合金製品には以下のような問題点が
あつた。たとえば抵抗溶接器に用いられる電極チ
ツプを例にとると、そこに大電流が流れて高温に
なると軟化してしまい、そのためこの高温のまま
で溶接作業を行なえば電極チツプの先端が大きく
変形し、その結果溶接部の強度が不足するという
問題点が生じていた。Problems to be Solved by the Invention However, the copper-chromium alloy products manufactured by the above method had the following problems. For example, if we take the electrode tip used in a resistance welder as an example, if a large current flows through it and the tip reaches a high temperature, it will soften, and if welding is carried out at this high temperature, the tip of the electrode tip will be greatly deformed. As a result, a problem arises in that the strength of the welded portion is insufficient.
それゆえに、この発明の目的は、高温になつた
としても耐軟化性に優れ大きな荷重にも耐え得る
ような銅−クロム系合金製品の製造方法を提供す
ることである。 Therefore, an object of the present invention is to provide a method for manufacturing copper-chromium alloy products that have excellent softening resistance and can withstand large loads even when exposed to high temperatures.
問題点を解決するための手段
この発明による銅−クロム系合金製品の製造方
法では、まず、少なくともCrを0.1〜1.5%含有し
残部がCuよりなる組成の急冷合金粉末を、回転
駆動されている駆動壁面と固定されている固定壁
面との間に形成される管路内に連続的に供給す
る。その後、駆動壁面との摩擦力によつて管路内
を移動する上記合金粉末を、管路の終端部に設け
られた押出しダイスによつて連続的に棒状体もし
くは線状体として押出す。そしてその後、棒状体
または線状体を冷間加工することによつて耐軟化
性に優れた製品を得る。Means for Solving the Problems In the method for manufacturing a copper-chromium alloy product according to the present invention, firstly, rapidly solidified alloy powder containing at least 0.1 to 1.5% Cr and the balance consisting of Cu is rotated. It is continuously supplied into the conduit formed between the driving wall surface and the fixed fixed wall surface. Thereafter, the alloy powder, which moves within the conduit due to the frictional force with the driving wall surface, is continuously extruded as a rod or linear body by an extrusion die provided at the end of the conduit. Then, by cold working the rod or linear body, a product with excellent softening resistance is obtained.
「少なくともCrを含有」するのは、Crが耐軟
化性に対して良好な影響をもたらすからである。
Cr含有量を「0.1〜1.5%」としたのは、0.1%未満
であるならば耐軟化性に対して効果がなく、1.5
%を越えれば耐軟化性に対する効果が飽和するか
らである。「残部がCr」であるのは、Cuが良好な
導電性を有するからである。「合金粉末」状に急
冷するのは、たとえば棒状にすることに比べて良
好な焼入性が得られるからである。 The reason why it "contains at least Cr" is that Cr has a good effect on softening resistance.
The reason why the Cr content was set to "0.1 to 1.5%" is because if it is less than 0.1%, it has no effect on softening resistance.
%, the effect on softening resistance is saturated. The reason why "the rest is Cr" is because Cu has good conductivity. The reason why it is rapidly cooled into the form of "alloy powder" is that better hardenability can be obtained compared to, for example, forming it into a rod shape.
合金粉末を、駆動壁面との摩擦力によつて移動
させ、その後押出しダイスによつて連続的に棒状
体もしくは線状体として押出すのは、以下の理由
による。すなわち、管路内に供給された合金粉末
は、管内の摩擦に基づく内部塑性流動によつて生
ずる粉末間でのすべり力によつて発熱する。この
発熱に加えて、合金粉末に押込み力による外部か
らの圧縮力が加わると、合金粉末は互いに金属接
合される。そしてこの際、Crがほど良く時効析
出される。 The reason why the alloy powder is moved by the frictional force with the driving wall surface and then continuously extruded as a rod or linear body by an extrusion die is as follows. That is, the alloy powder supplied into the pipe generates heat due to the sliding force between the powders caused by internal plastic flow based on friction within the pipe. In addition to this heat generation, when an external compressive force due to a pushing force is applied to the alloy powder, the alloy powder is metallurgically bonded to each other. At this time, Cr is properly aged and precipitated.
また、押出し後に熱間加工ではなく「冷間加
工」するのは、再結晶による過時効を避けるため
である。 Furthermore, the reason why "cold working" is performed instead of hot working after extrusion is to avoid overaging due to recrystallization.
合金粉末は、好ましくは、Crに加えて、Ag,
Sn,Al,Si,Mg,Zr,Feからなる群から選ば
れた1または2以上の元素を合計で0〜1%含有
する。なぜなら、これらの元素の付加は、強度や
耐軟化性等を向上させる効果があるからである。 The alloy powder preferably contains Ag, in addition to Cr.
Contains a total of 0 to 1% of one or more elements selected from the group consisting of Sn, Al, Si, Mg, Zr, and Fe. This is because addition of these elements has the effect of improving strength, softening resistance, etc.
また、好ましくは、過飽和に固溶したCrを析
出させるために、押出しダイスによつて押出され
た棒状体または線状体は、冷間加工の前工程、途
中工程または後工程で、400〜600℃の温度下に30
分〜24時間置かれる。これにより、熱・電気の伝
導性や耐軟化性等に好影響をもたらす。また、急
冷粉末は、たとえば103℃/sec.以上の速度で冷
却されて製造される。 Preferably, in order to precipitate supersaturated solid solution Cr, the rod or linear body extruded by an extrusion die is subjected to a 400 to 600 Under the temperature of 30℃
Leave for minutes to 24 hours. This has a favorable effect on thermal and electrical conductivity, softening resistance, etc. Further, the rapidly cooled powder is produced by cooling at a rate of, for example, 10 3 C/sec. or more.
実施例
第1図には、この発明を実施するのに用いられ
る装置の一例が示されている。図示される装置
は、いわゆるコンフオーム装置と呼ばれるもので
ある。図において、回転する駆動ホイール1はそ
の外周部に溝2を有している。そして溝2の表面
は、駆動壁面3を構成する。この駆動壁面3と、
固定抑え具4の固定壁面5との間に、管路が形成
される。急冷凝固された合金粉末8は、粉末供給
具7から管路内に連続的に供給される。そして、
管路内の合金粉末8は、駆動壁面3との摩擦力に
よつて管路内を移動する。管路の終端部には押出
しダイス9が設けられており、この押出しダイス
9によつて合金粉末8は連続的に棒状体または線
状体として押出される。なお図中、6は突起であ
る。EXAMPLE FIG. 1 shows an example of the apparatus used to carry out the invention. The illustrated device is a so-called conform device. In the figure, a rotating drive wheel 1 has a groove 2 on its outer circumference. The surface of the groove 2 constitutes a driving wall surface 3. This driving wall surface 3,
A conduit is formed between the fixed restrainer 4 and the fixed wall surface 5. The rapidly solidified alloy powder 8 is continuously supplied into the pipe from the powder supply tool 7. and,
The alloy powder 8 in the pipe is moved within the pipe by the frictional force with the drive wall surface 3. An extrusion die 9 is provided at the end of the conduit, and the extrusion die 9 continuously extrudes the alloy powder 8 as a rod or linear body. In addition, in the figure, 6 is a protrusion.
合金粉末8は、管路内の内部塑性流動によつて
生ずる粉末間のすべり力によつて発熱する。この
発熱に加えて、合金粉末8には押込み力に伴う圧
縮力が与えられ、これにより合金粉末8は互いに
金属接合される。 The alloy powder 8 generates heat due to the sliding force between the powders caused by internal plastic flow within the pipe. In addition to this heat generation, a compressive force due to the pushing force is applied to the alloy powder 8, so that the alloy powder 8 is metallically bonded to each other.
第1図に示すいわゆるコンフオーム装置を用い
てこの発明を実施した。以下には、その説明を行
なう。 The present invention was carried out using a so-called conform device shown in FIG. This will be explained below.
Cu−1.0%Cr合金からなる溶湯を、細孔ノズル
から噴出させて冷却用回転板に衝突させ、それに
よつて急冷粉末を生成した。この急冷粉末を、第
1図に示すいわゆるコンフオーム装置によつて連
続的に押出して直径25mmの丸棒を作つた。なお、
このときの温度は約450℃であつた。このように
して作られた丸棒を、第2A図、第2B図、第2
C図で示されているそれぞれの製造工程を経て直
径16mmの丸棒に加工した。第2A図に示す工程は
本発明例1であり、いわゆるコンフオーム装置に
よる連続押し出しの後、時効処理および冷間加工
が施される。第2B図に示す工程は本発明例2で
あり、いわゆるコンフオーム装置による連続押し
出しの後、冷間加工、時効処理および冷間加工が
施される。第2C図に示す製造工程は本発明例3
であり、いわゆるコンフオーム装置による連続押
出しの後、冷間加工および時効処理が施される。
上記各製造工程を経て作られた直径16mmの丸棒
を、切断して第3A図および第3B図に示すよう
な抵抗溶接用電極に加工した。なお、第3A図は
そのような電極の平面図であり、第3B図は正面
図である。便宜上第3B図では部分的に断面で示
されている。 A molten metal consisting of a Cu-1.0% Cr alloy was ejected from a fine-hole nozzle and collided with a cooling rotary plate, thereby producing rapidly cooled powder. This rapidly cooled powder was continuously extruded using a so-called conform device shown in FIG. 1 to produce a round bar with a diameter of 25 mm. In addition,
The temperature at this time was approximately 450°C. The round bars made in this way are shown in Figures 2A, 2B, and 2.
A round bar with a diameter of 16 mm was processed through each manufacturing process shown in Figure C. The process shown in FIG. 2A is Example 1 of the present invention, in which aging treatment and cold working are performed after continuous extrusion using a so-called conforming device. The process shown in FIG. 2B is Example 2 of the present invention, in which cold working, aging treatment, and cold working are performed after continuous extrusion using a so-called conforming device. The manufacturing process shown in FIG. 2C is Invention Example 3
After continuous extrusion using a so-called conforming device, cold working and aging treatment are performed.
A round bar with a diameter of 16 mm produced through each of the above manufacturing steps was cut and processed into a resistance welding electrode as shown in FIGS. 3A and 3B. Note that FIG. 3A is a plan view of such an electrode, and FIG. 3B is a front view. For convenience, FIG. 3B is shown partially in cross section.
比較のため、鋳造(□100mm)後に熱間圧延
(φ25mm)した同一組成の合金を、920℃から水焼
入し、その後第4A図、第4B図、第4C図に示
すそれぞれの工程を経て第3A図および第3B図
に示すのと同−形状の電極を作つた。第4A図に
示す工程は比較例1であり、溶体化処理(水焼
入)後に時効処理および冷間加工を施している。
第4B図に示す工程は比較例2であり、溶体化処
理後に冷間加工、時効処理および冷間加工を施し
ている。第4C図に示す工程は比較例3であり、
溶体化処理後に冷間加工および時効処理を施して
いる。 For comparison, alloys with the same composition were cast (□100 mm) and then hot rolled (φ25 mm), water quenched at 920°C, and then subjected to the respective steps shown in Figures 4A, 4B, and 4C. Electrodes of the same shape as shown in Figures 3A and 3B were made. The process shown in FIG. 4A is Comparative Example 1, in which aging treatment and cold working are performed after solution treatment (water quenching).
The process shown in FIG. 4B is Comparative Example 2, in which cold working, aging treatment, and cold working are performed after solution treatment. The process shown in FIG. 4C is Comparative Example 3,
After solution treatment, cold working and aging treatment are performed.
上述の各工程を経て製造された電極チツプを用
いて、厚さ1mmの鋼板を5000点スポツト通電溶接
した。この溶接後の電極チツプの先端部の変形エ
リアの大きさを測定し、さらに状況を観察して、
以下の結果を得た。なお、電極チツプ先端部の溶
接前の大きさはφ5mmであつた。 A 1 mm thick steel plate was spot-electrified welded at 5,000 points using the electrode chips manufactured through the above-mentioned steps. The size of the deformed area at the tip of the electrode tip after welding was measured, and the situation was further observed.
The following results were obtained. The size of the tip of the electrode tip before welding was φ5 mm.
本発明例 1
先端変形エリアの大きさ:φ5.1mm
状況:変形がほとんどなく、割れなどの発生も
なかつた。その後も良好な溶接が可能であ
る。Invention Example 1 Size of tip deformation area: φ5.1mm Condition: There was almost no deformation and no cracking occurred. Good welding is possible even after that.
本発明例 2
先端変形エリアの大きさ:φ5.2mm
状況:変形がほとんどなく、割れなどの発生も
なかつた。その後も良好な溶接が可能であ
る。Invention Example 2 Size of tip deformation area: φ5.2mm Condition: There was almost no deformation and no cracking occurred. Good welding is possible even after that.
本発明例 3
先端変形エリアの大きさ:φ5.1mm
状況:変形がほとんどなく、割れなどの発生も
なかつた。その後も良好な溶接が可能であ
る。Invention Example 3 Size of tip deformation area: φ5.1mm Condition: There was almost no deformation and no cracking occurred. Good welding is possible even after that.
比較例 1
先端変形エリアの大きさ:φ7.2mm
状況:先端が大きく変形した。また、この溶接
作業の終了近くに行なつた溶接部は、強度不
足が発生していた。Comparative Example 1 Size of tip deformation area: φ7.2mm Situation: The tip was significantly deformed. In addition, the welded part, which was performed near the end of this welding work, had insufficient strength.
比較例 2
先端変形エリアの大きさ:φ7.1mm
状況:先端が大きく変形した。また、上記溶接
作業の終了近くに行なつた溶接部は、強度不
足が発生した。Comparative Example 2 Size of tip deformation area: φ7.1mm Situation: The tip was significantly deformed. In addition, the strength of the welded portion that was performed near the end of the welding work was insufficient.
比較例 3
先端変形エリアの大きさ:φ7.3mm
状況:先端が大きく変形した。また、上記溶接
作業の終了近くに行なつた溶接部は、強度不
足が発生した。Comparative Example 3 Size of tip deformation area: φ7.3mm Situation: The tip was significantly deformed. In addition, the strength of the welded portion that was performed near the end of the welding work was insufficient.
発明の効果
以上のように、この発明によれば、急冷合金粉
末を、いわゆるコンフオーム装置によつて連続的
に棒状体または線状体として押出し、その後にそ
れを冷間加工するものであるので、Crがほど良
く時効析出する。したがつて、耐軟化性および高
温高度性に優れた銅−クロム系合金製品を得るこ
とができる。また、時効析出した銅合金であるの
で、他の材料に比べて、導電率が高く熱伝導性が
良好である。さらに、セラミツク等に比べて靱性
が高いのは言うまでもない。Effects of the Invention As described above, according to the present invention, the rapidly solidified alloy powder is continuously extruded as a rod or linear body using a so-called conforming device, and then cold-worked. Cr precipitates moderately with aging. Therefore, a copper-chromium alloy product having excellent softening resistance and high temperature stability can be obtained. Furthermore, since it is a copper alloy that has been precipitated by aging, it has high electrical conductivity and good thermal conductivity compared to other materials. Furthermore, it goes without saying that it has higher toughness than ceramics and the like.
このような効果を奏するこの発明は、耐軟化性
に優れた製品を得るために広く利用される。その
ような製品の一例として、たとえば抵抗溶接器用
電極チツプが挙げられる。 This invention, which has such effects, is widely used to obtain products with excellent softening resistance. An example of such a product is, for example, an electrode tip for a resistance welder.
第1図は、この発明を実施するのに用いられる
装置の一例を示す図である。第2A図はこの発明
に従つた製造工程の一例(本発明例1)を示す図
である。第2B図はこの発明に従つた製造工程の
他の例(本発明例2)に示す図である。第2C図
は、この発明に従つた製造工程のさらに他の例
(本発明例3)を示す図である。第3A図は、抵
抗溶接器用電極チツプの平面図である。第3B図
は、第3A図に示された電極チツプの正面図であ
る。第4A図は、従来の製造工程の一例(比較例
1)を示す図である。第4B図は、従来の製造工
程の他の例(比較例2)を示す図である。第4C
図は、従来の製造工程のさらに他の例(比較例
3)を示す図である。
図において、1は駆動ホイール、2は溝、3は
駆動壁面、4は固定抑え具、5は固定壁面、6は
突起、7は粉末供給具、8は急冷合金粉末、9は
押出しダイスを示す。
FIG. 1 is a diagram showing an example of an apparatus used to carry out the invention. FIG. 2A is a diagram showing an example of the manufacturing process according to the present invention (Example 1 of the present invention). FIG. 2B is a diagram showing another example of the manufacturing process according to the present invention (Example 2 of the present invention). FIG. 2C is a diagram showing still another example of the manufacturing process according to the present invention (Example 3 of the present invention). FIG. 3A is a plan view of an electrode tip for a resistance welder. FIG. 3B is a front view of the electrode chip shown in FIG. 3A. FIG. 4A is a diagram showing an example of a conventional manufacturing process (Comparative Example 1). FIG. 4B is a diagram showing another example (Comparative Example 2) of the conventional manufacturing process. 4th C
The figure is a diagram showing still another example (Comparative Example 3) of the conventional manufacturing process. In the figure, 1 is a drive wheel, 2 is a groove, 3 is a drive wall surface, 4 is a fixed retainer, 5 is a fixed wall surface, 6 is a protrusion, 7 is a powder supply tool, 8 is a rapidly solidified alloy powder, and 9 is an extrusion die. .
Claims (1)
りなる組成の急冷合金粉末を、回転駆動されてい
る駆動壁面と固定されている固定壁面との間に形
成される管路内に連続的に供給し、 前記駆動壁面との摩擦力によつて前記管路内を
移動する前記合金粉末を、前記管路の終端部に設
けられた押出しダイスによつて連続的に棒状体ま
たは線状体として押出し、その後 前記棒状体または線状体を冷間加工することに
よつて耐軟化性に優れた製品を得る、銅−クロム
系合金製品の製造方法。 2 前記合金粉末は、Ag,Sn,Al,Si,Mg,
Zr,Feからなる群から選ばれた1または2以上
の元素を合計で0〜1%を含有している、特許請
求の範囲第1項に記載の銅−クロム系合金製品の
製造方法。 3 前記押出しダイスによつて押出された棒状体
または線状体は、前記冷間加工の前工程、途中工
程または後工程で、400〜600℃の温度下に30分〜
24時間置かれる、特許請求の範囲第1項または第
2項に記載の銅−クロム系合金製品の製造方法。 4 前記合金粉末は、溶湯を103℃/sec.以上の
速度で急冷することによつて作られる、特許請求
の範囲第1項ないし第3項のいずれかに記載の銅
−クロム系合金製品の製造方法。[Scope of Claims] 1. A tube formed between a driving wall surface being driven to rotate and a fixed wall surface being fixed, in which rapidly solidified alloy powder having a composition containing at least 0.1 to 1.5% Cr and the remainder is Cu is used. The alloy powder, which is continuously supplied into the pipe and moves within the pipe due to frictional force with the driving wall surface, is continuously shaped into a rod by an extrusion die provided at an end of the pipe. 1. A method for producing a copper-chromium alloy product, which comprises extruding the rod or wire as a rod or wire, and then cold working the rod or wire to obtain a product with excellent softening resistance. 2 The alloy powder includes Ag, Sn, Al, Si, Mg,
The method for manufacturing a copper-chromium alloy product according to claim 1, which contains a total of 0 to 1% of one or more elements selected from the group consisting of Zr and Fe. 3. The rod-shaped body or linear body extruded by the extrusion die is heated at a temperature of 400 to 600°C for 30 minutes to 30 minutes in a pre-process, intermediate process, or post-process of the cold working.
A method for manufacturing a copper-chromium alloy product according to claim 1 or 2, which is left for 24 hours. 4. The copper-chromium alloy product according to any one of claims 1 to 3, wherein the alloy powder is produced by rapidly cooling a molten metal at a rate of 10 3 °C/sec. or more. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP463785A JPS61163223A (en) | 1985-01-14 | 1985-01-14 | Manufacture of copper-chromium alloy product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP463785A JPS61163223A (en) | 1985-01-14 | 1985-01-14 | Manufacture of copper-chromium alloy product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61163223A JPS61163223A (en) | 1986-07-23 |
JPH0520491B2 true JPH0520491B2 (en) | 1993-03-19 |
Family
ID=11589512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP463785A Granted JPS61163223A (en) | 1985-01-14 | 1985-01-14 | Manufacture of copper-chromium alloy product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61163223A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10421122B2 (en) | 2015-05-13 | 2019-09-24 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US10981226B2 (en) | 2016-10-25 | 2021-04-20 | Daihen Corporation | Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129905A (en) * | 1987-11-13 | 1989-05-23 | Sumitomo Heavy Ind Ltd | Method and device for treatment of atomized powder of aluminum alloy |
CN1298452C (en) * | 2005-07-25 | 2007-02-07 | 西安理工大学 | Continuously extruding method of magnesium alloy silk material |
CN103639414A (en) * | 2013-12-13 | 2014-03-19 | 哈尔滨理工大学 | Method for preparing high-hardness and low- abrasion copper-based friction material |
JP6716410B2 (en) * | 2016-09-23 | 2020-07-01 | 株式会社ダイヘン | Copper alloy powder, manufacturing method of layered product and layered product |
JP6803021B2 (en) * | 2016-10-25 | 2020-12-23 | 株式会社ダイヘン | Manufacturing method of laminated model and laminated model |
JP6389557B1 (en) * | 2016-10-25 | 2018-09-12 | 株式会社ダイヘン | Copper alloy powder, manufacturing method of layered object, and layered object |
CN107671299A (en) * | 2017-08-30 | 2018-02-09 | 西安理工大学 | A kind of method that vacuum aerosolization prepares Cu Cr alloy powders |
CN112008080B (en) * | 2020-10-19 | 2021-01-29 | 陕西斯瑞新材料股份有限公司 | Preparation method of powder-laying type 3D printing copper alloy water cooling jacket |
-
1985
- 1985-01-14 JP JP463785A patent/JPS61163223A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10421122B2 (en) | 2015-05-13 | 2019-09-24 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US10843260B2 (en) | 2015-05-13 | 2020-11-24 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US11077495B2 (en) | 2015-05-13 | 2021-08-03 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US10981226B2 (en) | 2016-10-25 | 2021-04-20 | Daihen Corporation | Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article |
US12084745B2 (en) | 2016-10-25 | 2024-09-10 | Daihen Corporation | Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article |
Also Published As
Publication number | Publication date |
---|---|
JPS61163223A (en) | 1986-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2729569C2 (en) | Materials with a body-centered cubic arrangement based on titanium, aluminum, vanadium and iron and articles made therefrom | |
CN101151119B (en) | Method of manufacturing a consumable filler metal for use in a welding operation | |
JPS58213840A (en) | Metal composition suitable for producing semi-solid semi-liquid state and manufacture | |
JPH0520491B2 (en) | ||
KR880011350A (en) | How to make tubes, bars and strips | |
EP0073101B1 (en) | Friction-actuated extrusion | |
WO2004009859A1 (en) | Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method | |
US3717511A (en) | Process for making hardenable copper alloy products | |
JPS58128292A (en) | Thin strip of phosphorus copper brazing filler metal | |
CN104646846B (en) | Silver-bearing copper Polarium brazing wire and preparation method thereof | |
JPS6132386B2 (en) | ||
JPS62164899A (en) | Composite bus bar for electric conduction | |
US4404025A (en) | Process for manufacturing semifinished product from a memory alloy containing copper | |
JPS599137A (en) | Production of age-precipitation type alloy | |
US3657804A (en) | Method of making beryllium-aluminum wrought material | |
US20080251162A1 (en) | Copper alloy and method for its manufacture | |
KR930010004B1 (en) | Wire electrode for electro discharge machining | |
JP2005081371A (en) | Electrode material and its production method | |
JPS60149751A (en) | Metal composition | |
JP2004100041A (en) | Copper alloy | |
KR960015516B1 (en) | Method for making cu-zr-mg alloy | |
JPS62164897A (en) | Composite bus bar for electric conduction | |
JPS63243252A (en) | Manufacture of high-strength conductive aluminum-alloy conductor | |
JP2005288519A (en) | Electrode material and its production method | |
KR100350072B1 (en) | Method of manufacturing high conductivity dispersion streng thened copper alloy |