JPS61160045A - Detection and quantitative analysis of sulfur and sulfur monitor - Google Patents

Detection and quantitative analysis of sulfur and sulfur monitor

Info

Publication number
JPS61160045A
JPS61160045A JP94585A JP94585A JPS61160045A JP S61160045 A JPS61160045 A JP S61160045A JP 94585 A JP94585 A JP 94585A JP 94585 A JP94585 A JP 94585A JP S61160045 A JPS61160045 A JP S61160045A
Authority
JP
Japan
Prior art keywords
peak
group
gaseous
wavelengths
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP94585A
Other languages
Japanese (ja)
Other versions
JPH0414742B2 (en
Inventor
Hajime Osaka
始 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP94585A priority Critical patent/JPS61160045A/en
Priority to US06/816,843 priority patent/US4733084A/en
Priority to DE8686100248T priority patent/DE3682592D1/en
Priority to EP86100248A priority patent/EP0187675B1/en
Publication of JPS61160045A publication Critical patent/JPS61160045A/en
Publication of JPH0414742B2 publication Critical patent/JPH0414742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Abstract

PURPOSE:To enable the detection and quantitative analysis of gaseous S in a non-destructive manner without disturbing a system, by utilizing ridge and valley spectra by the absorption of gaseous S. CONSTITUTION:Windows 2 are attached to a cell 1 and spectral lines with peaks of a first group (wavelengths of 263nm, 265.5nm, 268nm, 270.5nm, 273nm, 276nm, 279nm and 282nm are ridges) and peaks of a second group (wavelengths of 264.5nm, 267nm, 269.5nm, 272nm, 275nm, 278nm and 281nm are valleys) are emitted in a light emitting part and incident on the cell 1 from the window 2. By measuring the peak height of light intensity by a light receiving part 4, S in the cell is detected and quantitatively analyzed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なSの定量方法及び該方法を利用したその
場での高感度な検知定量が可能なSモニターに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel method for quantifying S and an S monitor capable of highly sensitive detection and quantification on the spot using the method.

本発明はSを用いる半導体製造品及び製造装置、廃棄物
処理装置等、例えばZn8 、 Ode 。
The present invention relates to semiconductor products, manufacturing equipment, waste treatment equipment, etc. that use S, such as Zn8 and Ode.

Zn5xSe 、−x等の化合物半導体のエビ成長装置
(OVD炉、LPF炉等)、高圧HB炉、アニーリング
炉、S圧アニーリング炉、MBH装置、MOOVD装置
等に8検出定量高感度モニターとして利用したシ、ある
いは、Sを含有する合金やセラミックス、ガラス等の溶
解炉等に利用することができる。
This system was used as an 8-detection quantitative high-sensitivity monitor for compound semiconductors such as Zn5xSe and -x in growth equipment (OVD furnace, LPF furnace, etc.), high-pressure HB furnace, annealing furnace, S-pressure annealing furnace, MBH equipment, MOOVD equipment, etc. Alternatively, it can be used in a melting furnace for S-containing alloys, ceramics, glass, etc.

(従来の技術) 従来、Sを検出する場合に、非破壊で、系を乱さず、そ
の場でガス状Sを検知定量する方法は殆んど知られてお
らず、Sの検出は破壊検知が主である。ガス状物質の非
破壊検出・定量法としては、ガスクロマトグラフィーが
考えられるが、■測定系内に試料を導くまでに、導入管
壁に付着し、正確な定量ができない、■系内からのサン
プリングを要するため系を乱してしまう、という本質的
な問題点があるため不適であシ、実用されていない。ま
た、原子吸光分析は、原子状態の試料について厳密に測
定できるが、試料を2000℃以上の高温状態とする必
要があり、原子化温度以下の検知定量は原理的に不可能
であるに加え、用いうるホロカソードランプがない。
(Prior art) Conventionally, when detecting S, there is almost no known method for detecting and quantifying gaseous S on the spot in a non-destructive manner without disturbing the system. is the main thing. Gas chromatography can be considered as a non-destructive detection/quantification method for gaseous substances; It is unsuitable and has not been put to practical use because it has the essential problem of disturbing the system because it requires sampling. In addition, atomic absorption spectrometry can accurately measure samples in the atomic state, but it requires the sample to be heated to a high temperature of 2000°C or higher, and detection and quantification at temperatures below the atomization temperature is theoretically impossible. There are no hollow cathode lamps available.

(発明が解決しようとする問題点) 本発明は上記した現状に鑑みてなされたもので、非破壊
で、系をみださず、その場でガス状Sの高感度検知・定
量が可能な方法及び該方法を利用した高感度モニターの
提供を目的とするものである。
(Problems to be Solved by the Invention) The present invention was made in view of the above-mentioned current situation, and enables highly sensitive detection and quantification of gaseous S on the spot without destroying the system. The object of the present invention is to provide a method and a highly sensitive monitor using the method.

(問題点を解決しようとする手段) すなわち、本発明はガス状Sに、波長263nm、 2
6 a 5 nm、 268 nm、27 (L 5 
nm、 273nm、 276 mm、279 nm、
 282 nm の山ピークを有する第1群ピーク及び
波長264.5 nm。
(Means for solving the problem) That is, the present invention provides gaseous S with a wavelength of 263 nm, 2
6 a 5 nm, 268 nm, 27 (L 5
nm, 273 nm, 276 mm, 279 nm,
The first group peak has a peak of 282 nm and a wavelength of 264.5 nm.

267 nm、 269.5 nm、 272 nJn
、275 nm5278 nm% 281 nm  の
谷ピークを有する第1群ピークのスペクトル線を、入射
し、上記ガス状Sによる上記入射スペクトル線の吸収を
測定し、各光強度のピーク高さから8の検知・定量を行
う方法および炉またはヒータ付容器の光の進行方向に窓
部を設け、一方の窓部に波長263nm、 26 !L
5 nm、 268 nm、 2715 nm、 27
3nj!1.276 nm、 279 mm、 282
 nm の山ピークを有する第1群ピーク及び波長26
4.5 nm。
267 nm, 269.5 nm, 272 nJn
, 275 nm 5278 nm% 281 nm The spectral line of the first group peak having a valley peak is incident, and the absorption of the incident spectral line by the gaseous S is measured, and 8 detections are made from the peak height of each light intensity.・Method for quantitative determination: A window is provided in the direction of light propagation in a furnace or a container with a heater, and one window has a wavelength of 263 nm, 26! L
5 nm, 268 nm, 2715 nm, 27
3nj! 1.276 nm, 279 mm, 282
1st group peak with peak of nm and wavelength 26
4.5 nm.

267 nm、 269.5 nm、 272 nm%
275 nm。
267 nm, 269.5 nm, 272 nm%
275 nm.

278 nm、 281nm  の谷ピークを有する第
1群ピークのスペクトル線発光部、他方の窓にはヒータ
付容器内のガス状日を通過17た前記スペクトル線の光
強度のピーク高さから8を検知定量する受光、測光部を
接続してなる、Sモニターである。
8 is detected from the peak height of the light intensity of the spectral line that passed through the gaseous sun in the container with a heater in the other window. This is an S monitor that is connected to a light receiving and photometric unit for quantitative measurement.

以下に本発明につき詳細に説明する。The present invention will be explained in detail below.

本発明者らは、ガス状日(ガス状ではBt−s84、”
@、’8等になると考えられているが、特定されていな
い。)の吸光スペクトルを詳細に研究の結果、第1図に
示すように、波長265nm2615 nm、 268
 nm、 27 Q、 5 nm、 275 nu。
The inventors discovered that gaseous days (Bt-s84 in gaseous form,
It is thought that it will be @, '8, etc., but it has not been specified. ) As a result of detailed research on the absorption spectra of
nm, 27 Q, 5 nm, 275 nu.

276 nm0.279 nm及び282nmlC第■
群の吸光の山ピーク、そして波長264.5 tkm、
 267 nm、269.5 nm、272 nm、 
275 nm、 278 nm 及び281 nm に
第■群の吸光の谷ピークを有することを発見した。そし
てこのような第1群及び第■群の山と谷のピークは温度
300℃程度のSの分子の状況のスペクトルで得られる
という知見をも得て、ガス状日の吸収による2 65 
nm 及び265.5 nm の吸光ピークを利用する
ことにより、ガス状日を高感度でかつその場でさえ検出
・定量を可能としたものである。
276 nm0.279 nm and 282 nmlC No.
The absorption peak of the group, and the wavelength of 264.5 tkm,
267 nm, 269.5 nm, 272 nm,
It was discovered that the absorption valley peaks of group Ⅰ were at 275 nm, 278 nm, and 281 nm. We also obtained the knowledge that the peaks and valleys of the first and second groups can be obtained from the spectrum of the S molecule at a temperature of about 300°C.
By utilizing the absorption peaks at 265.5 nm and 265.5 nm, gaseous conditions can be detected and quantified with high sensitivity even on the spot.

本発明は第2図に示すように、炉、ヒータ付セルあるい
は筒部1に窓2を取り付け、発光部5において上記第1
群ピーク及び第1群ピークのスペクトル線を発光させ、
この光を窓2から入射し、受光部4において光強度のピ
ーク高さを測定することにより、炉またはセル中のSを
検知定量するものである。この日の検知、定量は、上記
第1群ピーク及び第1群ピークのピーり吸収がS濃度に
比例することから求める。
As shown in FIG.
emitting the spectral lines of the group peak and the first group peak,
By entering this light through the window 2 and measuring the peak height of the light intensity at the light receiving section 4, S in the furnace or cell is detected and quantified. Detection and quantification on this day are determined from the fact that the first group peak and peak absorption of the first group peak are proportional to the S concentration.

ピーク吸収とS濃度の関係は DOCO・・・(2) 上記(1) 、 +21式で表される。ここでTはピー
クでの吸光度(%)、Cは日の濃度である。
The relationship between peak absorption and S concentration is expressed by DOCO...(2) above (1), +21 formula. where T is the peak absorbance (%) and C is the daily concentration.

上記第!及び■群ピークのスペクトル発光源としては、
ホロカソードランプを用い、第1及び第1群ピークを中
心したフィルターを各々設けたものが使用できる。また
該フィルターは受光部に設けることもできる。
Number above! And as the spectral emission source of group peak,
It is possible to use a hollow cathode lamp provided with filters centered on the first and first group peaks. Further, the filter can also be provided in the light receiving section.

さらに検出結果をコンピュータ処理し、その結果を表示
するようにできる。このようにすれば、はぼ実時間で8
を定量検出できるので、その場でのSの検知定量とSの
投入量S圧コントロール等を制御しうる高感度日モニタ
ーを実現できる。
Furthermore, the detection results can be processed by computer and the results can be displayed. In this way, it will be 8 in real time.
Since it is possible to quantitatively detect S, it is possible to realize a highly sensitive day monitor that can detect and quantify S on the spot and control the amount of S input and S pressure.

(実施例) 第5図(a)は本発明の実施例で用いた装置の概略図で
あって、1はセル、2は窓、3は発光部、4は受光部、
5は加熱手段をあられす。なお第3図6)はこの装置の
温度分布を示すグラフである。
(Example) FIG. 5(a) is a schematic diagram of an apparatus used in an example of the present invention, in which 1 is a cell, 2 is a window, 3 is a light emitting part, 4 is a light receiving part,
5 is the heating means. Note that FIG. 3 (6) is a graph showing the temperature distribution of this device.

セル1内に8を置き加熱手段5によりセル1内の温度を
298℃に一定にして保持したときのスペクトルを第4
図に示す。第1群ピークすなわち波長265 nm、 
265.5 nm、 268 mm、 270.5 n
m、 275 nm、 276 nm、 279 nm
及び282 nm  を最大のピーク山とした吸収スペ
クトル及び第■群ピークすなわち波長264.5nm、
 267 nm、 269.5 nm、 272 nm
、 275nm、 278 nm  及び281 nm
  を谷のピークとした吸収スペクトルが明瞭に測定さ
れた。
8 is placed in the cell 1 and the temperature inside the cell 1 is kept constant at 298°C by the heating means 5.
As shown in the figure. 1st group peak, i.e. wavelength 265 nm,
265.5 nm, 268 mm, 270.5 n
m, 275 nm, 276 nm, 279 nm
and an absorption spectrum with the maximum peak at 282 nm, and a group Ⅰ peak, that is, a wavelength of 264.5 nm,
267 nm, 269.5 nm, 272 nm
, 275 nm, 278 nm and 281 nm
The absorption spectrum with trough peak was clearly measured.

一方、日の投入量と、吸光度の間には、一般的に第5図
に示す関係があることを詳細な実験に確認した。ここで
ガス状Sが存在するとき検知される光強度を工、ガス状
Sがないときの光強度を工0 とすると、吸光度’r(
%)は次式(3)%式% したがって、前記の(1)および(2)弐によシ吸光度
からSを定量できる。なおA点は、温度tにおける飽和
点をあられしておシ、 を 規定される。
On the other hand, it was confirmed through detailed experiments that there is generally a relationship shown in FIG. 5 between the daily input amount and the absorbance. Here, if the light intensity detected when gaseous S is present is x, and the light intensity when there is no gaseous S is x0, then the absorbance 'r(
%) is the following formula (3) % Formula % Therefore, S can be quantified from the absorbance based on the above (1) and (2). Note that point A is defined as the saturation point at temperature t.

第5図の関係は第1群及び第1群の夫々の山と谷の吸収
スペクトルについて成立するので、いずれのピークの測
定によってもS量を求めることができる。検出は0.0
1 ppmオーダーまで可能である。
Since the relationship shown in FIG. 5 holds true for the peak and valley absorption spectra of each of the first group and the first group, the amount of S can be determined by measuring any peak. Detection is 0.0
Possible up to 1 ppm order.

さらに上記の第1群及び第■群の山と谷の各スペクトル
線を同時に検知し、各々のピーク高さから同時に定量を
行うことができる。この場合は前記(1)、(31式に
かえて、下記(a)〜(C)の評価手段による。なお五
、〒は夫々の平均値を、n=1,2・・・8は上記8種
類のピークについての、夫々の測定を表す。
Furthermore, each of the peak and valley spectral lines of the first group and the second group can be simultaneously detected, and quantitative determination can be performed simultaneously from the height of each peak. In this case, the following evaluation methods (a) to (C) are used instead of the above formulas (1) and (31). Each measurement is shown for eight types of peaks.

n=1.2.−・・8 n=1.2 、・・・8 n=1,2.・・・8 このような評価はコンピュータ等演算装置によれば容易
かつ迅速であり、実時間でS量を表示できるので、系の
制御ができる。
n=1.2. -...8 n=1.2,...8 n=1,2. ...8 Such evaluation is easy and quick using an arithmetic device such as a computer, and since the amount of S can be displayed in real time, the system can be controlled.

(発明の効果) 本発明の効果は次のとおりである。(Effect of the invention) The effects of the present invention are as follows.

1)ガス状Sの吸収による上記第1群ピーク(山)第■
群ピーク(谷)のスペクトルを利用することによシ、ガ
ス状Sの高感度の検知・定量がその場で可能となった。
1) The above first group peak (mountain) No. ■ due to absorption of gaseous S
By using the spectrum of group peaks (troughs), highly sensitive detection and quantification of gaseous S has become possible on the spot.

2)上記第1群ピーク及び第1群ピークのスペクトルの
ピーク高から同時に定量を行なうため、他物質から明確
に分離して検知精度が向上し、またSの定量精度が大巾
に向上する。
2) Since quantification is performed simultaneously from the peak height of the spectrum of the first group peak and the first group peak, the detection accuracy is improved by clearly separating it from other substances, and the quantification accuracy of S is greatly improved.

3)本発明の高感度日モニターはS量のその場検知・定
量が可能であり、さらにコンピューター等演算装置と組
合すことによシ、各スペクトルの吸光度から実時間でS
量を検知定量し、該演算装置の出力信号によりS投入量
、S圧等をその場で制御することができる。
3) The high-sensitivity daily monitor of the present invention is capable of on-the-spot detection and quantification of the amount of S. Furthermore, by combining it with a computing device such as a computer, it is possible to detect and quantify the amount of S in real time from the absorbance of each spectrum.
The amount can be detected and quantified, and the S input amount, S pressure, etc. can be controlled on the spot based on the output signal of the arithmetic device.

【図面の簡単な説明】[Brief explanation of drawings]

tlf11図はガス状Sの吸光スペクトルである。 第2図は本発明方法及びモニターの概略を示す模式図で
ある。第3図(a)は本発明の実施例で用いた装置の概
略図であり、第3図(b)は第3図(a)装置における
温度分布を示すグラフである。第4図は本発明の実施例
で得られ九波長と吸光度の関係を示すグラフ、第5図は
S量と吸光度の関係を示すグラフである。 第1図 y枳 第3図(α)
The tlf11 diagram is an absorption spectrum of gaseous S. FIG. 2 is a schematic diagram showing the outline of the method and monitor of the present invention. FIG. 3(a) is a schematic diagram of the apparatus used in the embodiment of the present invention, and FIG. 3(b) is a graph showing the temperature distribution in the apparatus of FIG. 3(a). FIG. 4 is a graph showing the relationship between nine wavelengths and absorbance obtained in an example of the present invention, and FIG. 5 is a graph showing the relationship between S amount and absorbance. Figure 1 Figure 3 (α)

Claims (5)

【特許請求の範囲】[Claims] (1)ガス状Sに、波長263nm、265.5nm、
268nm、270.5nm、273nm、276nm
、279nm、282nmの山ピークを有する第1群ピ
ーク及び波長264.5nm、267nm、269.5
nm、272nm、275nm、278nm、281n
mの谷ピークを有する第1群ピークのスペクトル線を、
入射し、上記ガス状Sによる上記入射スペクトル線の吸
収を測定し、各光強度のピーク高さからSの検知・定量
を行う方法。
(1) Gaseous S has wavelengths of 263 nm, 265.5 nm,
268nm, 270.5nm, 273nm, 276nm
, 279 nm, 282 nm peaks and wavelengths of 264.5 nm, 267 nm, 269.5
nm, 272nm, 275nm, 278nm, 281n
The spectral line of the first group peak with m valley peak is
A method of detecting and quantifying S by measuring the absorption of the incident spectrum line by the gaseous S, and detecting and quantifying S from the peak height of each light intensity.
(2)炉またはヒータ付容器の光の進行方向に窓部を設
け、一方の窓部に波長263nm、265.5nm、2
68nm、270.5nm、273nm、276nm、
279nm、282nmの山ピークを有する第1群ピー
ク及び波長264.5nm、267nm、269.5n
m、272nm、275nm、278nm、281nm
の谷ピークを有する第II群ピークのスペクトル線発光部
、他方の窓にはヒータ付容器内のガス状Sを通過した前
記スペクトル線の光強度のピーク高さからSを検知定量
する受光、測光部を接続してなる、Sモニター。
(2) A window is provided in the direction of light propagation in the furnace or container with a heater, and one window has wavelengths of 263 nm, 265.5 nm, and 2
68nm, 270.5nm, 273nm, 276nm,
1st group peaks with mountain peaks of 279 nm and 282 nm and wavelengths of 264.5 nm, 267 nm, and 269.5 nm
m, 272nm, 275nm, 278nm, 281nm
The other window has a light receiving and photometry unit that detects and quantifies S from the peak height of the light intensity of the spectral line that has passed through the gaseous S in the container with a heater. The S monitor is made by connecting the parts.
(3)コンピューターにより光強度のピーク高さからS
を検知・定量し、それによりS投入量コントロール、S
圧コントロールを実時間で制御する特許請求の範囲第(
2)項記載のSモニター。
(3) Based on the peak height of light intensity by computer
is detected and quantified, thereby controlling the amount of S input, S
Claim no.
S monitor described in section 2).
(4)発光部がホロカソードランプからなる特許請求の
範囲第(2)項記載のSモニター。
(4) The S monitor according to claim (2), wherein the light emitting section is a hollow cathode lamp.
(5)発光部または受光部が第 I 群ピークおよび第II
群ピークを中心とするフィルタを有する特許請求の範囲
第(2)項記載のSモニター。
(5) The light emitting part or the light receiving part is the peak of group I and the peak of group II.
The S monitor according to claim 2, which has a filter centered on the group peak.
JP94585A 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor Granted JPS61160045A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP94585A JPS61160045A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor
US06/816,843 US4733084A (en) 1985-01-09 1986-01-07 Method of detection and quantitative determination of sulfur and sulfur monitor using the method
DE8686100248T DE3682592D1 (en) 1985-01-09 1986-01-09 METHOD FOR DETECTING AND QUANTATIVE DETERMINATION OF SULFUR AND SULFUR MONITOR USING THIS METHOD.
EP86100248A EP0187675B1 (en) 1985-01-09 1986-01-09 Method of detection and quantitative determination of sulfur and sulfur monitor using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94585A JPS61160045A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11515790A Division JPH0315739A (en) 1990-05-02 1990-05-02 Detection and determination of sulfur and sulfur monitor

Publications (2)

Publication Number Publication Date
JPS61160045A true JPS61160045A (en) 1986-07-19
JPH0414742B2 JPH0414742B2 (en) 1992-03-13

Family

ID=11487810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94585A Granted JPS61160045A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur and sulfur monitor

Country Status (1)

Country Link
JP (1) JPS61160045A (en)

Also Published As

Publication number Publication date
JPH0414742B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
CN101949852B (en) Spectral standardization-based coal quality on-line detection method
CN100410649C (en) On-line atmospheric mercury analyzer
IT1306112B1 (en) METHOD FOR THE QUANTITATIVE ANALYSIS OF THE ATOMIC COMPONENTS OF MATERIALS BY MEANS OF LIBS SPECTROSCOPY MEASURES WITHOUT CALIBRATION
US10801964B2 (en) Spectroscopic methods for body fluid age determination
US3897155A (en) Atomic fluorescence spectrometer
EP0187675B1 (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
JPS61160045A (en) Detection and quantitative analysis of sulfur and sulfur monitor
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPS61160044A (en) Detection and quantitative analysis of sulfur and sulfur monitor
JPH0315739A (en) Detection and determination of sulfur and sulfur monitor
JPS61160043A (en) Detection and quantitative analysis of sulfur monitor
Zhirkov et al. A microplasma analyzer for the determination of alkali and alkaline-earth metals in small volumes of samples of complex phase composition
JP3660938B2 (en) Component analysis method using laser
Liu et al. Multi-wavelength UV imaging detection system applied for varying environmental conditions: Detection of SO2 as an example
US20220026367A1 (en) Pathogen screening using optical emission spectroscopy (oes)
SU830141A1 (en) Method of determining concentration of elements in rock samples
US4731334A (en) Method and apparatus for detecting and quantitatively determining selenium
Rajulu et al. Principles of Quantitative Estimation of Drugs, Endogenous Compounds, and Poisons—2
RU2137126C1 (en) Method examining biological fluids and device for its implementation
JPS61160042A (en) Detection and quantitative analysis of se and se monitor
JPS5852513Y2 (en) gas concentration meter
Edel et al. Frequency-modulated simultaneous atomic absorption spectrometry (FremsAAS): Determination of As, Se and Sb
JPS63247644A (en) Method for measuring immune reaction
JPS57147039A (en) Data discriminating device for photometer