JPS61160043A - Detection and quantitative analysis of sulfur monitor - Google Patents

Detection and quantitative analysis of sulfur monitor

Info

Publication number
JPS61160043A
JPS61160043A JP94385A JP94385A JPS61160043A JP S61160043 A JPS61160043 A JP S61160043A JP 94385 A JP94385 A JP 94385A JP 94385 A JP94385 A JP 94385A JP S61160043 A JPS61160043 A JP S61160043A
Authority
JP
Japan
Prior art keywords
gaseous
spectral line
detection
window
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP94385A
Other languages
Japanese (ja)
Other versions
JPH0226180B2 (en
Inventor
Hajime Osaka
始 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP94385A priority Critical patent/JPS61160043A/en
Priority to US06/816,843 priority patent/US4733084A/en
Priority to DE8686100248T priority patent/DE3682592D1/en
Priority to EP86100248A priority patent/EP0187675B1/en
Publication of JPS61160043A publication Critical patent/JPS61160043A/en
Publication of JPH0226180B2 publication Critical patent/JPH0226180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Abstract

PURPOSE:To enable the high sensitivity detection and quantitative analysis of gaseous S in a non-destructive state without disturbing a system, by allowing a spectral line with a predetermined wavelength to be incident to gaseous S. CONSTITUTION:A spectral line with a wavelength range of 263-265.5nm is allowed to be incident to gaseous S in a cell 1 from a light emitting part 3 and the absorption of the incident spectrum line by gaseous S is measured by a light receiving part 4 and the detection and quantitative analysis of S are performed from the peak height of each light intensity. The temp. in the cell 1 is kept constant at 298 deg.C by a heating means 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なeの定量方法及び該方法を利用したその
場での高感度な検知定量が可能なSモニターに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel method for quantifying e and an S monitor capable of highly sensitive detection and quantification on the spot using the method.

本発明は日を用いる半導体製造品及び製造装置、廃棄物
処理装置等、例えばZnS、  0(18。
The present invention relates to semiconductor products, manufacturing equipment, waste treatment equipment, etc. that use ZnS, for example, ZnS, 0(18.

Zn5x8el−x等の化合物半導体のエビ成長装置(
aVV炉、LPFi炉等)、高圧HB炉、アニーリング
炉、S圧アニーリング炉、MBI装置、MOCvD装置
等に8検出定量高感度モニターとして利用したり、ある
いは、日を含有する合金やセラミックス、ガラス等の溶
解炉等に利用することができる。
Shrimp growth equipment for compound semiconductors such as Zn5x8el-x (
(aVV furnace, LPFi furnace, etc.), high-pressure HB furnace, annealing furnace, S-pressure annealing furnace, MBI device, MOCvD device, etc. as an 8-detection quantitative high-sensitivity monitor. It can be used in melting furnaces, etc.

(従来の技術) 従来、Sを検出する場合に、非破壊で、系を乱さず、そ
の場でガス状Sを検知定量する方法は殆んど知られてお
らず、Sの検出は破壊検知が主である。ガス状物質の非
破壊検出・定量法としては、ガスクロマトグラフィーが
考えられるが、■測定系内に試料を導くまでに、導入管
壁に付着し、正確な定量ができない、■系内からのサン
プリングを要するため系を乱してしまう、という本質的
な問題点があるため不適であり、実用されていない。ま
た、原子吸光分析は、原子状態の試料について厳密に測
定できるが、試料を2000℃以上の高温状態とする必
要があり、原子化温度以下の検知定量は原理的に不可能
であるに加え、用いうるホロカッ−トランプがない。
(Prior art) Conventionally, when detecting S, there is almost no known method for detecting and quantifying gaseous S on the spot in a non-destructive manner without disturbing the system. is the main thing. Gas chromatography can be considered as a non-destructive detection/quantification method for gaseous substances; It is unsuitable and has not been put to practical use because it has the essential problem of disturbing the system because it requires sampling. In addition, atomic absorption spectrometry can accurately measure samples in the atomic state, but it requires the sample to be heated to a high temperature of 2000°C or higher, and detection and quantification at temperatures below the atomization temperature is theoretically impossible. There are no hollow cut lamps available.

(発明が解決しようとする問題点) 本発明は上記した現状に鑑みてなされたもので、非破壊
で、系をみださず、その場でガス状Sの高感度検知・定
量が可能な方法及び該方法を利用した高感度モニターの
提供を目的とするものである。
(Problems to be Solved by the Invention) The present invention was made in view of the above-mentioned current situation, and enables highly sensitive detection and quantification of gaseous S on the spot without destroying the system. The object of the present invention is to provide a method and a highly sensitive monitor using the method.

(問題点を解決しようとする手段) すなわち、本発明はガス状日に、波長263nm 及び
/又は26 S、 5 nm のスペクトル線を、入射
し、上記ガス状slcよる上記入射スペクトル線の吸収
を測定し、各光強度のピーク高さからSの検知・定量を
行う方法および炉またはヒータ付容器の光の進行方向に
窓部を設け、一方の窓部に263 nm 及び/又は2
65.5 nm のスペクトル線発光部、他方の窓には
ヒータ付容器内のガス状日を通過した前記スペクトル線
の光強度のピーク高さから8を検知定量する受光、測光
部を接続して々る、Sモニターである。
(Means for solving the problem) That is, the present invention injects a spectral line with a wavelength of 263 nm and/or 26 S, 5 nm on a gaseous day, and absorbs the incident spectral line by the gaseous SLC. A method of detecting and quantifying S from the peak height of each light intensity, and a method of providing a window in the direction of light propagation in a furnace or a container with a heater, and one window having a wavelength of 263 nm and/or 2
A 65.5 nm spectral line emitting unit is connected to the other window, and a light receiving and photometric unit is connected to the other window to detect and quantify 8 from the peak height of the light intensity of the spectral line that has passed through the gaseous state in the container with a heater. It is an S monitor.

以下に本発明につき詳細に説明する。The present invention will be explained in detail below.

本発明者らは、ガス状日(ガス状では”tz ”4、S
、、S、等になると考えられているが、特定されていな
い。)の吸光スペクトルを詳細に研究の結果、第1図に
示すように、波長265 nm 及び265.5 nm
  に吸光のピークを有することを発見した。そしてこ
のようなピークは温度300℃程度のSの分子の状況の
スペクトルで得られるという知見をも得て、ガス状Sの
吸収による2 6 S nm 及び265.5 nm 
の吸光ピークを利用することにより、ガス状Sを高感度
でかつその場でさえ検出・定量を可能としたものである
The inventors have determined that the gaseous day (gaseous "tz" 4, S
, , S, etc., but it has not been specified. ) As a result of detailed research on the absorption spectra of
It was discovered that there is an absorption peak at . We also obtained the knowledge that such peaks are obtained in the spectrum of S molecules at a temperature of about 300°C.
By utilizing the absorption peak of , gaseous S can be detected and quantified with high sensitivity even on the spot.

本発明は第2図に示すように1炉、ヒータ付セルあるい
は筒部1に窓2を取シ付け、発光部3において263 
nm  または265.5 nm  のスペクトル線を
発光させ、この光を窓2から入射し、受光部4において
光強度のピーク高さを測定することにより、炉またはセ
ル中の8を検知定量するものである。この日の検知、定
量は、263nm  または265.5 nm のピー
ク吸収が8濃度に比例することから求める。ピーク吸収
とS濃度の関係は Dcl:C・・・(2) 上記(1) 、 f2)式で表される。ここでTはピー
クでの吸光度(%)、CはSの濃度である。
As shown in FIG.
It detects and quantifies 8 in the furnace or cell by emitting a spectral line of 265.5 nm or 265.5 nm, entering this light through the window 2, and measuring the peak height of the light intensity at the light receiving part 4. be. Detection and quantification on this day is determined from the fact that the peak absorption at 263 nm or 265.5 nm is proportional to the 8 concentration. The relationship between peak absorption and S concentration is expressed by the above equation (1), f2): Dcl:C...(2). Here, T is the absorbance at the peak (%), and C is the concentration of S.

263 nm 及び265.5 nm のスペクトル発
光源としては、ホロカソードラングを用い、265 n
m 及び/又は265.5 nm  を中心したフィル
ターを各々設けたものが使用できる。また該フィルター
は受光部に設けることもできる。
Holocathode rungs were used as the 263 nm and 265.5 nm spectral emission sources, and the 265 nm
It is possible to use filters each provided with a filter centered at m and/or 265.5 nm. Further, the filter can also be provided in the light receiving section.

さらに検出結果をコンピュータ処理し、その結果を表示
するようにできる。このようにすれば、#丘ぼ実時間で
8を定量検出できるので、その場での日の検知定量と日
の投入量S圧コントロール等を制御しうる高感度Sモニ
ターを実現できる。
Furthermore, the detection results can be processed by computer and the results can be displayed. In this way, it is possible to quantitatively detect #8 in real time, so it is possible to realize a highly sensitive S monitor that can detect and quantify on the spot and control the daily input amount S pressure.

(実施例) 第3図(a)は本発明の実施例で用いた装置の概略図で
あって、1けセル、2は窓、3は発光部、4は受光部、
5は加熱手段をあられす。なお第3図(ロ)はこの装置
の温度分布を示すグラフである。
(Example) FIG. 3(a) is a schematic diagram of an apparatus used in an example of the present invention, in which 1 cell, 2 a window, 3 a light emitting part, 4 a light receiving part,
5 is the heating means. Note that FIG. 3 (b) is a graph showing the temperature distribution of this device.

セル1内にSを置き加熱手段5によりセル1内の温度を
298℃に一定にして保持したときのスペクトルを第4
図に示す。265 nm 及び265.5 nm  を
最大のピークとした吸収スペクトルが明瞭に測定された
The spectrum when S is placed in the cell 1 and the temperature inside the cell 1 is kept constant at 298°C by the heating means 5 is shown in the fourth figure.
As shown in the figure. Absorption spectra with maximum peaks at 265 nm and 265.5 nm were clearly measured.

一方、日の投入量と、吸光度の間には、一般的に第5図
に示す関係があることを詳細な実験に確認した。ここで
ガス状Sが存在するとき検知される光強度を工、ガス状
Sがないときの光強度を工0 とすると、吸光度T(%
)は次式(3)%式% したがって、前記の(1)および(2)式により吸光度
から8を定量できる。なおA点は、温度tにおける飽和
点をあられしており、 を 規定される。
On the other hand, it was confirmed through detailed experiments that there is generally a relationship shown in FIG. 5 between the daily input amount and the absorbance. Here, if the light intensity detected when gaseous S is present is x, and the light intensity when there is no gaseous S is x0, then the absorbance T (%
) is the following formula (3) % Formula % Therefore, 8 can be determined from the absorbance using the above formulas (1) and (2). Note that point A is the saturation point at temperature t, and is defined as follows.

第5図の関係は265 nm  と265.5 nm 
の夫々の吸収スペクトルについて成立するので、いずれ
のピークの測定によってもS量を求めることができる。
The relationship in Figure 5 is 265 nm and 265.5 nm.
Since this holds true for each absorption spectrum, the amount of S can be determined by measuring any peak.

両者のスペクトルを用いれば精度が向上する。検出は0
.1 ppmオーダーまで可能である。
Accuracy is improved by using both spectra. Detection is 0
.. Possible up to 1 ppm order.

(発明の効果) 本発明の効果は次のとおりである。(Effect of the invention) The effects of the present invention are as follows.

1)ガス状日の吸収による波長265 nm 及び26
5、5 nm  のスペクトルを利用することにより、
ガス状Sの高感度の検知・定量がその場で可能となった
1) Wavelengths 265 nm and 26 nm due to gaseous absorption
By using the 5.5 nm spectrum,
Highly sensitive detection and quantification of gaseous S is now possible on the spot.

2)波長265 nm 及び/又は26 S 5 nm
 のスペクトルのピーク高から定量を行なうため、Sの
定量精度が向上する。
2) Wavelength 265 nm and/or 26 S 5 nm
Since the quantification is performed from the peak height of the spectrum of S, the accuracy of quantification of S is improved.

5)本発明の高感度SモニターはS量のその場検知・定
量が可能であり、さらにコンピューター等演算装置と組
合すことくより、各スペクトルの吸光度から実時間でS
量を検知定量し、該演算装置の出力信号によりS投入量
、S圧等をその場で制御することができる。
5) The high-sensitivity S monitor of the present invention is capable of on-the-spot detection and quantification of the amount of S, and can also be used to measure S in real time from the absorbance of each spectrum by combining it with a computing device such as a computer.
The amount can be detected and quantified, and the S input amount, S pressure, etc. can be controlled on the spot based on the output signal of the arithmetic device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス状Sの吸光スペクトルである。 第2図は本発明方法及びモニターの概略を示す模式図で
ある。第6図(a)は本発明の実施例で用いた装置の概
略図であυ、第3図(ロ)は第3図(a)装置における
温度分布を示すグラフでちる。第4図は本発明の実施例
で得られた波長と吸光度の関係を示すグラフ、第5図は
S量と吸光度の関係を示すグラフである。
FIG. 1 shows the absorption spectrum of gaseous S. FIG. 2 is a schematic diagram showing the outline of the method and monitor of the present invention. FIG. 6(a) is a schematic diagram of the apparatus used in the embodiment of the present invention, and FIG. 3(b) is a graph showing the temperature distribution in the apparatus of FIG. 3(a). FIG. 4 is a graph showing the relationship between wavelength and absorbance obtained in an example of the present invention, and FIG. 5 is a graph showing the relationship between S amount and absorbance.

Claims (5)

【特許請求の範囲】[Claims] (1)ガス状Sに、波長263nm及び/又は265.
5nmのスペクトル線を、入射し、上記ガス状Sによる
上記入射スペクトル線の吸収を測定し、各光強度のピー
ク高さからSの検知・定量を行う方法。
(1) Gaseous S has a wavelength of 263 nm and/or 265 nm.
A method in which a spectral line of 5 nm is incident, absorption of the incident spectral line by the gaseous S is measured, and S is detected and quantified from the peak height of each light intensity.
(2)炉またはヒータ付容器の光の進行方向に窓部を設
け、一方の窓部に263nm及び/又は265.5nm
のスペクトル線発光部、他方の窓にはヒータ付容器内の
ガス状Sを通過した前記スペクトル線の光強度のピーク
高さからSを検知定量する受光、測光部を接続してなる
、Sモニター。
(2) A window is provided in the direction of light propagation of the furnace or container with a heater, and one window has a wavelength of 263 nm and/or 265.5 nm.
A spectral line emitting unit is connected to the other window, and a light receiving and photometering unit is connected to the other window to detect and quantify S from the peak height of the light intensity of the spectral line that has passed through the gaseous S in the container with a heater. .
(3)コンピューターにより光強度のピーク高さからS
を検知・定量し、それによりS投入量コントロール・S
圧コントロールを実時間で制御する特許請求の範囲第(
2)項記載のSモニター。
(3) Based on the peak height of light intensity by computer
Detects and quantifies S, thereby controlling S input amount and S
Claim no.
S monitor described in section 2).
(4)発光部がホロカソードランプからなる特許請求の
範囲第(2)項記載のSモニター。
(4) The S monitor according to claim (2), wherein the light emitting section is a hollow cathode lamp.
(5)発光部または受光部が263nmおよび/又は2
65.5nmを中心とするフィルタを有する特許請求の
範囲第(2)項記載のSモニター。
(5) The light emitting part or the light receiving part is 263 nm and/or 2
The S monitor according to claim (2), having a filter centered at 65.5 nm.
JP94385A 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor Granted JPS61160043A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP94385A JPS61160043A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor
US06/816,843 US4733084A (en) 1985-01-09 1986-01-07 Method of detection and quantitative determination of sulfur and sulfur monitor using the method
DE8686100248T DE3682592D1 (en) 1985-01-09 1986-01-09 METHOD FOR DETECTING AND QUANTATIVE DETERMINATION OF SULFUR AND SULFUR MONITOR USING THIS METHOD.
EP86100248A EP0187675B1 (en) 1985-01-09 1986-01-09 Method of detection and quantitative determination of sulfur and sulfur monitor using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94385A JPS61160043A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor

Publications (2)

Publication Number Publication Date
JPS61160043A true JPS61160043A (en) 1986-07-19
JPH0226180B2 JPH0226180B2 (en) 1990-06-07

Family

ID=11487753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94385A Granted JPS61160043A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor

Country Status (1)

Country Link
JP (1) JPS61160043A (en)

Also Published As

Publication number Publication date
JPH0226180B2 (en) 1990-06-07

Similar Documents

Publication Publication Date Title
Van Dalen et al. Optimization of the microwave-induced plasma as an element-selective detector for non-metals
IT1306112B1 (en) METHOD FOR THE QUANTITATIVE ANALYSIS OF THE ATOMIC COMPONENTS OF MATERIALS BY MEANS OF LIBS SPECTROSCOPY MEASURES WITHOUT CALIBRATION
US6589795B2 (en) Method and device for detecting mercury
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Frentiu et al. Determination of total mercury in fish tissue using a low-cost cold vapor capacitively coupled plasma microtorch optical emission microspectrometer: comparison with direct mercury determination by thermal decomposition atomic absorption spectrometry
JPH0672841B2 (en) Atomic absorption spectrophotometer
US4733084A (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
Hutton et al. Determination of barium in calcium carbonate rocks by carbon furnace atomic-emission spectrometry
YU38192A (en) GAS ANALYSIS PROCEDURE AND DEVICE
JPS61160043A (en) Detection and quantitative analysis of sulfur monitor
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
Matosek et al. Spectrometric analysis of non-metals introduced from a graphite furnace into a microwave-induced plasma
JPS61160045A (en) Detection and quantitative analysis of sulfur and sulfur monitor
JPH0315739A (en) Detection and determination of sulfur and sulfur monitor
JPS61160044A (en) Detection and quantitative analysis of sulfur and sulfur monitor
Ezer et al. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis
JPS61160042A (en) Detection and quantitative analysis of se and se monitor
US4731334A (en) Method and apparatus for detecting and quantitatively determining selenium
SU998927A1 (en) Nuclear adsorption analysis method
JPS5852513Y2 (en) gas concentration meter
Su et al. Choice of fluorescence wavelengths for the determination of trace amounts of chlorine by graphite furnace laser-excited molecular fluorescence spectrometry of indium monochloride
JPS5837541A (en) Automatic analyzing method for flameless atomic absorption
SU830141A1 (en) Method of determining concentration of elements in rock samples
SU1234759A1 (en) Method of determining quantitative oxygen content of gas mixture
JPS59231426A (en) Optoacoustic detector