JPS61160044A - Detection and quantitative analysis of sulfur and sulfur monitor - Google Patents

Detection and quantitative analysis of sulfur and sulfur monitor

Info

Publication number
JPS61160044A
JPS61160044A JP94485A JP94485A JPS61160044A JP S61160044 A JPS61160044 A JP S61160044A JP 94485 A JP94485 A JP 94485A JP 94485 A JP94485 A JP 94485A JP S61160044 A JPS61160044 A JP S61160044A
Authority
JP
Japan
Prior art keywords
gaseous
detection
monitor
sulfur
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP94485A
Other languages
Japanese (ja)
Other versions
JPH0226181B2 (en
Inventor
Hajime Osaka
始 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP94485A priority Critical patent/JPS61160044A/en
Priority to US06/816,843 priority patent/US4733084A/en
Priority to DE8686100248T priority patent/DE3682592D1/en
Priority to EP86100248A priority patent/EP0187675B1/en
Publication of JPS61160044A publication Critical patent/JPS61160044A/en
Publication of JPH0226181B2 publication Critical patent/JPH0226181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Abstract

PURPOSE:To perform the high sensitivity detection and quantitative analysis of gaseous S in a non-destructive manner without disturbing a system, by utilizing a spectral line with a predetermined wavelength by absorption of gaseous S. CONSTITUTION:Spectral lines with wavelengths of 263nm, 265.5nm, 268nm, 270.5nm, 273nm, 276nm, 279nm and 282nm are simultaneously incident to gaseous S in a cell 1 from a light emitting source 3. The absorption of incident spectral lines by gaseous S is measured by a light receiving part 4 and the detection and quantitative analysis of S are performed from the peak height of each light intensity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な8の定量方法及び該方法を利用したその
場での高感度な検知定量か可能な8モニターに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel 8 quantitative determination method and an 8 monitor capable of highly sensitive detection and quantification on the spot using the method.

本発明は日を用いる半導体製造品及び製造装置、廃棄物
処理装置等、例えばZn8 、 C++18、ZnBx
B・1−8等の化合物半導体のエビ成長装置(cvn炉
、LPF!炉等)、高圧HB炉、アニーリング炉、S圧
アニーリング炉、MDI装置、MOOV’D装置等JC
s検出定量高感度モニターとして利用したり、あるいは
、Sを含有する合金やセラミックス、ガラス等の溶解炉
等に利用することができる。
The present invention is applicable to semiconductor manufacturing products, manufacturing equipment, waste processing equipment, etc. that use Zn8, C++18, ZnBx, etc.
Shrimp growth equipment for compound semiconductors such as B・1-8 (CVN furnace, LPF! furnace, etc.), high pressure HB furnace, annealing furnace, S pressure annealing furnace, MDI equipment, MOOV'D equipment, etc. JC
It can be used as a high-sensitivity monitor for s-detection and quantitative determination, or it can be used in melting furnaces for alloys, ceramics, glasses, etc. containing sulfur.

(従来の技術) 従来、Sを検出する場合に、非破壊で、系を乱さず、そ
の場でガス状Sを検知定量する方法は殆んど知られてお
らず、Sの検出は破壊検知が主である。ガス状物質の非
破壊検出・定量法としては、ガスクロマトグラフィーが
考えられるが、■測定系内に試料を導くまでに、導入管
壁に付着し、正確な定量ができない、■系内からのサン
プリングを要するため系を乱してしまう、という本質的
な問題点があるため不適であり、実用されていない。ま
た、原子吸光分析は、原子状態の試料について厳密に測
定できるが、試料を2000℃以上の高温状態とする必
要があり、原子化温度以下の検知定量は原理的に不可能
であるに加え、用いうるホロカン−トランプがない。
(Prior art) Conventionally, when detecting S, there is almost no known method for detecting and quantifying gaseous S on the spot in a non-destructive manner without disturbing the system. is the main thing. Gas chromatography can be considered as a non-destructive detection/quantification method for gaseous substances; It is unsuitable and has not been put to practical use because it has the essential problem of disturbing the system because it requires sampling. In addition, atomic absorption spectrometry can accurately measure samples in the atomic state, but it requires the sample to be heated to a high temperature of 2000°C or higher, and detection and quantification at temperatures below the atomization temperature is theoretically impossible. There are no Holocan playing cards available.

(発明が解決しようとする問題点) 本発明は上記した現状に鑑みてなされたもので、非破壊
で、系をみださず、その場でガス状Sの高感度検知拳定
量が可能な方法及び該方法を利用した高感度モニターの
提供を目的とするものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned current situation, and enables highly sensitive detection and quantitative determination of gaseous S on the spot in a non-destructive manner without spilling the system. The object of the present invention is to provide a method and a highly sensitive monitor using the method.

(問題点を解決しようとする手段) すなわち、本発明はガス状日に、波長263nm  2
6 S、5 nm  268 nm、 27 n、 5
 nm、 273nm、 276 nm、 279 n
m 及び282 nm のスペクトル線を、入射し、上
記ガス状Sによる上記入射スペクトル線の吸収を測定し
、各光強度のピーク高さから8の検知・定量を行う方法
および炉またはヒータ付容器の光の進行方向に窓部を設
け、一方の窓部に265nm265.5nm268 n
m、 27α5 nm1273 nm、 276 nm
(Means for solving the problem) That is, the present invention provides a wavelength of 263 nm 2 on a gaseous day.
6 S, 5 nm 268 nm, 27 n, 5
nm, 273 nm, 276 nm, 279 n
A method of injecting spectral lines of m and 282 nm, measuring the absorption of the incident spectral lines by the gaseous S, and detecting and quantifying 8 from the peak height of each light intensity, and a method of using a furnace or a container with a heater. A window is provided in the direction of light propagation, and one window has a 265nm, 265.5nm, and 268n
m, 27α5 nm1273 nm, 276 nm
.

279 nm 及び282 nm のスペクトル線発光
部、他方の窓にはヒータ付容器内のガス状Sを通過した
前記スペクトル線の光強度のピーク高さからSを検知定
量する受光、測光部を接続してなる、Sモニターである
The 279 nm and 282 nm spectral line emitting section is connected to the other window, and the light receiving and photometric section is connected to detect and quantify S from the peak height of the light intensity of the spectral line that has passed through the gaseous S in the heater-equipped container. This is the S monitor.

以下に本発明につき詳細に説明する。The present invention will be explained in detail below.

本発明者らは、ガス状S(ガス状ではS2、S4、S6
.88等になると考えられているが、特定されていない
。)の吸光スペクトルを詳細に研究の結果、第1図に示
すように、波長263nm、2 6 5. 5  nm
、  2 6 8  nm%  2 7  α 5  
nm、  273nm、 276 nm、 279 n
m 及び282 nm に吸光のピークを有することを
発見した。そしてこのようなピークは温度300℃程度
において日の分子の状況のスペクトルで得られるという
知見をも得て、ガス状8の吸収による上記の各々の吸光
ピークを利用することにより、ガス状日を高感度でかつ
その場でさえ検出・定量を可能としたものである。
The present inventors have discovered that gaseous S (in gaseous form S2, S4, S6
.. It is thought to be 88 mag, but it has not been identified. ) As a result of detailed research on the absorption spectrum of 2 6 5. 5 nm
, 2 6 8 nm% 2 7 α 5
nm, 273 nm, 276 nm, 279 n
It was discovered that it has absorption peaks at m and 282 nm. We also obtained the knowledge that such a peak can be obtained in the spectrum of the state of molecules in the sun at a temperature of about 300°C, and by using each of the above absorption peaks due to the absorption of gaseous It is highly sensitive and enables detection and quantification even on the spot.

本発明は第2図に示すように、炉、ヒータ付セルあるい
は筒部1に窓2を取り付け、発光部5において265 
nm、 26 S 5 nm% 268 nm。
As shown in FIG.
nm, 26 S 5 nm% 268 nm.

27 Q、 5 nm、 273 nm、 276 n
m、 279 nm及び282 nm のスペクトル線
を発光させ、この光を窓2から入射し、受光部4におい
て光強度のピーク高さを測定する仁とにより、炉または
セル中のSを検知定量するものである。このSの検知・
定量は、上記の各ピーク吸収がS濃度に比例することか
ら求める。ピーク吸収とS濃度の関係は Doec          ・・・(2)上記(1)
 、 +21式で表される。ここでTはピークでの吸光
度(qlI)、CはSの濃度である。
27 Q, 5 nm, 273 nm, 276 n
S is detected and quantified in the furnace or cell by emitting spectral lines of m, 279 nm and 282 nm, entering this light through the window 2, and measuring the peak height of the light intensity in the light receiving section 4. It is something. Detection of this S
Quantification is determined from the fact that each of the above peak absorptions is proportional to the S concentration. The relationship between peak absorption and S concentration is Doec...(2) above (1)
, +21 Expression. Here, T is the absorbance at the peak (qlI), and C is the concentration of S.

上記の各スペクトル線発光源としては、ホロカソードラ
ンプを用い、各スペクトル線の波長を中心したフィルタ
ーを各々設けたものが使用できる。また該フィルターは
受光部に設けることもできる。
As each of the above-mentioned spectral line emission sources, a hollow cathode lamp can be used, which is provided with a filter centered on the wavelength of each spectral line. Further, the filter can also be provided in the light receiving section.

さらに検出結果をコンピュータ処理し、その結果を表示
するようにできる。このようにすれば、はぼ実時間で8
を定量検出できるので、その場での8の検知定量とSの
投入量日圧コントロール等を制御しうる高感度Sモニタ
ーを実現できる。
Furthermore, the detection results can be processed by computer and the results can be displayed. In this way, it will be 8 in real time.
Since it is possible to quantitatively detect S, it is possible to realize a highly sensitive S monitor that can detect and quantify on the spot and control the daily pressure of S input.

(実施例) 第6図(a)は本発明の実施例で用いた装置の概略図で
あって、1はセル、2は窓、3は発光部、4は受光部、
5は加熱手段をあられす。なお第3図(b)はこの装置
の温度分布を示すグラフである。
(Example) FIG. 6(a) is a schematic diagram of an apparatus used in an example of the present invention, in which 1 is a cell, 2 is a window, 3 is a light emitting part, 4 is a light receiving part,
5 is the heating means. Note that FIG. 3(b) is a graph showing the temperature distribution of this device.

セル1内にSを置き加熱手段5によりセル1内の温度を
298℃に一定にして保持したときのスペクトルを第4
図に示す。263 nm、 265.5nm、 268
 nm、27 CL 5 nm、 273 n!+1.
279nm 及び282 nm  を最大のピークとし
た吸収スペクトルが明瞭に測定された。
The spectrum when S is placed in the cell 1 and the temperature inside the cell 1 is kept constant at 298°C by the heating means 5 is shown in the fourth figure.
As shown in the figure. 263 nm, 265.5 nm, 268
nm, 27 CL 5 nm, 273 n! +1.
An absorption spectrum with maximum peaks at 279 nm and 282 nm was clearly measured.

一方、Sの投入量と、吸光度の間には、一般的に第5図
に示す関係があることを詳細な実験に確認した。ここで
ガス状日が存在するとき検知される光強度を工、ガス状
日がないときの光強度をIOとすると、吸光度Ti)は
次式(3)%式% したがって、前記の(1)および(2)式により吸光度
からSを定量できる。なおA点は、温度tにおける飽和
点をあられしており、 を 規定される。
On the other hand, it was confirmed through detailed experiments that there is generally a relationship shown in FIG. 5 between the amount of S added and the absorbance. Here, if the light intensity detected when there is a gaseous day is E, and the light intensity when there is no gaseous day is IO, then the absorbance Ti) is calculated by the following formula (3) % Formula % Therefore, the above (1) And S can be quantified from absorbance using equation (2). Note that point A is the saturation point at temperature t, and is defined as follows.

第5図の関係は263 nm、 265.5 nm、 
268nm、 270.5 nm、 273 nm、 
279 nm 及び282 nm の夫々の吸収スペク
トルについて成立するので、いずれのピークの測定によ
ってもS陸を求めることができる。検出は0.05 p
pmオーダーまで可能である。
The relationship in Figure 5 is 263 nm, 265.5 nm,
268nm, 270.5nm, 273nm,
Since this holds true for the absorption spectra of 279 nm and 282 nm, S land can be determined by measuring either peak. Detection is 0.05 p
Possible up to pm order.

さらに上記の8種の各スペクトル線を同時に検知し、各
々のピーク高さから同時に定量を行□ うことかできる。この場合は前記(1)、(31式にか
えて、下記(a)〜(C)の評価手段による。なおり。
Furthermore, each of the eight types of spectral lines mentioned above can be detected simultaneously, and quantification can be performed simultaneously from the height of each peak. In this case, the following evaluation means (a) to (C) are used instead of the above-mentioned (1) and (31 formulas).

〒は夫々の平均値を、n=1.2・・・8は上記8種類
のピークについての、夫々の測定を表す。
〒 represents each average value, and n=1.2...8 represents each measurement for the above eight types of peaks.

nmj 、 2.・・・ 8 n謬1,2.・・・ 8 n■1,2.・・・ 8 このような評価はコンピュータ等演算装置によれば容易
かつ迅速であり、実時間でS量を表示できるので、系の
制御ができる。
nmj, 2. ... 8 n error 1, 2. ... 8 n ■ 1, 2. ... 8 Such evaluation is easy and quick using an arithmetic device such as a computer, and since the amount of S can be displayed in real time, the system can be controlled.

(発明の効果) 本発明の効果は次のとおりである。(Effect of the invention) The effects of the present invention are as follows.

1)ガス状Sの吸収による波長265 nm、 265
. 5 nm、 268 n!+1.27α5 nm、
 27 S nm。
1) Wavelength 265 nm due to absorption of gaseous S, 265
.. 5 nm, 268 n! +1.27α5 nm,
27S nm.

276 nm、 279 nm 及び282 nm の
スペクトルを利用することにより、ガス状日の高感度の
検知・定量がその場で可能となった。
By using the 276 nm, 279 nm, and 282 nm spectra, highly sensitive detection and quantification of gaseous conditions has become possible on the spot.

2)上記の各スペクトルのピーク高から同時に定量を行
なうため、Sの定量精度が向上し、又検知に用いれば他
の物質との分離が明瞭にできる。
2) Since quantification is carried out simultaneously from the peak heights of each of the above spectra, the accuracy of quantification of S is improved, and when used for detection, it can be clearly separated from other substances.

3)本発明の高感度SモニターはS量のその場検知・定
量が可能であり、さらにコンピューター等演算装置と組
合すことにより、各スペクトルの吸光度から実時間でS
量を検知定量し、該演算装置の出力信号によりS投入量
、8圧等をその場で制御することができる。
3) The high-sensitivity S monitor of the present invention is capable of on-the-spot detection and quantification of the amount of S, and by combining it with a computing device such as a computer, it can be used to measure S in real time from the absorbance of each spectrum.
The amount can be detected and quantified, and the S input amount, 8 pressure, etc. can be controlled on the spot based on the output signal of the arithmetic device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガス状Sの吸光スペクトルである。 第2図は本発明方法及びモニターの概略を示す模式図で
ある。第3図(a)は本発明の実施例で用いた装置の概
略図であり、第3図(b)は第3図(a)装置における
温度分布を示すグラフである。第4図は本発明の実施例
で得られた波長と吸光度の関係を示すグラフ、第5図は
B量と吸光度の関係を示すグラフである。 波 長 (t+m) 第4図 第5図 t
FIG. 1 shows the absorption spectrum of gaseous S. FIG. 2 is a schematic diagram showing the outline of the method and monitor of the present invention. FIG. 3(a) is a schematic diagram of the apparatus used in the embodiment of the present invention, and FIG. 3(b) is a graph showing the temperature distribution in the apparatus of FIG. 3(a). FIG. 4 is a graph showing the relationship between wavelength and absorbance obtained in an example of the present invention, and FIG. 5 is a graph showing the relationship between B amount and absorbance. Wavelength (t+m) Figure 4 Figure 5 t

Claims (5)

【特許請求の範囲】[Claims] (1)ガス状Sに、波長263nm 265.5nm2
68nm、270.5nm、273nm、276nm、
279nm及び282nmのスペクトル線を、入射し、
上記ガス状Sによる上記入射スペクトル線の吸収を測定
し、各光強度のピーク高さからSの検知・定量を行う方
法。
(1) Gaseous S has a wavelength of 263 nm and 265.5 nm2.
68nm, 270.5nm, 273nm, 276nm,
Spectral lines of 279 nm and 282 nm are incident,
A method of measuring the absorption of the incident spectral line by the gaseous S, and detecting and quantifying the S from the peak height of each light intensity.
(2)炉またはヒーター付容器の光の進行方向に窓部を
設け、一方の窓部に263nm 265.5nm 26
8nm、270.5nm、273nm、276nm、2
79nm及び282nmのスペクトル線発光部、他方の
窓にはヒータ付容器内のガス状Sを通過した前記スペク
トル線の光強度のピーク高さからSを検知定量する受光
、測光部を接続してなる、Sモニター。
(2) A window is provided in the direction of light propagation of the furnace or container with a heater, and one window has 263 nm and 265.5 nm 26
8nm, 270.5nm, 273nm, 276nm, 2
A 79 nm and 282 nm spectral line emitting unit is connected to the other window, and a light receiving and photometric unit is connected to the other window to detect and quantify S from the peak height of the light intensity of the spectral line that has passed through the gaseous S in the container with a heater. , S monitor.
(3)コンピューターにより光強度のピーク高さからS
を検知・定量し、それによりS投入量コントロール、S
圧コントロールを実時間で制御する特許請求の範囲第(
2)項記載のSモニター。
(3) Based on the peak height of light intensity by computer
is detected and quantified, thereby controlling the amount of S input, S
Claim no.
S monitor described in section 2).
(4)発光部がホロカソードランプからなる特許請求の
範囲第(2)項記載のSモニター。
(4) The S monitor according to claim (2), wherein the light emitting section is a hollow cathode lamp.
(5)発光部または受光部が263nm 265.5n
m 268nm、270.5nm、273nm、276
nm、279nm及び282nmを中心とするフィルタ
を有する特許請求の範囲第(2)項記載のSモニター。
(5) Light emitting part or light receiving part is 263nm 265.5n
m 268nm, 270.5nm, 273nm, 276
279 nm and 282 nm.
JP94485A 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor Granted JPS61160044A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP94485A JPS61160044A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor
US06/816,843 US4733084A (en) 1985-01-09 1986-01-07 Method of detection and quantitative determination of sulfur and sulfur monitor using the method
DE8686100248T DE3682592D1 (en) 1985-01-09 1986-01-09 METHOD FOR DETECTING AND QUANTATIVE DETERMINATION OF SULFUR AND SULFUR MONITOR USING THIS METHOD.
EP86100248A EP0187675B1 (en) 1985-01-09 1986-01-09 Method of detection and quantitative determination of sulfur and sulfur monitor using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94485A JPS61160044A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor

Publications (2)

Publication Number Publication Date
JPS61160044A true JPS61160044A (en) 1986-07-19
JPH0226181B2 JPH0226181B2 (en) 1990-06-07

Family

ID=11487782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94485A Granted JPS61160044A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor

Country Status (1)

Country Link
JP (1) JPS61160044A (en)

Also Published As

Publication number Publication date
JPH0226181B2 (en) 1990-06-07

Similar Documents

Publication Publication Date Title
CA2715157C (en) Infrared spectrometer
DK1549932T3 (en) Gas detection method and apparatus
JPH03221843A (en) Analyzer by light
Liyanage et al. Ultraviolet absorption spectroscopy of peptides
EP0187675B1 (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
JPS61160044A (en) Detection and quantitative analysis of sulfur and sulfur monitor
JP2004309296A (en) Light absorption type analyzer
Bouveresse et al. Application of standardisation methods to correct the spectral differences induced by a fibre optic probe used for the near-infrared analysis of pharmaceutical tablets
Amerov et al. Kromoscopic analysis in two-and three-component aqueous solutions of blood constituents
JPS61160045A (en) Detection and quantitative analysis of sulfur and sulfur monitor
JPS61160043A (en) Detection and quantitative analysis of sulfur monitor
JPH0315739A (en) Detection and determination of sulfur and sulfur monitor
Liu et al. Multi-wavelength UV imaging detection system applied for varying environmental conditions: Detection of SO2 as an example
JPS62278436A (en) Fluorescence light measuring method and apparatus
RU2137126C1 (en) Method examining biological fluids and device for its implementation
RU2606850C2 (en) Method and device for quantitative determining content of waxes and wax-like substances in refined vegetable oils
JPS61160042A (en) Detection and quantitative analysis of se and se monitor
JPS6127703B2 (en)
SU998927A1 (en) Nuclear adsorption analysis method
JP3128163U (en) Spectrophotometer
Safitri et al. Simple Visible Light Spectrophotometer Design Using 620 Nm Optical Filter
US4731334A (en) Method and apparatus for detecting and quantitatively determining selenium
Rajulu et al. Principles of Quantitative Estimation of Drugs, Endogenous Compounds, and Poisons—2
JPS63247644A (en) Method for measuring immune reaction
Maeda et al. Optical sensing technique for in situ determination of gas components at elevated temperature by infrared spectroscopy