WO2018079002A1 - Laminated molding production method and laminated molding - Google Patents

Laminated molding production method and laminated molding Download PDF

Info

Publication number
WO2018079002A1
WO2018079002A1 PCT/JP2017/028083 JP2017028083W WO2018079002A1 WO 2018079002 A1 WO2018079002 A1 WO 2018079002A1 JP 2017028083 W JP2017028083 W JP 2017028083W WO 2018079002 A1 WO2018079002 A1 WO 2018079002A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered object
copper alloy
alloy powder
powder
conductivity
Prior art date
Application number
PCT/JP2017/028083
Other languages
French (fr)
Japanese (ja)
Inventor
坪田 龍介
陽平 岡
啓 岡本
中本 貴之
貴広 菅原
徳章 四宮
守 武村
壮平 内田
Original Assignee
株式会社ダイヘン
地方独立行政法人大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62024702&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018079002(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ダイヘン, 地方独立行政法人大阪産業技術研究所 filed Critical 株式会社ダイヘン
Publication of WO2018079002A1 publication Critical patent/WO2018079002A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • This disclosure relates to a method for manufacturing a layered object and a layered object.
  • Patent Document 1 discloses a laser additive manufacturing apparatus (also referred to as “3D printer”) for metal powder.
  • the additive manufacturing method for metal powders has attracted attention. According to the additive manufacturing method, it is possible to create a complex shape that was impossible by cutting. So far, there have been reported production examples of layered objects made of iron alloy powder, aluminum alloy powder, titanium alloy powder and the like. That is, a layered object composed of an iron alloy, an aluminum alloy, a titanium alloy, or the like has been reported. However, there is no report of a layered object composed of a copper alloy.
  • An object of the present disclosure is to provide a layered object formed of a copper alloy.
  • the method for manufacturing a layered object includes the following first step, second step, and third step.
  • Second step A layered product is produced from the copper alloy powder.
  • Third step The layered object is heat-treated at a temperature of 300 ° C. or higher.
  • the copper alloy powder contains 0.10 mass% or more and 1.00 mass% or less of chromium, and the remaining copper.
  • the layered object is successively formed by (i) forming a powder layer containing copper alloy powder, and (ii) solidifying the copper alloy powder at a predetermined position in the powder layer to form a modeling layer, Manufactured by stacking modeling layers.
  • the layered object may be heat-treated at a temperature of 400 ° C. or higher.
  • the layered object may be heat-treated at a temperature of 700 ° C. or lower.
  • the layered object may be heat-treated at a temperature of 600 ° C. or lower.
  • the layered object is a layered object formed of a copper alloy.
  • the layered object contains 0.10 mass% or more and 1.00 mass% or less of chromium, and the remaining copper.
  • the layered object has a relative density of 97% or more and 100% or less with respect to the theoretical density of the copper alloy, and has a conductivity of 50% IACS or more.
  • the layered object may have a conductivity of 70% IACS or higher.
  • a layered object formed of a copper alloy is provided.
  • FIG. 1 is a flowchart illustrating an outline of a method for manufacturing a layered object according to an embodiment of the present disclosure.
  • FIG. 2 is an example of STL data.
  • FIG. 3 is an example of slice data.
  • FIG. 4 is a first schematic diagram illustrating the manufacturing process of the layered object.
  • FIG. 5 is a second schematic diagram illustrating the manufacturing process of the layered object.
  • FIG. 6 is a third schematic diagram illustrating the manufacturing process of the layered object.
  • FIG. 7 is a fourth schematic diagram illustrating the manufacturing process of the layered object.
  • FIG. 8 is a plan view of a test piece used in the tensile test.
  • FIG. 9 is a graph showing the relationship between the heat treatment temperature and conductivity in the third step.
  • FIG. 10 is a graph showing the relationship between the heat treatment temperature and the tensile strength in the third step.
  • FIG. 11 is a graph showing the relationship between the heat treatment temperature in the third step and the Vickers hardness.
  • Copper is frequently used in mechanical parts that require mechanical strength and high electrical conductivity.
  • mechanical parts made of copper include welding torches and parts for power distribution equipment.
  • the layered object manufactured with pure copper powder has a large number of voids, and the density is greatly reduced with respect to a dense melted material.
  • a decrease in density means a decrease in mechanical strength (for example, tensile strength).
  • the electrical conductivity was greatly reduced compared to a dense smelted material.
  • Various manufacturing conditions were investigated to improve density and conductivity. However, under any production conditions, the finished physical properties are not stable, and it is difficult to improve the density and conductivity.
  • FIG. 1 is a flowchart showing an outline of a method for manufacturing a layered object according to the present embodiment.
  • the manufacturing method of this embodiment includes a first step (S100), a second step (S200), and a third step (S300).
  • S100 First Step
  • S100 a copper alloy powder is prepared.
  • the copper alloy powder of this embodiment corresponds to toner or ink for a two-dimensional printer.
  • the manufacturing method should not be specifically limited.
  • the copper alloy powder can be produced, for example, by a gas atomization method or a water atomization method.
  • a gas atomization method for example, first, a molten copper alloy is prepared. Molten metal is put into the tundish. Molten metal is dripped from the tundish. The molten metal being dropped is brought into contact with high-pressure gas or high-pressure water. Thereby, the molten metal is rapidly cooled and solidified to produce a copper alloy powder.
  • the copper alloy powder can be produced by a plasma atomizing method, a centrifugal atomizing method, or the like.
  • a copper alloy powder having a specific composition is used. That is, the copper alloy powder is a copper alloy powder containing 0.10% by mass or more and 1.00% by mass or less of chromium (Cr) and the remaining copper (Cu). The remainder may contain an impurity element in addition to Cu.
  • the impurity element may be, for example, an element intentionally added at the time of manufacturing the copper alloy powder (hereinafter referred to as “added element”). That is, the balance may contain Cu and additive elements.
  • the additive element include nickel (Ni), zinc (Zn), tin (Sn), silver (Ag), beryllium (Be), zirconium (Zr), aluminum (Al), silicon (Si), cobalt (Co ), Titanium (Ti), magnesium (Mg), tellurium (Te) and the like.
  • the impurity element may be, for example, an element inevitably mixed during the production of the copper alloy powder (hereinafter referred to as “inevitable impurity element”). That is, the balance may contain Cu and inevitable impurity elements.
  • the balance may include Cu, additive elements, and inevitable impurity elements.
  • the copper alloy powder may contain, for example, less than 0.30 mass% of additive elements and inevitable impurity elements in total.
  • the oxygen content of the copper alloy powder can be measured by a method based on “JIS H 1067: Method for quantifying oxygen in copper”.
  • the Cr content of the copper alloy powder is measured by an ICP emission analysis method based on “JIS H 1071: Method for quantifying chromium in copper and copper alloys”.
  • the Cr content is measured at least three times. An average value of at least three times is adopted as the Cr content.
  • the Cr content may be 0.15% by mass or more, 0.20% by mass or more, 0.22% by mass or more, or 0.51% by mass or more. It may be.
  • the Cr content may be 0.94% by mass or less.
  • the Cu content of the copper alloy powder can be measured by a method based on “JIS H 1051: Copper determination method in copper and copper alloy”.
  • the Cu content is measured at least three times. An average value of at least three times is adopted as the Cu content.
  • the Cu content may be, for example, higher than 98.9% by mass and 99.9% by mass or less.
  • the copper alloy powder may be prepared to have an average particle diameter of 1 to 200 ⁇ m, for example.
  • Average particle size indicates a particle size of 50% cumulative from the fine particle side in the volume-based particle size distribution measured by the laser diffraction scattering method.
  • the average particle diameter is also referred to as “d50”.
  • d50 can be adjusted by, for example, gas pressure at the time of gas atomization, classification, or the like.
  • d50 may be adjusted according to the lamination pitch of the layered object.
  • d50 may be, for example, 5 to 50 ⁇ m, 50 to 100 ⁇ m, or 100 to 200 ⁇ m.
  • the particle shape should not be particularly limited.
  • the particles may be substantially spherical or irregularly shaped.
  • the powder bed melt bonding method is explained.
  • addition production methods other than the powder bed fusion bonding method may be used.
  • a directional energy deposition method or the like may be used. Cutting may be performed during modeling.
  • 3D shape data is converted into STL data, for example.
  • FIG. 2 is an example of STL data.
  • element division by the finite element method so-called “meshing” can be performed.
  • FIG. 3 is an example of slice data.
  • STL data is divided into n layers. That is, the STL data is divided into a first modeling layer p1, a second modeling layer p2, ..., an nth modeling layer pn.
  • the thickness of each layer may be, for example, 10 to 150 ⁇ m.
  • Formation of powder layer (S202) A powder layer containing copper alloy powder is formed.
  • FIG. 4 is a first schematic diagram illustrating the manufacturing process of the layered object.
  • the laser additive manufacturing apparatus 100 includes a piston 101, a table 102, and a laser output unit 103.
  • the table 102 is supported by the piston 101.
  • the piston 101 is configured to move up and down the table 102.
  • the formation of the powder layer (S202) and the formation of the modeling layer (S203) described below may be performed, for example, in an inert gas atmosphere.
  • the inert gas may be, for example, argon (Ar), nitrogen (N 2 ), helium (He), or the like.
  • a reducing gas atmosphere may be used instead of the inert gas atmosphere.
  • the reducing gas is, for example, hydrogen (H 2 ) or the like.
  • a reduced pressure atmosphere may be used instead of the inert gas atmosphere.
  • the piston 101 lowers the table 102 by one layer.
  • One layer of copper alloy powder is spread on the table 102.
  • the 1st powder layer 1 containing copper alloy powder is formed.
  • the surface of the first powder layer 1 may be smoothed by a squeezing blade (not shown) or the like.
  • the first powder layer 1 may be formed substantially only from a copper alloy powder.
  • the first powder layer 1 may include a laser absorbing material (for example, resin powder) in addition to the copper alloy powder. (Formation layer formation (S203)) Subsequently, a modeling layer is formed.
  • FIG. 5 is a second schematic diagram illustrating the manufacturing process of the layered object.
  • the laser output unit 103 irradiates a predetermined position of the first powder layer 1 with laser light based on the slice data. Before the laser light irradiation, the first powder layer 1 may be heated in advance.
  • the copper alloy powder that has been irradiated with the laser light is solidified through melting and sintering. Thereby, the 1st modeling layer p1 is formed. That is, the modeling layer is formed by solidifying the copper alloy powder at a predetermined position in the powder layer.
  • the laser output unit 103 can be a general-purpose laser device.
  • the light source of the laser light can be, for example, a fiber laser, a YAG laser, a CO 2 laser, a semiconductor laser, a green laser, or the like.
  • the output of the laser beam may be, for example, 20 to 1000 W or 200 to 500 W.
  • the scanning speed of the laser beam can be adjusted within a range of 50 to 2000 mm / s, for example.
  • the energy density of the laser light can be adjusted within a range of 10 to 2000 J / mm 3 .
  • FIG. 6 is a third schematic diagram illustrating the manufacturing process of the layered object.
  • the piston 101 lowers the table 102 by one layer.
  • the second powder layer 2 is formed by the same procedure as described above, and then the second modeling layer p2 is formed. Thereafter, the formation of the powder layer (202) and the formation of the modeling layer (203) are sequentially repeated, and the modeling layer is laminated, whereby a layered object is manufactured.
  • FIG. 7 is a fourth schematic diagram illustrating the manufacturing process of the layered object.
  • the layered object 10 is completed by stacking the nth layer pn.
  • the layered object 10 can have a high relative density.
  • Third Step (S300) the layered object is heat-treated at a temperature of 300 ° C. or higher. Thereby, it is expected that the mechanical strength (for example, tensile strength, Vickers hardness, etc.) of the layered object and the electrical conductivity of the layered object are greatly improved.
  • a general heat treatment furnace can be used.
  • the heat treatment temperature is measured by a temperature sensor attached to the heat treatment furnace. For example, if the set temperature of the heat treatment furnace is 300 ° C., it is considered that the layered object has been heat-treated at 300 ° C.
  • the layered object may be heat-treated, for example, from 1 minute to 10 hours, may be heat-treated from 10 minutes to 5 hours, or may be heat-treated from 30 minutes to 3 hours, or from 1 hour to 2 hours. It may be heat-treated for less than an hour.
  • the atmosphere of the heat treatment can be, for example, air, nitrogen, argon, hydrogen, vacuum, or the like.
  • the layered object may be heat-treated at a temperature of 400 ° C. or higher, or may be heat-treated at a temperature of 450 ° C. or higher. As a result, further improvement in mechanical strength and electrical conductivity is expected.
  • the layered object may be heat-treated at a temperature of 700 ° C. or lower, may be heat-treated at a temperature of 600 ° C. or lower, or may be heat-treated at a temperature of 550 ° C. or lower.
  • the layered object may be heat-treated at a temperature exceeding 700 ° C.
  • the effect of improving mechanical strength and conductivity may be reduced.
  • the layered object of the present embodiment is typically manufactured by the above manufacturing method.
  • the layered object of the present embodiment may have a complicated shape that cannot be realized by cutting. Furthermore, the layered object of this embodiment can be excellent in both mechanical strength and electrical conductivity.
  • the layered object of the present embodiment can be a plasma torch as an example.
  • the layered object is made of a copper alloy.
  • the layered object contains 0.10 mass% or more and 1.00 mass% or less of Cr, and the remaining Cu. Similar to the aforementioned copper alloy powder, the balance may contain at least one of an additive element and an inevitable impurity element.
  • the Cr content of the layered object is measured by the same measuring method as the measuring method of the Cr content of the copper alloy powder.
  • the Cr content may be 0.15% by mass or more, 0.20% by mass or more, 0.22% by mass or more, or 0.51% by mass or more. It may be.
  • the Cr content may be 0.94% by mass or less.
  • the Cu content of the layered object is also measured by the same measuring method as the measuring method of the Cu content of the copper alloy powder.
  • the Cu content may be, for example, higher than 98.9% by mass and 99.9% by mass or less.
  • the layered object has a relative density of 97% to 100% with respect to the theoretical density of the copper alloy.
  • the “relative density” is calculated by dividing the actually measured density of the layered object by the theoretical density.
  • the theoretical density indicates the density of the melted material having the same composition as the layered object.
  • the measured density is measured by a method according to “JIS Z 2501: Sintered metal material—Test method for density, oil content and open porosity”. Water is used as the liquid.
  • the relative density is measured at least 3 times. An average value of at least three times is adopted as the relative density.
  • a layered object having a high relative density is suitable for a component that requires high airtightness. Moreover, mechanical strength is also expectable, so that a relative density is high.
  • the relative density may be 97.6% or more, 98% or more, 99% or more, 99.2% or more, 99. It may be 4% or more.
  • the layered object can have excellent mechanical strength.
  • the layered object may have a tensile strength of 250 MPa or more. That is, the layered object of the present embodiment can have a tensile strength equal to or higher than that of oxygen-free copper (UNS number C10200).
  • FIG. 8 is a plan view of a test piece used in the tensile test.
  • a dumbbell-shaped test piece 20 shown in FIG. 8 is prepared.
  • the dumbbell-shaped test piece 20 is attached to the grip of the tensile test apparatus.
  • an object suitable for the shape of the dumbbell-shaped test piece 20 is used.
  • the dumbbell-shaped test piece 20 is mounted so that a tensile stress is applied in the axial direction.
  • the dumbbell-shaped test piece 20 is pulled at a speed of 2 mm / min. Pulling is continued until the dumbbell-shaped test piece 20 breaks. The maximum tensile stress that appears before the dumbbell-shaped test piece 20 breaks is measured.
  • the tensile strength is calculated by dividing the maximum tensile stress by the cross-sectional area of the parallel portion 21.
  • Tensile strength is measured at least three times. An average value of at least three times is adopted as the tensile strength.
  • the dimension of each part of the dumbbell-shaped test piece 20 is as follows.
  • the tensile strength can be adjusted by the heat treatment temperature in the third step.
  • the tensile strength may be, for example, 300 MPa or more, 350 MPa or more, 400 MPa or more, 450 MPa or more, or 500 MPa or more. And it may be 550 MPa or more, or 600 MPa or more.
  • the tensile strength may be, for example, 700 MPa or less, or 650 MPa or less.
  • the layered object may have a Vickers hardness of 70 HV or higher. “Vickers hardness” is measured by a method according to “JIS Z 2244: Vickers hardness test—test method”. The Vickers hardness can also be adjusted by the heat treatment temperature in the third step. The Vickers hardness may be, for example, 80 HV or more, 90 HV or more, 100 HV or more, 120 HV or more, or 140 HV or more. However, it may be 160 HV or higher, or 190 HV or higher. The Vickers hardness may be, for example, 250 HV or less, or 200 HV or less. (conductivity) The layered object has a conductivity of 50% IACS or more.
  • the layered object of the present embodiment may have a conductivity exceeding the conductivity of brass (UNS number C26000).
  • Conductivity is measured by a commercially available eddy current conductivity meter. The electrical conductivity is evaluated on the basis of the electrical conductivity of annealed standard annealed copper (International Annealed Copper Standard, IACS). That is, the conductivity of the layered object is expressed as a percentage of the IACS conductivity. For example, the conductivity of the layered object is 50% IACS means that the conductivity of the layered object is half of the conductivity of IACS. Conductivity is measured at least three times. An average value of at least three times is adopted as the conductivity.
  • the conductivity can be adjusted by the heat treatment temperature in the third step.
  • the layered object may have a conductivity of 70% IACS or higher, a conductivity of 80% IACS or higher, or a conductivity of 90% IACS or higher.
  • the layered object may have a conductivity of 100% IACS or less, for example.
  • copper alloy powders A1 to A5 containing chemical components shown in Table 1 below were prepared (S100). These copper alloy powders were produced by a predetermined atomization method. For comparison, pure copper powder X and copper alloy powder Y were also prepared. Pure copper powder X is a powder made of commercially available pure copper as a raw material. The copper alloy powder Y is a powder made of a commercially available copper alloy (product name “AMPCO940”) as a raw material. Hereinafter, these powders are sometimes collectively referred to as “metal powders”.
  • a laser additive manufacturing apparatus having the following specifications was prepared.
  • Modeling size 250mm x 250mm x 280mm 1.
  • Pure copper powder X Three-dimensional shape data is created (S201). (I) forming a powder layer containing a metal powder (S202), and (ii) forming a modeling layer by solidifying a metal powder at a predetermined position in the powder layer (S203) is sequentially repeated. The layers were laminated. Thus, with pure copper powder X, no. A layered object according to X-1 to X-40 was manufactured (S200).
  • the layered object is a cylinder having a diameter of 14 mm and a height of 15 mm (unless otherwise specified, the following layered object is the same).
  • the manufacturing conditions for the layered object are shown in Tables 2 and 3 below.
  • the relative density and conductivity of the layered object were measured according to the method described above. The results are shown in Tables 2 and 3 below.
  • Laminated shaped products according to Y-1 to Y-7 were manufactured.
  • the layered object was heat-treated in a nitrogen atmosphere for 3 hours at the temperature indicated in the “heat treatment temperature” column of Table 4 below (S300).
  • the layered object with “None” in the “Heat treatment temperature” column is not heat treated.
  • the relative density and conductivity of the layered object were measured according to the method described above. The results are shown in Table 4 below.
  • a layered object composed of a copper alloy and having a Cr content of 0.10% by mass to 1.00% by mass is stably 97% to 100%. And had a relative density of Furthermore, when the layered object is heat-treated at a temperature of 300 ° C. or higher, a tendency that the mechanical strength and the electrical conductivity are greatly improved is recognized.
  • FIG. 9 is a graph showing the relationship between the heat treatment temperature and conductivity in the third step.
  • the conductivity of the layered object is significantly improved. Even when the heat treatment temperature is 700 ° C., the effect of improving the conductivity is recognized. Therefore, the upper limit of the heat treatment temperature may be 700 ° C. However, it is expected that the effect of improving the conductivity can be obtained even in the range where the heat treatment temperature exceeds 700 ° C.
  • FIG. 10 is a graph showing the relationship between the heat treatment temperature and the tensile strength in the third step.
  • the tensile strength of the layered object is significantly improved when the heat treatment temperature is 300 ° C. or higher.
  • the range of improvement in tensile strength when the heat treatment temperature is changed from 400 ° C. to 450 ° C. is particularly remarkable.
  • the tensile strength reaches a peak at around 500 ° C. and then decreases gradually.
  • FIG. 11 is a graph showing the relationship between the heat treatment temperature and the Vickers hardness in the third step. Vickers hardness also shows the same tendency as tensile strength.
  • the heat treatment temperature may be 300 ° C. or higher and 700 ° C. or lower, 400 ° C. or higher and 600 ° C. or lower, or 450 ° C. from the viewpoint of the balance between mechanical strength and electrical conductivity. It may be 550 ° C. or lower or 450 ° C. or higher and 500 ° C. or lower.

Abstract

This laminated molding production method comprises: a first step for preparing a copper alloy powder; a second step for producing a laminated molding using the copper alloy powder; and a third step for subjecting the laminated molding to heat treatment at a temperature of 300°C or higher. The copper alloy powder contains 0.10-1.00 mass% of chromium with the remainder being copper. The laminated molding is produced by sequentially repeating a step for forming a powder layer containing the copper alloy powder and a step for forming a molding layer by solidifying the copper alloy powder at a prescribed position in the powder layer, thereby laminating the molding layers.

Description

積層造形物の製造方法および積層造形物Method for manufacturing layered object and layered object
 本開示は、積層造形物の製造方法および積層造形物に関する。 This disclosure relates to a method for manufacturing a layered object and a layered object.
 特開2011-21218号公報(特許文献1)は、金属粉末を対象とするレーザ積層造形装置(「3Dプリンタ」とも称される)を開示している。 Japanese Patent Application Laid-Open No. 2011-21218 (Patent Document 1) discloses a laser additive manufacturing apparatus (also referred to as “3D printer”) for metal powder.
特開2011-21218号公報JP 2011-21218 A
 金属製品の加工技術として、金属粉末を対象とする積層造形法が注目されている。積層造形法によれば、切削加工では不可能であった複雑形状の創製が可能である。これまでに、鉄合金粉末、アルミニウム合金粉末、チタン合金粉末等による積層造形物の製造例が報告されている。すなわち、鉄合金、アルミニウム合金またはチタン合金等により構成されている積層造形物が報告されている。しかしながら、銅合金により構成されている積層造形物の報告はない。 As a processing technique for metal products, the additive manufacturing method for metal powders has attracted attention. According to the additive manufacturing method, it is possible to create a complex shape that was impossible by cutting. So far, there have been reported production examples of layered objects made of iron alloy powder, aluminum alloy powder, titanium alloy powder and the like. That is, a layered object composed of an iron alloy, an aluminum alloy, a titanium alloy, or the like has been reported. However, there is no report of a layered object composed of a copper alloy.
 本開示の目的は、銅合金により構成されている積層造形物を提供することである。 An object of the present disclosure is to provide a layered object formed of a copper alloy.
〔1〕積層造形物の製造方法は、以下の第1工程、第2工程および第3工程を含む。
 第1工程;銅合金粉末を準備する。
[1] The method for manufacturing a layered object includes the following first step, second step, and third step.
First step: A copper alloy powder is prepared.
 第2工程;銅合金粉末により積層造形物を製造する。
 第3工程;積層造形物を300℃以上の温度で熱処理する。
Second step: A layered product is produced from the copper alloy powder.
Third step: The layered object is heat-treated at a temperature of 300 ° C. or higher.
 銅合金粉末は、0.10質量%以上1.00質量%以下のクロム、および残部の銅を含有する。 The copper alloy powder contains 0.10 mass% or more and 1.00 mass% or less of chromium, and the remaining copper.
 積層造形物は、(i)銅合金粉末を含む粉末層を形成すること、および(ii)粉末層において所定位置の銅合金粉末を固化させることにより、造形層を形成することが順次繰り返され、造形層が積層されることにより製造される。
〔2〕第3工程では、積層造形物が400℃以上の温度で熱処理されてもよい。
〔3〕第3工程では、積層造形物が700℃以下の温度で熱処理されてもよい。
〔4〕第3工程では、積層造形物が600℃以下の温度で熱処理されてもよい。
〔5〕積層造形物は、銅合金により構成されている積層造形物である。積層造形物は、0.10質量%以上1.00質量%以下のクロム、および残部の銅を含有する。積層造形物は、銅合金の理論密度に対して97%以上100%以下の相対密度を有し、かつ50%IACS以上の導電率を有する。
〔6〕積層造形物は、70%IACS以上の導電率を有してもよい。
The layered object is successively formed by (i) forming a powder layer containing copper alloy powder, and (ii) solidifying the copper alloy powder at a predetermined position in the powder layer to form a modeling layer, Manufactured by stacking modeling layers.
[2] In the third step, the layered object may be heat-treated at a temperature of 400 ° C. or higher.
[3] In the third step, the layered object may be heat-treated at a temperature of 700 ° C. or lower.
[4] In the third step, the layered object may be heat-treated at a temperature of 600 ° C. or lower.
[5] The layered object is a layered object formed of a copper alloy. The layered object contains 0.10 mass% or more and 1.00 mass% or less of chromium, and the remaining copper. The layered object has a relative density of 97% or more and 100% or less with respect to the theoretical density of the copper alloy, and has a conductivity of 50% IACS or more.
[6] The layered object may have a conductivity of 70% IACS or higher.
 本開示によれば、銅合金により構成されている積層造形物が提供される。 According to the present disclosure, a layered object formed of a copper alloy is provided.
図1は、本開示の実施形態に係る積層造形物の製造方法の概略を示すフローチャートである。FIG. 1 is a flowchart illustrating an outline of a method for manufacturing a layered object according to an embodiment of the present disclosure. 図2は、STLデータの一例である。FIG. 2 is an example of STL data. 図3は、スライスデータの一例である。FIG. 3 is an example of slice data. 図4は、積層造形物の製造過程を図解する第1概略図である。FIG. 4 is a first schematic diagram illustrating the manufacturing process of the layered object. 図5は、積層造形物の製造過程を図解する第2概略図である。FIG. 5 is a second schematic diagram illustrating the manufacturing process of the layered object. 図6は、積層造形物の製造過程を図解する第3概略図である。FIG. 6 is a third schematic diagram illustrating the manufacturing process of the layered object. 図7は、積層造形物の製造過程を図解する第4概略図である。FIG. 7 is a fourth schematic diagram illustrating the manufacturing process of the layered object. 図8は、引張試験に使用される試験片の平面図である。FIG. 8 is a plan view of a test piece used in the tensile test. 図9は、第3工程の熱処理温度と導電率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the heat treatment temperature and conductivity in the third step. 図10は、第3工程の熱処理温度と引張強さとの関係を示すグラフである。FIG. 10 is a graph showing the relationship between the heat treatment temperature and the tensile strength in the third step. 図11は、第3工程の熱処理温度とビッカース硬さとの関係を示すグラフである。FIG. 11 is a graph showing the relationship between the heat treatment temperature in the third step and the Vickers hardness.
 以下、本開示の一実施形態(以下「本実施形態」と記される)が説明される。ただし、以下の説明は、請求の範囲を限定するものではない。 Hereinafter, an embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described. However, the following description does not limit the scope of claims.
 はじめに本実施形態が見出された経緯が説明される。
 機械的強度および高い導電率が必要とされる機械部品には、銅が多用されている。銅により構成される機械部品としては、たとえば、溶接トーチ、配電設備の部品等が挙げられる。
First, how the present embodiment was found will be described.
Copper is frequently used in mechanical parts that require mechanical strength and high electrical conductivity. Examples of mechanical parts made of copper include welding torches and parts for power distribution equipment.
 まず、純銅粉末により積層造形物を製造することが検討された。しかしながら、純銅粉末によっては、所望の積層造形物が得られなかった。具体的には、純銅粉末により製造された積層造形物は、多数の空隙を有しており、緻密な溶製材に対して密度が大幅に低下していた。密度の低下は、機械的強度(たとえば引張強さ等)の低下を意味する。さらに導電率も緻密な溶製材に対して大幅に低下していた。密度および導電率を改善するため、各種の製造条件が検討された。しかしながら、いずれの製造条件においても、仕上がり物性が安定せず、密度および導電率の改善は困難であった。 First, it was studied to manufacture a layered product with pure copper powder. However, depending on the pure copper powder, a desired layered product could not be obtained. Specifically, the layered object manufactured with pure copper powder has a large number of voids, and the density is greatly reduced with respect to a dense melted material. A decrease in density means a decrease in mechanical strength (for example, tensile strength). Furthermore, the electrical conductivity was greatly reduced compared to a dense smelted material. Various manufacturing conditions were investigated to improve density and conductivity. However, under any production conditions, the finished physical properties are not stable, and it is difficult to improve the density and conductivity.
 そこで銅合金粉末が検討された。その結果、特定組成の銅合金粉末が使用されることにより、実用的な密度および導電率を有する積層造形物が製造され得ること、さらに積層造形物が特定温度以上で熱処理されることにより、積層造形物の機械的強度および導電率が顕著に向上し得ることが見出された。以下、本実施形態が詳しく説明される。
<積層造形物の製造方法>
 図1は、本実施形態の積層造形物の製造方法の概略を示すフローチャートである。本実施形態の製造方法は、第1工程(S100)、第2工程(S200)および第3工程(S300)を含む。以下、各工程が順を追って説明される。
《第1工程(S100)》
 第1工程(S100)では、銅合金粉末が準備される。
Therefore, copper alloy powder was studied. As a result, by using a copper alloy powder having a specific composition, it is possible to manufacture a layered object having a practical density and conductivity, and further, the layered object is heat-treated at a specific temperature or more, so that It has been found that the mechanical strength and conductivity of the shaped object can be significantly improved. Hereinafter, this embodiment will be described in detail.
<Method for producing layered object>
FIG. 1 is a flowchart showing an outline of a method for manufacturing a layered object according to the present embodiment. The manufacturing method of this embodiment includes a first step (S100), a second step (S200), and a third step (S300). Hereafter, each process is demonstrated in order.
<< First Step (S100) >>
In the first step (S100), a copper alloy powder is prepared.
 本実施形態の銅合金粉末は、2次元プリンタのトナーまたはインクに相当する。本実施形態では、後述の特定組成の銅合金粉末が準備される限り、その製造方法は特に限定されるべきではない。 The copper alloy powder of this embodiment corresponds to toner or ink for a two-dimensional printer. In this embodiment, as long as the copper alloy powder of the specific composition mentioned later is prepared, the manufacturing method should not be specifically limited.
 銅合金粉末は、たとえば、ガスアトマイズ法または水アトマイズ法によって製造され得る。たとえば、まず銅合金の溶湯が調製される。溶湯がタンディッシュに入れられる。タンディッシュから溶湯が滴下される。滴下中の溶湯が、高圧ガスまたは高圧水に接触させられる。これにより、溶湯が急冷、凝固し、銅合金粉末が生成される。この他、プラズマアトマイズ法、遠心力アトマイズ法等によっても、銅合金粉末が製造され得る。 The copper alloy powder can be produced, for example, by a gas atomization method or a water atomization method. For example, first, a molten copper alloy is prepared. Molten metal is put into the tundish. Molten metal is dripped from the tundish. The molten metal being dropped is brought into contact with high-pressure gas or high-pressure water. Thereby, the molten metal is rapidly cooled and solidified to produce a copper alloy powder. In addition, the copper alloy powder can be produced by a plasma atomizing method, a centrifugal atomizing method, or the like.
 本実施形態では、特定組成の銅合金粉末が使用される。すなわち銅合金粉末は、0.10質量%以上1.00質量%以下のクロム(Cr)、および残部の銅(Cu)を含有する銅合金の粉末である。残部には、Cuの他、不純物元素が含有されていてもよい。 In this embodiment, a copper alloy powder having a specific composition is used. That is, the copper alloy powder is a copper alloy powder containing 0.10% by mass or more and 1.00% by mass or less of chromium (Cr) and the remaining copper (Cu). The remainder may contain an impurity element in addition to Cu.
 不純物元素は、たとえば、銅合金粉末の製造時に意図的に添加された元素(以下「添加元素」と記される)であってもよい。すなわち、残部はCuおよび添加元素を含んでもよい。添加元素としては、たとえば、ニッケル(Ni)、亜鉛(Zn)、錫(Sn)、銀(Ag)、ベリリウム(Be)、ジルコニウム(Zr)、アルミニウム(Al)、珪素(Si)、コバルト(Co)、チタン(Ti)、マグネシウム(Mg)、テルル(Te)等が挙げられる。不純物元素は、たとえば、銅合金粉末の製造時に不可避的に混入した元素(以下「不可避不純物元素」と記される)であってもよい。すなわち、残部はCuおよび不可避不純物元素を含んでもよい。不可避不純物元素としては、たとえば、酸素(O)、リン(P)、鉄(Fe)等が挙げられる。残部は、Cu、添加元素および不可避不純物元素を含んでもよい。銅合金粉末は、たとえば、合計で0.30質量%未満の添加元素および不可避不純物元素を含有してもよい。たとえば、銅合金粉末の酸素含有量は「JIS H 1067:銅中の酸素定量方法」に準拠した方法により測定され得る。 The impurity element may be, for example, an element intentionally added at the time of manufacturing the copper alloy powder (hereinafter referred to as “added element”). That is, the balance may contain Cu and additive elements. Examples of the additive element include nickel (Ni), zinc (Zn), tin (Sn), silver (Ag), beryllium (Be), zirconium (Zr), aluminum (Al), silicon (Si), cobalt (Co ), Titanium (Ti), magnesium (Mg), tellurium (Te) and the like. The impurity element may be, for example, an element inevitably mixed during the production of the copper alloy powder (hereinafter referred to as “inevitable impurity element”). That is, the balance may contain Cu and inevitable impurity elements. Examples of inevitable impurity elements include oxygen (O), phosphorus (P), iron (Fe), and the like. The balance may include Cu, additive elements, and inevitable impurity elements. The copper alloy powder may contain, for example, less than 0.30 mass% of additive elements and inevitable impurity elements in total. For example, the oxygen content of the copper alloy powder can be measured by a method based on “JIS H 1067: Method for quantifying oxygen in copper”.
 銅合金粉末のCr含有量は「JIS H 1071:銅および銅合金中のクロム定量方法」に準拠したICP発光分析法により測定される。Cr含有量は、少なくとも3回測定される。少なくとも3回の平均値がCr含有量として採用される。Cr含有量は、0.15質量%以上であってもよいし、0.20質量%以上であってもよいし、0.22質量%以上であってもよいし、0.51質量%以上であってもよい。Cr含有量は、0.94質量%以下であってもよい。 The Cr content of the copper alloy powder is measured by an ICP emission analysis method based on “JIS H 1071: Method for quantifying chromium in copper and copper alloys”. The Cr content is measured at least three times. An average value of at least three times is adopted as the Cr content. The Cr content may be 0.15% by mass or more, 0.20% by mass or more, 0.22% by mass or more, or 0.51% by mass or more. It may be. The Cr content may be 0.94% by mass or less.
 銅合金粉末のCu含有量は「JIS H 1051:銅および銅合金中の銅定量方法」に準拠した方法により測定され得る。Cu含有量は、少なくとも3回測定される。少なくとも3回の平均値がCu含有量として採用される。Cu含有量は、たとえば、98.9質量%より高く99.9質量%以下であってもよい。 The Cu content of the copper alloy powder can be measured by a method based on “JIS H 1051: Copper determination method in copper and copper alloy”. The Cu content is measured at least three times. An average value of at least three times is adopted as the Cu content. The Cu content may be, for example, higher than 98.9% by mass and 99.9% by mass or less.
 銅合金粉末は、たとえば、1~200μmの平均粒径を有するように準備されてもよい。「平均粒径」は、レーザ回折散乱法によって測定される体積基準の粒度分布において微粒側から累積50%の粒径を示す。以下、平均粒径は「d50」とも記される。d50は、たとえば、ガスアトマイズ時のガス圧、分級等により調整され得る。d50は、積層造形物の積層ピッチに応じて調整されてもよい。d50は、たとえば、5~50μmであってもよいし、50~100μmであってもよいし、100~200μmであってもよい。粒子形状は特に限定されるべきではない。粒子は略球状であってもよいし、不規則形状であってもよい。
《第2工程(S200)》
 第2工程(S200)では、銅合金粉末により積層造形物が製造される。
The copper alloy powder may be prepared to have an average particle diameter of 1 to 200 μm, for example. “Average particle size” indicates a particle size of 50% cumulative from the fine particle side in the volume-based particle size distribution measured by the laser diffraction scattering method. Hereinafter, the average particle diameter is also referred to as “d50”. d50 can be adjusted by, for example, gas pressure at the time of gas atomization, classification, or the like. d50 may be adjusted according to the lamination pitch of the layered object. d50 may be, for example, 5 to 50 μm, 50 to 100 μm, or 100 to 200 μm. The particle shape should not be particularly limited. The particles may be substantially spherical or irregularly shaped.
<< Second Step (S200) >>
In the second step (S200), a layered object is manufactured from the copper alloy powder.
 ここでは、粉末床溶融結合法が説明される。ただし粉末床溶融結合法以外の付加製造法が使用されてもよい。たとえば、指向性エネルギ堆積法等が使用されてもよい。造形中に切削加工が実施されてもよい。 Here, the powder bed melt bonding method is explained. However, addition production methods other than the powder bed fusion bonding method may be used. For example, a directional energy deposition method or the like may be used. Cutting may be performed during modeling.
 ここでは、レーザにより銅合金粉末を固化させる態様が説明される。ただしレーザはあくまで一例であり、銅合金粉末が固化する限りは、固化手段はレーザに限定されるべきではない。たとえば、電子ビーム、プラズマ等が使用されてもよい。
(データ処理(S201))
 まず3D-CAD等により3次元形状データが作成される。
Here, the aspect which solidifies copper alloy powder with a laser is demonstrated. However, the laser is merely an example, and as long as the copper alloy powder is solidified, the solidification means should not be limited to the laser. For example, an electron beam, plasma, or the like may be used.
(Data processing (S201))
First, 3D shape data is created by 3D-CAD or the like.
 3次元形状データは、たとえばSTLデータに変換される。図2は、STLデータの一例である。STLデータでは、たとえば、有限要素法による要素分割(いわゆる「メッシュ化」)が実施され得る。 3D shape data is converted into STL data, for example. FIG. 2 is an example of STL data. In the STL data, for example, element division by the finite element method (so-called “meshing”) can be performed.
 STLデータからスライスデータが作成される。図3は、スライスデータの一例である。STLデータはn個の層に分割される。すなわちSTLデータは、第1造形層p1、第2造形層p2、・・・、第n造形層pnに分割される。各層の厚さ(スライス厚さd)は、たとえば、10~150μmでよい。
(粉末層の形成(S202))
 銅合金粉末を含む粉末層が形成される。
Slice data is created from the STL data. FIG. 3 is an example of slice data. STL data is divided into n layers. That is, the STL data is divided into a first modeling layer p1, a second modeling layer p2, ..., an nth modeling layer pn. The thickness of each layer (slice thickness d) may be, for example, 10 to 150 μm.
(Formation of powder layer (S202))
A powder layer containing copper alloy powder is formed.
 図4は、積層造形物の製造過程を図解する第1概略図である。レーザ積層造形装置100は、ピストン101、テーブル102、およびレーザ出力部103を備える。テーブル102は、ピストン101に支持されている。ピストン101は、テーブル102を昇降できるように構成されている。テーブル102上において、積層造形物が造形される。 FIG. 4 is a first schematic diagram illustrating the manufacturing process of the layered object. The laser additive manufacturing apparatus 100 includes a piston 101, a table 102, and a laser output unit 103. The table 102 is supported by the piston 101. The piston 101 is configured to move up and down the table 102. On the table 102, a layered object is formed.
 粉末層の形成(S202)および後述の造形層の形成(S203)は、たとえば、不活性ガス雰囲気中で実施されてもよい。積層造形物の酸化を抑制するためである。不活性ガスは、たとえば、アルゴン(Ar)、窒素(N2)、ヘリウム(He)等であってもよい。不活性ガス雰囲気に代えて、還元性ガス雰囲気とされてもよい。還元性ガスは、たとえば、水素(H2)等である。さらに不活性ガス雰囲気に代えて、減圧雰囲気とされてもよい。 The formation of the powder layer (S202) and the formation of the modeling layer (S203) described below may be performed, for example, in an inert gas atmosphere. This is for suppressing oxidation of the layered object. The inert gas may be, for example, argon (Ar), nitrogen (N 2 ), helium (He), or the like. A reducing gas atmosphere may be used instead of the inert gas atmosphere. The reducing gas is, for example, hydrogen (H 2 ) or the like. Further, a reduced pressure atmosphere may be used instead of the inert gas atmosphere.
 スライスデータに基づいて、ピストン101は、テーブル102を1層分だけ降下させる。テーブル102上に、1層分の銅合金粉末が敷き詰められる。これにより、銅合金粉末を含む第1粉末層1が形成される。たとえば、スキージングブレード(図示されず)等により、第1粉末層1の表面が平滑化されてもよい。第1粉末層1は、実質的に銅合金粉末のみから形成されてもよい。第1粉末層1は、銅合金粉末の他、レーザ吸収材(たとえば樹脂粉末等)を含んでもよい。
(造形層の形成(S203))
 続いて造形層が形成される。
Based on the slice data, the piston 101 lowers the table 102 by one layer. One layer of copper alloy powder is spread on the table 102. Thereby, the 1st powder layer 1 containing copper alloy powder is formed. For example, the surface of the first powder layer 1 may be smoothed by a squeezing blade (not shown) or the like. The first powder layer 1 may be formed substantially only from a copper alloy powder. The first powder layer 1 may include a laser absorbing material (for example, resin powder) in addition to the copper alloy powder.
(Formation layer formation (S203))
Subsequently, a modeling layer is formed.
 造形層は積層造形物の一部を構成することになる。図5は、積層造形物の製造過程を図解する第2概略図である。レーザ出力部103は、スライスデータに基づいて、第1粉末層1の所定位置にレーザ光を照射する。レーザ光の照射の前に、予め第1粉末層1が加熱されていてもよい。レーザ光の照射を受けた銅合金粉末は、溶融および焼結を経て固化する。これにより第1造形層p1が形成される。すなわち、粉末層において所定位置の銅合金粉末が固化することにより、造形層が形成される。 The modeling layer constitutes a part of the layered object. FIG. 5 is a second schematic diagram illustrating the manufacturing process of the layered object. The laser output unit 103 irradiates a predetermined position of the first powder layer 1 with laser light based on the slice data. Before the laser light irradiation, the first powder layer 1 may be heated in advance. The copper alloy powder that has been irradiated with the laser light is solidified through melting and sintering. Thereby, the 1st modeling layer p1 is formed. That is, the modeling layer is formed by solidifying the copper alloy powder at a predetermined position in the powder layer.
 レーザ出力部103は、汎用のレーザ装置であり得る。レーザ光の光源は、たとえば、ファイバレーザ、YAGレーザ、CO2レーザ、半導体レーザ、グリーンレーザ等であり得る。レーザ光の出力は、たとえば、20~1000Wであってもよいし、200~500Wであってもよい。レーザ光の走査速度は、たとえば、50~2000mm/sの範囲内で調整され得る。 The laser output unit 103 can be a general-purpose laser device. The light source of the laser light can be, for example, a fiber laser, a YAG laser, a CO 2 laser, a semiconductor laser, a green laser, or the like. The output of the laser beam may be, for example, 20 to 1000 W or 200 to 500 W. The scanning speed of the laser beam can be adjusted within a range of 50 to 2000 mm / s, for example.
 レーザ光のエネルギ密度は、10~2000J/mm3の範囲内で調整され得る。エネルギ密度は下記式(I):
 E=P÷(v×s×d)・・・(I)
によって算出される。式(I)中、「E」はレーザ光のエネルギ密度[単位:J/mm3]を示す。「P」はレーザの出力[単位:W]を示す。「v」は走査速度[単位:mm/s]を示す。「s」は走査幅[単位:mm]を示す。「d」はスライス厚さ[単位:mm]を示す。
The energy density of the laser light can be adjusted within a range of 10 to 2000 J / mm 3 . The energy density is the following formula (I):
E = P ÷ (v × s × d) (I)
Is calculated by In the formula (I), “E” indicates the energy density [unit: J / mm 3 ] of the laser beam. “P” indicates the laser output [unit: W]. “V” indicates a scanning speed [unit: mm / s]. “S” indicates a scanning width [unit: mm]. “D” indicates slice thickness [unit: mm].
 図6は、積層造形物の製造過程を図解する第3概略図である。第1造形層p1が形成された後、ピストン101は、テーブル102を1層分だけ降下させる。上記と同じ手順により、第2粉末層2が形成され、続いて第2造形層p2が形成される。その後、粉末層の形成(202)および造形層の形成(203)が順次繰り返され、造形層が積層されることにより、積層造形物が製造される。 FIG. 6 is a third schematic diagram illustrating the manufacturing process of the layered object. After the first modeling layer p1 is formed, the piston 101 lowers the table 102 by one layer. The second powder layer 2 is formed by the same procedure as described above, and then the second modeling layer p2 is formed. Thereafter, the formation of the powder layer (202) and the formation of the modeling layer (203) are sequentially repeated, and the modeling layer is laminated, whereby a layered object is manufactured.
 図7は、積層造形物の製造過程を図解する第4概略図である。最終的に、第n造形層pnが積層されることにより、積層造形物10が完成する。本実施形態では、特定組成の銅合金粉末が使用されているため、積層造形物10は高い相対密度を有することができる。
《第3工程(S300)》
 第3工程(S300)では、積層造形物が300℃以上の温度で熱処理される。これにより、積層造形物の機械的強度(たとえば引張強さ、ビッカース硬さ等)、ならびに積層造形物の導電率が飛躍的に向上することが期待される。
FIG. 7 is a fourth schematic diagram illustrating the manufacturing process of the layered object. Finally, the layered object 10 is completed by stacking the nth layer pn. In this embodiment, since the copper alloy powder having a specific composition is used, the layered object 10 can have a high relative density.
<< Third Step (S300) >>
In the third step (S300), the layered object is heat-treated at a temperature of 300 ° C. or higher. Thereby, it is expected that the mechanical strength (for example, tensile strength, Vickers hardness, etc.) of the layered object and the electrical conductivity of the layered object are greatly improved.
 本実施形態では、一般的な熱処理炉が使用され得る。熱処理温度は、熱処理炉に付帯する温度センサにより測定される。たとえば、熱処理炉の設定温度が300℃であれば、積層造形物が300℃で熱処理されたとみなされる。 In this embodiment, a general heat treatment furnace can be used. The heat treatment temperature is measured by a temperature sensor attached to the heat treatment furnace. For example, if the set temperature of the heat treatment furnace is 300 ° C., it is considered that the layered object has been heat-treated at 300 ° C.
 積層造形物は、たとえば、1分以上10時間以下熱処理されてもよいし、10分以上5時間以下熱処理されてもよいし、30分以上3時間以下熱処理されてもよいし、1時間以上2時間以下熱処理されてもよい。熱処理の雰囲気は、たとえば、大気、窒素、アルゴン、水素、真空等であり得る。 The layered object may be heat-treated, for example, from 1 minute to 10 hours, may be heat-treated from 10 minutes to 5 hours, or may be heat-treated from 30 minutes to 3 hours, or from 1 hour to 2 hours. It may be heat-treated for less than an hour. The atmosphere of the heat treatment can be, for example, air, nitrogen, argon, hydrogen, vacuum, or the like.
 第3工程では、積層造形物が400℃以上の温度で熱処理されてもよいし、450℃以上の温度で熱処理されてもよい。これにより機械的強度および導電率のいっそうの向上が期待される。 In the third step, the layered object may be heat-treated at a temperature of 400 ° C. or higher, or may be heat-treated at a temperature of 450 ° C. or higher. As a result, further improvement in mechanical strength and electrical conductivity is expected.
 第3工程では、積層造形物が700℃以下の温度で熱処理されてもよいし、600℃以下の温度で熱処理されてもよいし、550℃以下の温度で熱処理されてもよい。これにより、たとえば、機械的強度と導電率とのバランスが向上することが期待される。積層造形物は、700℃を超える温度で熱処理されてもよい。ただし、700℃を超える温度では、機械的強度および導電率の向上効果が小さくなる可能性もある。
<積層造形物>
 本実施形態の積層造形物は、典型的には上記の製造方法により製造される。
In the third step, the layered object may be heat-treated at a temperature of 700 ° C. or lower, may be heat-treated at a temperature of 600 ° C. or lower, or may be heat-treated at a temperature of 550 ° C. or lower. Thereby, for example, it is expected that the balance between mechanical strength and conductivity is improved. The layered object may be heat-treated at a temperature exceeding 700 ° C. However, at temperatures exceeding 700 ° C., the effect of improving mechanical strength and conductivity may be reduced.
<Layered object>
The layered object of the present embodiment is typically manufactured by the above manufacturing method.
 本実施形態の積層造形物は、切削加工では実現できない複雑形状を有し得る。さらに本実施形態の積層造形物は、機械的強度および導電率の両方に優れることができる。本実施形態の積層造形物は、一例としてプラズマトーチになり得る。
(組成)
 積層造形物は、銅合金により構成されている。積層造形物は、0.10質量%以上1.00質量%以下のCr、および残部のCuを含有する。前述の銅合金粉末と同様に、残部は、添加元素および不可避不純物元素の少なくとも一方を含んでいてもよい。積層造形物のCr含有量は、銅合金粉末のCr含有量の測定方法と同様の測定方法により測定される。Cr含有量は、0.15質量%以上であってもよいし、0.20質量%以上であってもよいし、0.22質量%以上であってもよいし、0.51質量%以上であってもよい。Cr含有量は、0.94質量%以下であってもよい。
The layered object of the present embodiment may have a complicated shape that cannot be realized by cutting. Furthermore, the layered object of this embodiment can be excellent in both mechanical strength and electrical conductivity. The layered object of the present embodiment can be a plasma torch as an example.
(composition)
The layered object is made of a copper alloy. The layered object contains 0.10 mass% or more and 1.00 mass% or less of Cr, and the remaining Cu. Similar to the aforementioned copper alloy powder, the balance may contain at least one of an additive element and an inevitable impurity element. The Cr content of the layered object is measured by the same measuring method as the measuring method of the Cr content of the copper alloy powder. The Cr content may be 0.15% by mass or more, 0.20% by mass or more, 0.22% by mass or more, or 0.51% by mass or more. It may be. The Cr content may be 0.94% by mass or less.
 積層造形物のCu含有量も、銅合金粉末のCu含有量の測定方法と同様の測定方法により測定される。Cu含有量は、たとえば、98.9質量%より高く99.9質量%以下であってもよい。
(相対密度)
 積層造形物は、銅合金の理論密度に対して97%以上100%以下の相対密度を有する。「相対密度」は、積層造形物の実測密度が理論密度により除されることにより算出される。理論密度は、積層造形物と同じ組成を有する溶製材の密度を示す。実測密度は「JIS Z 2501:焼結金属材料-密度、含油率および開放気孔率試験方法」に準拠した方法により測定される。液体には水が使用される。相対密度は少なくとも3回測定される。少なくとも3回の平均値が相対密度として採用される。
The Cu content of the layered object is also measured by the same measuring method as the measuring method of the Cu content of the copper alloy powder. The Cu content may be, for example, higher than 98.9% by mass and 99.9% by mass or less.
(Relative density)
The layered object has a relative density of 97% to 100% with respect to the theoretical density of the copper alloy. The “relative density” is calculated by dividing the actually measured density of the layered object by the theoretical density. The theoretical density indicates the density of the melted material having the same composition as the layered object. The measured density is measured by a method according to “JIS Z 2501: Sintered metal material—Test method for density, oil content and open porosity”. Water is used as the liquid. The relative density is measured at least 3 times. An average value of at least three times is adopted as the relative density.
 相対密度が高い積層造形物は、高い気密性を必要とする部品に好適である。また相対密度が高い程、機械的強度も期待できる。相対密度は、97.6%以上であってもよいし、98%以上であってもよいし、99%以上であってもよいし、99.2%以上であってもよいし、99.4%以上であってもよい。
(機械的強度)
 積層造形物は、優れた機械的強度を有し得る。たとえば、積層造形物は、250MPa以上の引張強さを有し得る。すなわち本実施形態の積層造形物は、無酸素銅(UNS番号C10200)と同等以上の引張強さを有し得る。
A layered object having a high relative density is suitable for a component that requires high airtightness. Moreover, mechanical strength is also expectable, so that a relative density is high. The relative density may be 97.6% or more, 98% or more, 99% or more, 99.2% or more, 99. It may be 4% or more.
(Mechanical strength)
The layered object can have excellent mechanical strength. For example, the layered object may have a tensile strength of 250 MPa or more. That is, the layered object of the present embodiment can have a tensile strength equal to or higher than that of oxygen-free copper (UNS number C10200).
 「引張強さ」は、以下の手順により測定される。
 測定には「JIS B 7721:引張試験機・圧縮試験機-力計測系の校正方法および検証方法」に規定される等級1級以上の引張試験装置が使用される。図8は、引張試験に使用される試験片の平面図である。図8に示されるダンベル状試験片20が準備される。ダンベル状試験片20が引張試験装置のつかみ具に装着される。つかみ具には、ダンベル状試験片20の形状に適した物が使用される。ダンベル状試験片20は、その軸方向に引張応力が加わるように装着される。
“Tensile strength” is measured by the following procedure.
For the measurement, a tensile test apparatus of grade 1 or higher defined in “JIS B 7721: Tensile Tester / Compression Tester—Calibration Method and Verification Method of Force Measurement System” is used. FIG. 8 is a plan view of a test piece used in the tensile test. A dumbbell-shaped test piece 20 shown in FIG. 8 is prepared. The dumbbell-shaped test piece 20 is attached to the grip of the tensile test apparatus. As the gripping tool, an object suitable for the shape of the dumbbell-shaped test piece 20 is used. The dumbbell-shaped test piece 20 is mounted so that a tensile stress is applied in the axial direction.
 2mm/minの速度で、ダンベル状試験片20が引っ張られる。引張りは、ダンベル状試験片20が破断するまで継続される。ダンベル状試験片20が破断するまでに現れる最大引張応力が測定される。 The dumbbell-shaped test piece 20 is pulled at a speed of 2 mm / min. Pulling is continued until the dumbbell-shaped test piece 20 breaks. The maximum tensile stress that appears before the dumbbell-shaped test piece 20 breaks is measured.
 最大引張応力が平行部21の断面積で除されることにより、引張強さが算出される。平行部21の断面積は、9.616mm2(=π×3.5mm×3.5mm÷4)である。引張強さは少なくとも3回測定される。少なくとも3回の平均値が引張強さとして採用される。なおダンベル状試験片20の各部の寸法は次のとおりとされる。 The tensile strength is calculated by dividing the maximum tensile stress by the cross-sectional area of the parallel portion 21. The cross-sectional area of the parallel portion 21 is 9.616 mm 2 (= π × 3.5 mm × 3.5 mm ÷ 4). Tensile strength is measured at least three times. An average value of at least three times is adopted as the tensile strength. In addition, the dimension of each part of the dumbbell-shaped test piece 20 is as follows.
 ダンベル状試験片20の全長(L0):36mm
 平行部21の長さ(L1) :18±0.5mm
 平行部21の直径(D1) :3.5±0.05mm
 肩部23の半径(R)   :10mm
 つかみ部22の長さ(L2):4.0mm
 つかみ部22の直径(D2):6.0mm
 引張強さは、第3工程の熱処理温度により調整され得る。引張強さは、たとえば、300MPa以上であってもよいし、350MPa以上であってもよいし、400MPa以上であってもよいし、450MPa以上であってもよいし、500MPa以上であってもよいし、550MPa以上であってもよいし、600MPa以上であってもよい。引張強さは、たとえば、700MPa以下であってもよいし、650MPa以下であってもよい。
Total length (L0) of dumbbell-shaped test piece 20: 36 mm
Length of parallel portion 21 (L1): 18 ± 0.5 mm
Diameter of parallel part 21 (D1): 3.5 ± 0.05 mm
Radius (R) of shoulder 23: 10 mm
Length of the grip portion 22 (L2): 4.0 mm
Diameter of grip portion 22 (D2): 6.0 mm
The tensile strength can be adjusted by the heat treatment temperature in the third step. The tensile strength may be, for example, 300 MPa or more, 350 MPa or more, 400 MPa or more, 450 MPa or more, or 500 MPa or more. And it may be 550 MPa or more, or 600 MPa or more. The tensile strength may be, for example, 700 MPa or less, or 650 MPa or less.
 積層造形物は、70HV以上のビッカース硬さを有し得る。「ビッカース硬さ」は「JIS Z 2244:ビッカース硬さ試験-試験方法」に準拠した方法により測定される。ビッカース硬さも第3工程の熱処理温度により調整され得る。ビッカース硬さは、たとえば、80HV以上であってもよいし、90HV以上であってもよいし、100HV以上であってもよいし、120HV以上であってもよいし、140HV以上であってもよいし、160HV以上であってもよいし、190HV以上であってもよい。ビッカース硬さは、たとえば、250HV以下であってもよいし、200HV以下であってもよい。
(導電率)
 積層造形物は、50%IACS以上の導電率を有する。すなわち本実施形態の積層造形物は、黄銅(UNS番号C26000)の導電率を超える導電率を有し得る。「導電率」は、市販の渦流式導電率計によって測定される。導電率は、焼鈍標準軟銅(International Annealed Copper Standard,IACS)の導電率を基準として評価される。すなわち積層造形物の導電率は、IACSの導電率に対する百分率として表される。たとえば、積層造形物の導電率が50%IACSであることは、積層造形物の導電率がIACSの導電率の半分であることを意味する。導電率は少なくとも3回測定される。少なくとも3回の平均値が導電率として採用される。
The layered object may have a Vickers hardness of 70 HV or higher. “Vickers hardness” is measured by a method according to “JIS Z 2244: Vickers hardness test—test method”. The Vickers hardness can also be adjusted by the heat treatment temperature in the third step. The Vickers hardness may be, for example, 80 HV or more, 90 HV or more, 100 HV or more, 120 HV or more, or 140 HV or more. However, it may be 160 HV or higher, or 190 HV or higher. The Vickers hardness may be, for example, 250 HV or less, or 200 HV or less.
(conductivity)
The layered object has a conductivity of 50% IACS or more. That is, the layered object of the present embodiment may have a conductivity exceeding the conductivity of brass (UNS number C26000). “Conductivity” is measured by a commercially available eddy current conductivity meter. The electrical conductivity is evaluated on the basis of the electrical conductivity of annealed standard annealed copper (International Annealed Copper Standard, IACS). That is, the conductivity of the layered object is expressed as a percentage of the IACS conductivity. For example, the conductivity of the layered object is 50% IACS means that the conductivity of the layered object is half of the conductivity of IACS. Conductivity is measured at least three times. An average value of at least three times is adopted as the conductivity.
 導電率は、第3工程の熱処理温度により調整され得る。積層造形物は、70%IACS以上の導電率を有してもよいし、80%IACS以上の導電率を有してもよいし、90%IACS以上の導電率を有してもよい。積層造形物は、たとえば、100%IACS以下の導電率を有してもよい。 The conductivity can be adjusted by the heat treatment temperature in the third step. The layered object may have a conductivity of 70% IACS or higher, a conductivity of 80% IACS or higher, or a conductivity of 90% IACS or higher. The layered object may have a conductivity of 100% IACS or less, for example.
 以下、実施例が説明される。ただし以下の例は、請求の範囲を限定するものではない。
 図1に示されるフローチャートに沿って、積層造形物が製造された。
Examples will be described below. However, the following examples do not limit the scope of the claims.
A layered object was manufactured along the flowchart shown in FIG.
 まず、下記表1に示される化学成分を含有する銅合金粉末A1~A5が準備された(S100)。これらの銅合金粉末は所定のアトマイズ法により製造された。比較として純銅粉末Xおよび銅合金粉末Yも準備された。純銅粉末Xは、市販純銅を原料とする粉末である。銅合金粉末Yは、市販銅合金(製品名「AMPCO940」)を原料とする粉末である。以下、これらの粉末が「金属粉末」と総称される場合がある。 First, copper alloy powders A1 to A5 containing chemical components shown in Table 1 below were prepared (S100). These copper alloy powders were produced by a predetermined atomization method. For comparison, pure copper powder X and copper alloy powder Y were also prepared. Pure copper powder X is a powder made of commercially available pure copper as a raw material. The copper alloy powder Y is a powder made of a commercially available copper alloy (product name “AMPCO940”) as a raw material. Hereinafter, these powders are sometimes collectively referred to as “metal powders”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以下の仕様のレーザ積層造形装置が準備された。
 レーザ  :ファイバレーザ、最大出力400W
 スポット径:0.05~0.20mm
 走査速度 :~7000mm/s
 積層ピッチ:0.02~0.08mm
 造形サイズ:250mm×250mm×280mm
1.純銅粉末X
 3次元形状データが作成された(S201)。(i)金属粉末を含む粉末層を形成すること(S202)、および(ii)粉末層において所定位置の金属粉末を固化させることにより、造形層を形成すること(S203)が順次繰り返され、造形層が積層された。こうして純銅粉末Xにより、No.X-1~X-40に係る積層造形物が製造された(S200)。積層造形物は、直径14mm×高さ15mmの円柱である(特に断りのない限り、以下の積層造形物も同様である)。積層造形物の製造条件は、下記表2および3に示されている。前述の方法に従って、積層造形物の相対密度および導電率が測定された。結果は下記表2および3に示されている。
A laser additive manufacturing apparatus having the following specifications was prepared.
Laser: Fiber laser, maximum output 400W
Spot diameter: 0.05-0.20mm
Scanning speed: ~ 7000mm / s
Lamination pitch: 0.02-0.08mm
Modeling size: 250mm x 250mm x 280mm
1. Pure copper powder X
Three-dimensional shape data is created (S201). (I) forming a powder layer containing a metal powder (S202), and (ii) forming a modeling layer by solidifying a metal powder at a predetermined position in the powder layer (S203) is sequentially repeated. The layers were laminated. Thus, with pure copper powder X, no. A layered object according to X-1 to X-40 was manufactured (S200). The layered object is a cylinder having a diameter of 14 mm and a height of 15 mm (unless otherwise specified, the following layered object is the same). The manufacturing conditions for the layered object are shown in Tables 2 and 3 below. The relative density and conductivity of the layered object were measured according to the method described above. The results are shown in Tables 2 and 3 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表2および3に示されるように、純銅粉末Xにより製造された積層造形物では、製造条件が固定されていても、仕上がり物性が安定せず、大きくばらついている。表2および3の「相対密度」の欄において「測定不可」は、積層造形物が多くの空隙を含むために、信頼性の高い密度が測定できなかったことを示している。純銅は、100%IACSの導電率を有すると考えてよい。純銅粉末Xにより製造された積層造形物は、純銅に比し、導電率が大幅に低下している。純銅粉末Xによっては、実用的な機械部品を製造することが困難であると考えられる。
2.銅合金粉末Y(市販銅合金の粉末)
 下記表4に示される製造条件により、上記と同様にしてNo.Y-1~Y-7に係る積層造形物が製造された。積層造形物は、窒素雰囲気中、下記表4の「熱処理温度」の欄に示される温度で3時間熱処理された(S300)。「熱処理温度」の欄に「なし」と記された積層造形物は熱処理されていない。前述の方法に従って、積層造形物の相対密度および導電率が測定された。結果は下記表4に示されている。
As shown in Tables 2 and 3 above, in the layered object manufactured with the pure copper powder X, even if the manufacturing conditions are fixed, the finished physical properties are not stable and vary greatly. In the column of “Relative Density” in Tables 2 and 3, “not measurable” indicates that a highly reliable density could not be measured because the layered object includes many voids. Pure copper may be considered to have a conductivity of 100% IACS. The layered object manufactured with the pure copper powder X has a significantly reduced electrical conductivity as compared with pure copper. Depending on the pure copper powder X, it is considered difficult to produce practical mechanical parts.
2. Copper alloy powder Y (commercial copper alloy powder)
According to the manufacturing conditions shown in Table 4 below, the same as above, No. Laminated shaped products according to Y-1 to Y-7 were manufactured. The layered object was heat-treated in a nitrogen atmosphere for 3 hours at the temperature indicated in the “heat treatment temperature” column of Table 4 below (S300). The layered object with “None” in the “Heat treatment temperature” column is not heat treated. The relative density and conductivity of the layered object were measured according to the method described above. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表4に示されるように、銅合金粉末Y(市販銅合金の粉末)により製造された積層造形物の導電率は、市販銅合金の導電率(45.5%IACS程度)に比して大幅に低下していた。
3.銅合金粉末A1(Cr含有量:0.22質量%)
 下記表5に示される製造条件により、上記と同様にしてNo.A1-1~A1-14に係る積層造形物が製造された。積層造形物は、窒素雰囲気中、下記表5の「熱処理温度」の欄に示される温度で3時間熱処理された。前述の方法に従って、相対密度、導電率および引張強さが測定された。引張強さは、別途製造されたダンベル状試験片20(図8を参照)において測定された(以下同様である)。結果は下記表5に示されている。
As shown in Table 4 above, the electrical conductivity of the layered object manufactured using the copper alloy powder Y (commercial copper alloy powder) is higher than that of the commercial copper alloy (about 45.5% IACS). It had dropped significantly.
3. Copper alloy powder A1 (Cr content: 0.22% by mass)
According to the manufacturing conditions shown in Table 5 below, the same as above, No. A layered object according to A1-1 to A1-14 was manufactured. The layered object was heat-treated in a nitrogen atmosphere for 3 hours at the temperature indicated in the “heat treatment temperature” column of Table 5 below. Relative density, conductivity and tensile strength were measured according to the methods described above. The tensile strength was measured on a separately manufactured dumbbell-shaped test piece 20 (see FIG. 8) (the same applies hereinafter). The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表5に示されるように、銅合金粉末A1により製造された積層造形物では、仕上がり物性のばらつきが抑制されていた。これらの積層造形物は、機械部品として使用できる機械的強度および導電率を有すると考えられる。
4.銅合金粉末A2(Cr含有量:0.51質量%)
 下記表6に示される製造条件により、上記と同様にしてNo.A2-1~A2-12に係る積層造形物が製造された。積層造形物は、窒素雰囲気中、下記表6の「熱処理温度」の欄に示される温度で3時間熱処理された。前述の方法に従って、相対密度、導電率および引張強さが測定された。結果は下記表6に示されている。
As shown in Table 5 above, in the layered object manufactured using the copper alloy powder A1, variations in the finished physical properties were suppressed. These layered objects are considered to have mechanical strength and electrical conductivity that can be used as machine parts.
4). Copper alloy powder A2 (Cr content: 0.51% by mass)
According to the manufacturing conditions shown in Table 6 below, the same as above, No. A layered product according to A2-1 to A2-12 was manufactured. The layered object was heat-treated for 3 hours in a nitrogen atmosphere at the temperature indicated in the column of “heat treatment temperature” in Table 6 below. Relative density, conductivity and tensile strength were measured according to the methods described above. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表6に示されるように、銅合金粉末A2により製造された積層造形物では、仕上がり物性のばらつきが抑制されていた。これらの積層造形物は、機械部品として使用できる機械的強度および導電率を有すると考えられる。
5.銅合金粉末A3(Cr含有量:0.94質量%)
 下記表7に示される製造条件により、上記と同様にしてNo.A3-1~A3-7に係る積層造形物が製造された。積層造形物は、窒素雰囲気中、下記表7の「熱処理温度」の欄に示される温度で3時間熱処理された。前述の方法に従って、相対密度、導電率および引張強さが測定された。結果は下記表7に示されている。
As shown in Table 6 above, in the layered object manufactured using the copper alloy powder A2, variations in finished physical properties were suppressed. These layered objects are considered to have mechanical strength and electrical conductivity that can be used as machine parts.
5). Copper alloy powder A3 (Cr content: 0.94% by mass)
According to the manufacturing conditions shown in Table 7 below, the same as above, No. A layered product according to A3-1 to A3-7 was manufactured. The layered object was heat-treated in a nitrogen atmosphere at a temperature indicated in the column of “heat treatment temperature” in Table 7 below for 3 hours. Relative density, conductivity and tensile strength were measured according to the methods described above. The results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表7に示されるように、銅合金粉末A3により製造された積層造形物では、仕上がり物性のばらつきが抑制されていた。これらの積層造形物は、機械部品として使用できる機械的強度および導電率を有すると考えられる。
6.熱処理温度の検討
 下記表8および9に示される製造条件により、積層造形物が製造された。前述の方法により積層造形物の相対密度が測定された。さらに積層造形物が、窒素雰囲気中、下記表8および9の「熱処理温度」の欄に示される温度で1時間熱処理された。熱処理後、積層造形物の引張強さ、ビッカース硬さおよび導電率が測定された。ビッカース硬さは前述の方法により測定された。結果は下記表8および9に示されている。
As shown in Table 7 above, in the layered object manufactured using the copper alloy powder A3, variations in finished physical properties were suppressed. These layered objects are considered to have mechanical strength and electrical conductivity that can be used as machine parts.
6). Examination of heat treatment temperature A layered product was manufactured under the manufacturing conditions shown in Tables 8 and 9 below. The relative density of the layered object was measured by the method described above. Furthermore, the layered object was heat-treated in a nitrogen atmosphere for 1 hour at the temperature shown in the column of “heat treatment temperature” in Tables 8 and 9 below. After heat treatment, the laminate model was measured for tensile strength, Vickers hardness and electrical conductivity. Vickers hardness was measured by the method described above. The results are shown in Tables 8 and 9 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表8および9に示されるように、銅合金により構成され、かつCr含有量が0.10質量%以上1.00質量%以下である積層造形物は、安定して97%以上100%以下の相対密度を有していた。さらに積層造形物が300℃以上の温度で熱処理されることにより、機械的強度および導電率が大幅に向上する傾向が認められる。 As shown in Tables 8 and 9 above, a layered object composed of a copper alloy and having a Cr content of 0.10% by mass to 1.00% by mass is stably 97% to 100%. And had a relative density of Furthermore, when the layered object is heat-treated at a temperature of 300 ° C. or higher, a tendency that the mechanical strength and the electrical conductivity are greatly improved is recognized.
 以下、図9~11により結果が説明される。図9~11において、たとえば、凡例の「0.2Cr」はCr含有量が0.22質量%であることを示している。便宜上凡例では少数第2位が四捨五入されている。熱処理されていない積層造形物は、25℃で熱処理されたとみなして、グラフが作成されている。 Hereinafter, the results will be described with reference to FIGS. 9 to 11, for example, “0.2Cr” in the legend indicates that the Cr content is 0.22% by mass. For convenience, the second decimal place is rounded off in the legend. The layered object that has not been heat-treated is considered to have been heat-treated at 25 ° C., and a graph is created.
 図9は、第3工程の熱処理温度と導電率との関係を示すグラフである。熱処理温度が300℃以上の範囲において、積層造形物の導電率が顕著に向上している。熱処理温度が700℃の場合も、導電率の向上効果が認められる。したがって熱処理温度の上限は700℃であってもよい。ただし、熱処理温度が700℃を超える範囲においても、導電率の向上効果は得られると予想される。 FIG. 9 is a graph showing the relationship between the heat treatment temperature and conductivity in the third step. In the range where the heat treatment temperature is 300 ° C. or higher, the conductivity of the layered object is significantly improved. Even when the heat treatment temperature is 700 ° C., the effect of improving the conductivity is recognized. Therefore, the upper limit of the heat treatment temperature may be 700 ° C. However, it is expected that the effect of improving the conductivity can be obtained even in the range where the heat treatment temperature exceeds 700 ° C.
 図10は、第3工程の熱処理温度と引張強さとの関係を示すグラフである。図10に示されるように、熱処理温度が300℃以上の範囲において、積層造形物の引張強さが顕著に向上している。熱処理温度が400℃から450℃に変更された際の引張強さの向上幅は特に顕著である。引張強さは500℃付近でピークとなり、その後なだらかに減少している。 FIG. 10 is a graph showing the relationship between the heat treatment temperature and the tensile strength in the third step. As shown in FIG. 10, the tensile strength of the layered object is significantly improved when the heat treatment temperature is 300 ° C. or higher. The range of improvement in tensile strength when the heat treatment temperature is changed from 400 ° C. to 450 ° C. is particularly remarkable. The tensile strength reaches a peak at around 500 ° C. and then decreases gradually.
 図11は、第3工程の熱処理温度とビッカース硬さとの関係を示すグラフである。ビッカース硬さも、引張強さと同様の傾向を示している。 FIG. 11 is a graph showing the relationship between the heat treatment temperature and the Vickers hardness in the third step. Vickers hardness also shows the same tendency as tensile strength.
 図9~11より、機械的強度と導電率とのバランスの観点から、熱処理温度は300℃以上700℃以下であってもよいし、400℃以上600℃以下であってもよいし、450℃以上550℃以下であってもよいし、450℃以上500℃以下であってもよいと考えられる。 9 to 11, the heat treatment temperature may be 300 ° C. or higher and 700 ° C. or lower, 400 ° C. or higher and 600 ° C. or lower, or 450 ° C. from the viewpoint of the balance between mechanical strength and electrical conductivity. It may be 550 ° C. or lower or 450 ° C. or higher and 500 ° C. or lower.
 今回開示された実施形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。請求の範囲によって確定される技術的範囲は、請求の範囲と均等の意味および範囲内でのすべての変更を含む。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The technical scope defined by the claims includes meanings equivalent to the claims and all changes within the scope.
 1 第1粉末層、2 第2粉末層、10 積層造形物、20 ダンベル状試験片、21 平行部、22 つかみ部、23 肩部、100 レーザ積層造形装置、101 ピストン、102 テーブル、103 レーザ出力部、p1 第1造形層、p2 第2造形層、pn 第n造形層。 1. 1st powder layer, 2nd powder layer, 10 layered object, 20 dumbbell specimen, 21 parallel part, 22 grip part, 23 shoulder part, 100 laser additive manufacturing apparatus, 101 piston, 102 table, 103 laser output Part, p1 first modeling layer, p2 second modeling layer, pn nth modeling layer.

Claims (6)

  1.  銅合金粉末を準備する第1工程、
     前記銅合金粉末により積層造形物を製造する第2工程、および
     前記積層造形物を300℃以上の温度で熱処理する第3工程
    を含み、
     前記銅合金粉末は、
      0.10質量%以上1.00質量%以下のクロム、および
      残部の銅
     を含有し、
     前記積層造形物は、
      前記銅合金粉末を含む粉末層を形成すること、および
      前記粉末層において所定位置の前記銅合金粉末を固化させることにより、造形層を形成すること
     が順次繰り返され、前記造形層が積層されることにより製造される、
    積層造形物の製造方法。
    A first step of preparing a copper alloy powder;
    Including a second step of manufacturing a layered object using the copper alloy powder, and a third step of heat-treating the layered object at a temperature of 300 ° C. or higher,
    The copper alloy powder is
    Containing 0.10% by mass or more and 1.00% by mass or less of chromium, and the remaining copper
    The layered object is
    Forming a powder layer including the copper alloy powder and solidifying the copper alloy powder in a predetermined position in the powder layer to sequentially form a modeling layer, and stacking the modeling layer Manufactured by,
    Manufacturing method of layered object.
  2.  前記第3工程では、前記積層造形物が400℃以上の温度で熱処理される、
    請求項1に記載の積層造形物の製造方法。
    In the third step, the layered object is heat-treated at a temperature of 400 ° C. or higher.
    The method for producing a layered object according to claim 1.
  3.  前記第3工程では、前記積層造形物が700℃以下の温度で熱処理される、
    請求項1または請求項2に記載の積層造形物の製造方法。
    In the third step, the layered object is heat-treated at a temperature of 700 ° C. or lower.
    The manufacturing method of the laminate-molded article of Claim 1 or Claim 2.
  4.  前記第3工程では、前記積層造形物が600℃以下の温度で熱処理される、
    請求項1~請求項3のいずれか1項に記載の積層造形物の製造方法。
    In the third step, the layered object is heat-treated at a temperature of 600 ° C. or lower.
    The method for producing a layered object according to any one of claims 1 to 3.
  5.  銅合金により構成されている積層造形物であって、
     0.10質量%以上1.00質量%以下のクロム、および残部の銅を含有し、
     前記銅合金の理論密度に対して97%以上100%以下の相対密度を有し、かつ
     50%IACS以上の導電率を有する、
    積層造形物。
    A layered object composed of a copper alloy,
    Containing 0.10% by mass or more and 1.00% by mass or less of chromium, and the balance of copper,
    Having a relative density of 97% or more and 100% or less with respect to the theoretical density of the copper alloy, and having a conductivity of 50% IACS or more,
    Laminated model.
  6.  70%IACS以上の導電率を有する、
    請求項5に記載の積層造形物。
    Having a conductivity of 70% IACS or higher,
    The layered object according to claim 5.
PCT/JP2017/028083 2016-10-25 2017-08-02 Laminated molding production method and laminated molding WO2018079002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-208893 2016-10-25
JP2016208893A JP6803021B2 (en) 2016-10-25 2016-10-25 Manufacturing method of laminated model and laminated model

Publications (1)

Publication Number Publication Date
WO2018079002A1 true WO2018079002A1 (en) 2018-05-03

Family

ID=62024702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028083 WO2018079002A1 (en) 2016-10-25 2017-08-02 Laminated molding production method and laminated molding

Country Status (3)

Country Link
JP (1) JP6803021B2 (en)
TW (1) TW201823480A (en)
WO (1) WO2018079002A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044073A1 (en) * 2017-09-04 2019-03-07 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method for multilayer shaped structure, method for producing copper alloy shaped structure, and copper alloy shaped structure
WO2020138273A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PURE COPPER POWDER HAVING Si COATING, METHOD FOR PRODUCING SAME, AND ADDITIVE MANUFACTURING MODEL USING PURE COPPER POWDER
WO2020138274A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PRODUCTION METHOD FOR ADDITIVE-MANUFACTURED PRODUCT USING PURE COPPER POWDER HAVING Si COATING
CN111822724A (en) * 2020-09-14 2020-10-27 陕西斯瑞新材料股份有限公司 Preparation method of powder-spread type 3D printing CuCr2 alloy
WO2021015119A1 (en) * 2019-07-23 2021-01-28 山陽特殊製鋼株式会社 Cu-based alloy powder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914466A (en) * 2017-05-29 2020-03-24 欧瑞康美科股份公司,沃伦 Plasma coating torch for internal coating
WO2019239655A1 (en) * 2018-06-14 2019-12-19 古河電気工業株式会社 Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
KR102116854B1 (en) * 2018-12-13 2020-06-01 한국표준과학연구원 High efficient additive manufacturing process apparatus for complex shaped hydrogen embrittlement resistive parts
JP7355620B2 (en) * 2019-11-28 2023-10-03 愛知産業株式会社 Manufacturing method for additively manufactured objects
WO2023181329A1 (en) * 2022-03-25 2023-09-28 福田金属箔粉工業株式会社 Copper alloy powder for additive layer manufacturing, production method and evaluation method therefor, method for producing additive layer-manufactured copper alloy article, and additive layer-manufactured copper alloy article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163223A (en) * 1985-01-14 1986-07-23 Sumitomo Electric Ind Ltd Manufacture of copper-chromium alloy product
JP6030186B1 (en) * 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163223A (en) * 1985-01-14 1986-07-23 Sumitomo Electric Ind Ltd Manufacture of copper-chromium alloy product
JP6030186B1 (en) * 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOYUKI NOMURA ET AL.: "Laser Sekiso Zokeiho o Mochiite Sakusei shita Do Gokin no Soshiki to Kikaiteki Seishitsu", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 28, no. 2, 1 September 2015 (2015-09-01), pages 180 *
SATOSHI MIYAGAWA ET AL.: "Laser Sekiso Zokeiho ni yoru Cu-Cr Gokin no Sakusei", ABSTRACTS OF MEETING OF JAPAN SOCIETY OF POWDER AND POWDER METALLURGY HEISEI 27 NENDO SHUNKI TAIKAI, 26 May 2015 (2015-05-26), pages 75 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044073A1 (en) * 2017-09-04 2019-03-07 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method for multilayer shaped structure, method for producing copper alloy shaped structure, and copper alloy shaped structure
JP6541901B1 (en) * 2017-09-04 2019-07-10 株式会社Nttデータエンジニアリングシステムズ Heat treatment method for laminate shaped article and method for producing shaped copper alloy article
CN111836691A (en) * 2018-12-27 2020-10-27 捷客斯金属株式会社 Method for manufacturing additive manufactured product using pure copper powder with Si coating
KR102328897B1 (en) 2018-12-27 2021-11-22 제이엑스금속주식회사 Pure copper powder having Si film, manufacturing method thereof, and laminated sculpture using the pure copper powder
JP6722838B1 (en) * 2018-12-27 2020-07-15 Jx金属株式会社 Pure copper powder having Si coating, method for producing the same, and layered model using the pure copper powder
JP6722837B1 (en) * 2018-12-27 2020-07-15 Jx金属株式会社 Manufacturing method of layered product using pure copper powder having Si coating
KR20200111810A (en) * 2018-12-27 2020-09-29 제이엑스금속주식회사 Method for producing a laminated product using pure copper powder with a Si film
KR20200111811A (en) * 2018-12-27 2020-09-29 제이엑스금속주식회사 Pure copper powder having a film of Si, a method for producing the same, and laminated moldings using the pure copper powder
US11872647B2 (en) 2018-12-27 2024-01-16 Jx Metals Corporation Production method of additive manufactured object using pure copper powder having Si coating
CN111836692A (en) * 2018-12-27 2020-10-27 捷客斯金属株式会社 Pure copper powder having Si coating film, method for producing same, and additive-produced product using same
WO2020138273A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PURE COPPER POWDER HAVING Si COATING, METHOD FOR PRODUCING SAME, AND ADDITIVE MANUFACTURING MODEL USING PURE COPPER POWDER
CN111836691B (en) * 2018-12-27 2023-02-17 捷客斯金属株式会社 Method for manufacturing additive manufactured product using pure copper powder with Si coating
US11498122B2 (en) 2018-12-27 2022-11-15 Jx Nippon Mining & Metals Corporation Pure copper powder having Si coating and production method thereof, and additive manufactured object using said pure copper powder
EP3722025A4 (en) * 2018-12-27 2021-10-13 JX Nippon Mining & Metals Corporation Production method for additive-manufactured product using pure copper powder having si coating
EP3722024A4 (en) * 2018-12-27 2021-11-10 JX Nippon Mining & Metals Corporation Pure copper powder having si coating, method for producing same, and additive manufacturing model using pure copper powder
WO2020138274A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PRODUCTION METHOD FOR ADDITIVE-MANUFACTURED PRODUCT USING PURE COPPER POWDER HAVING Si COATING
KR102330100B1 (en) 2018-12-27 2021-12-01 제이엑스금속주식회사 Method for manufacturing a laminated object using pure copper powder having a Si film
JP2021017639A (en) * 2019-07-23 2021-02-15 山陽特殊製鋼株式会社 Cu-based alloy powder
JP7194087B2 (en) 2019-07-23 2022-12-21 山陽特殊製鋼株式会社 Cu-based alloy powder
WO2021015119A1 (en) * 2019-07-23 2021-01-28 山陽特殊製鋼株式会社 Cu-based alloy powder
EP4005700A4 (en) * 2019-07-23 2023-08-16 Sanyo Special Steel Co., Ltd. Cu-based alloy powder
CN111822724A (en) * 2020-09-14 2020-10-27 陕西斯瑞新材料股份有限公司 Preparation method of powder-spread type 3D printing CuCr2 alloy

Also Published As

Publication number Publication date
JP6803021B2 (en) 2020-12-23
TW201823480A (en) 2018-07-01
JP2018070914A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2018079304A1 (en) Copper alloy powder, laminate molding production method, and laminate molding
WO2018079002A1 (en) Laminated molding production method and laminated molding
KR102364152B1 (en) Metal powder, method for producing multilayer shaped structure, and multilayer shaped structure
JP6389557B1 (en) Copper alloy powder, manufacturing method of layered object, and layered object
WO2017110445A1 (en) Metal powder, method for producing multilayer shaped article, and multilayer shaped article
JP6716410B2 (en) Copper alloy powder, manufacturing method of layered product and layered product
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP6491289B2 (en) Method for producing metal product
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866303

Country of ref document: EP

Kind code of ref document: A1