JPS5837541A - Automatic analyzing method for flameless atomic absorption - Google Patents

Automatic analyzing method for flameless atomic absorption

Info

Publication number
JPS5837541A
JPS5837541A JP13578781A JP13578781A JPS5837541A JP S5837541 A JPS5837541 A JP S5837541A JP 13578781 A JP13578781 A JP 13578781A JP 13578781 A JP13578781 A JP 13578781A JP S5837541 A JPS5837541 A JP S5837541A
Authority
JP
Japan
Prior art keywords
drying
sample solution
atomizing
atomic absorption
solution injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13578781A
Other languages
Japanese (ja)
Inventor
Masahiro Shibata
柴田 雅裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13578781A priority Critical patent/JPS5837541A/en
Publication of JPS5837541A publication Critical patent/JPS5837541A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make an infinitesimal analysis without carrying out pretreatment such as extraction, by injecting a sample solution for plural times in one measuring cycle of absorbance measurement. CONSTITUTION:Atomizing is carried out through the following processes, injection 1 of a solution to the atomizing part of a high-temperature reactor drying 1 sample solution injection 2 drying 2-sample solution injection n drying n incineration atomizing or sample solution injection 1 drying 1 incineration 1-sample solution injection n drying n incineration n atomizing. Further, the absorption intensity of light having a certain specific wavelength due to atomic vapor is detected by using a hollow cathode lamp, a spectroscope and a detector during these processes and the density of a metal to be measured is measured. Hereby, the density of the atomic vapor in an effective light flux 31 of atomic absorption measurement is increased because a dried or incinerated sample 33 exisits within a comparatively narrow domain in a graphite tube 32.

Description

【発明の詳細な説明】 本発明は、環境計測、医学・労働衛生・公衆衛生、石油
化学工業、金属・冶金工業、非金属工業、食品・水産工
業、電子工業等の分野で広く応用されている、微量分析
を目的としたフレームレス原子吸光光度の自動分析法に
関するものである。
[Detailed description of the invention] The present invention is widely applied in fields such as environmental measurement, medicine/occupational health/public health, petrochemical industry, metal/metallurgy industry, non-metal industry, food/fishery industry, electronic industry, etc. This paper relates to an automatic flameless atomic absorption spectrometry analysis method for trace analysis.

電子工業分野、特に半導体材料、オプトエレクトロニク
ス材料を用いたデバイスの研究・開発、製品の製造にお
いては、その目的とするデバイスの性能を制御するため
、より微量な成分元素、不純物元素の分析を行なう必要
がある。例えば Si半導体やGaAs  等の化合物
半導体中のFe*CumAl+Cr、Siの微量不純物
の分析は重要な課題である。
In the field of electronics industry, especially in the research and development of devices using semiconductor materials and optoelectronic materials, and in the manufacturing of products, trace amounts of component elements and impurity elements are analyzed in order to control the performance of the target device. There is a need. For example, analysis of trace impurities such as Fe*CumAl+Cr and Si in compound semiconductors such as Si semiconductors and GaAs is an important issue.

特にGmAs  中においてはCr t 51の微量不
純物の分析が大切なテーマとなっている。このような微
量不純物の分析方法は種々あるが、その中の一つにフレ
ームレス原子吸光光度法がある。それは次のようなもの
である。
In particular, analysis of trace impurities in Cr t 51 in GmAs has become an important theme. There are various methods for analyzing such trace impurities, one of which is flameless atomic absorption spectrometry. It is something like this:

高温度の雰囲気におかれた物質は解離されて、原子の蒸
気となる。この場合、原子は高齢エネルギーレベルのも
のと、低いエネルギーのものがある。原子吸光分析は、
この低いエネルギーレベルの原子の性質を利用する。低
いエネルギーレベルの原子は、ある特定の大きさのエネ
ルギーが与えられると、それを吸収して高いエネルギー
レベルにうつる。原子吸光分析では光エネルギーとして
ケーえる。光エネルギーの大きさは波長と関係する。
Substances exposed to high temperatures dissociate into atomic vapors. In this case, the atoms are at an older energy level and at a lower energy level. Atomic absorption spectrometry is
This takes advantage of the properties of atoms at low energy levels. When an atom at a lower energy level is given a certain amount of energy, it absorbs it and transfers it to a higher energy level. In atomic absorption spectrometry, it can be expressed as light energy. The amount of light energy is related to the wavelength.

したがって、元素によって、ある特定の波長の光だけが
吸収され、その吸収の強さは原子蒸気の密度、すなわち
、もともとの物質中の濃度に比例することになる。この
ような原理を利用して分析を行なうのが原子吸光分光光
度計である。
Therefore, only light of a certain wavelength is absorbed by an element, and the strength of that absorption is proportional to the density of the atomic vapor, that is, the concentration in the original substance. An atomic absorption spectrophotometer performs analysis using this principle.

原子・吸光光度計は、原子が吸収するエネルギーレベル
に相当する波長の光を出す光源(ホローカソードランプ
)、原子蒸気をつくり出す原子化部としての高温炉、必
要な波長の光を選び出す分光器と検知器あ・よびその他
、高温炉を制御する電気制御部又はフレームを制御する
ガス制御部信号を処理する電気処理部からなっている。
An atomic absorption photometer consists of a light source (hollow cathode lamp) that emits light at a wavelength corresponding to the energy level absorbed by atoms, a high-temperature furnace as an atomization unit that creates atomic vapor, and a spectrometer that selects light at the required wavelength. It consists of a detector, an electric control unit that controls the high temperature furnace, a gas control unit that controls the flame, and an electric processing unit that processes signals.

(第1図)次に光源から検出器までの原子吸収の過程及
び定量法の過程を第2図に示す。
(Fig. 1) Next, Fig. 2 shows the process of atomic absorption from the light source to the detector and the process of the quantitative method.

第2図(a)にあ・いて、ランプは測定する元素の線ス
ペクトルを放出し、黒色部は特定波長(共鳴線)と表わ
す。
In FIG. 2(a), the lamp emits a line spectrum of the element to be measured, and the black areas represent specific wavelengths (resonance lines).

第2図(b)にふ・いて、高温炉原子化部中のサンプル
は共鳴線でエネルギーを吸収し、共鳴線以外の線スペク
トルはそのまま通過する。
As shown in FIG. 2(b), the sample in the high-temperature reactor atomization section absorbs energy at the resonance line, and the line spectrum other than the resonance line passes through as is.

第2図(C)にふ・いて、分光器は共鳴線付近の光のみ
を通す働きをしている。
As shown in Fig. 2(C), the spectrometer functions to pass only the light near the resonance line.

第2図(d)にあ・いて、受光器はサンプル中の元素の
吸収により減少した共鳴線の大きさのみを検出する。
In FIG. 2(d), the receiver detects only the magnitude of the resonance line, which has been reduced by absorption of elements in the sample.

第1図で光源ランプの線巾が極めて小さく、安場合を考
えると、logユ’−= ABS = K、f、N、J
、となIν す、測定しようとする金属濃度は吸光度に比例する訳で
ある。又、分析感度を上げるにはf値の大きい共鳴線を
選jことか、lを大きくとるのがよいことがわかる。
In Figure 1, considering the case where the line width of the light source lamp is extremely small and cheap, log Yu'-= ABS = K, f, N, J
, Iν, the metal concentration to be measured is proportional to the absorbance. It is also understood that in order to increase the analysis sensitivity, it is better to select a resonance line with a large f value or to increase l.

なお、実際の検量線はスペクトル線の様々な影響により
広い濃度範囲にわたり直線性を示すことは少い。
Note that actual calibration curves rarely exhibit linearity over a wide concentration range due to various influences of spectral lines.

このフレームレス原子吸光自動分析においては、従来の
方法では、試料溶液注入−乾燥−灰化一原子化というプ
ロセスで行っていた。このプロセスでは微量な成分元素
、不純物元素の分析感度は、第3図(a)に示すように
原子吸光度測定時の有効光束内31での黒鉛チューブ3
2内の試料33から出てくる原子蒸気密度に依存する。
In the conventional method, this flameless atomic absorption automatic analysis has been carried out by a process of sample solution injection, drying, and ashing and monoatomization. In this process, the analysis sensitivity for trace component elements and impurity elements is as shown in Figure 3(a), when the graphite tube 3 is within the effective luminous flux 31 during atomic absorption measurement.
It depends on the atomic vapor density coming out of the sample 33 in 2.

第3図(b)に示すように、従来の方法においては、吸
光度をかせぐために多量の試料を注入する場合、黒鉛炉
チューブ内に1回の注入で入れるため、乾燥又は灰化さ
れた試料33は広がって存在しており、このような状態
で原子化しても有効光束内での原子蒸気密度は低いもの
であった。このため極微量分析という点では不充分なも
のであった。
As shown in FIG. 3(b), in the conventional method, when a large amount of sample is injected to increase the absorbance, the dried or incinerated sample 33 is injected into the graphite furnace tube in one go. exist in a wide area, and even if atomized in such a state, the atomic vapor density within the effective luminous flux was low. For this reason, it was insufficient in terms of trace analysis.

本発明は試料溶液注入、原子化部の加熱(乾燥、灰化、
原子化)゛の両動作を、コンピュータにより全く独立に
制御することにより、1回の吸光度測定サイクル内で、
複数回の試料溶液注入を行い、従来以下の微量分析を抽
出等の前処理を行わずして可能にすること金特徴とする
ものである。即ち本発明の方法は、試料溶液注入(1)
−乾燥(1)−試料溶液注入(2)→乾燥(2)→・・
・・・→試料溶液注入(n) −乾燥(、)→灰化一原
子化というプロセス或いは、試料溶液注入(1)→乾燥
(1)→灰化(1)−・・・・・−試料溶液注入(n)
→乾燥(n)→灰化(n)→原子化というプロセスを経
るようにして行うものである。
The present invention involves sample solution injection, heating of the atomization section (drying, ashing,
By controlling both operations (atomization) completely independently by computer, within one absorbance measurement cycle,
A key feature of this method is that it enables multiple injections of sample solutions to perform microanalysis that is lower than conventional methods without pretreatment such as extraction. That is, the method of the present invention includes sample solution injection (1)
- Drying (1) - Sample solution injection (2) → Drying (2) →...
...→Sample solution injection (n) -Drying (,)→Ashing-mono-atomization process or sample solution injection (1)→Drying (1)→Ashing (1)--Sample Solution injection (n)
The process is as follows: → drying (n) → ashing (n) → atomization.

このような本発明のプロセスを経れば、第3図(c)に
みるように、乾燥又は灰化した試料33は比較的狭い領
域にて存在するため、そこから出てくる原子蒸気密度は
高い状態で有効光束内31に′存在するようになる。
Through the process of the present invention, as shown in FIG. 3(c), the dried or incinerated sample 33 exists in a relatively narrow area, so the density of the atomic vapor coming out from there is It comes to exist in the effective light beam 31 in a high state.

次に本発明の一実施例を説明する。第4図は、従来法を
用いて吸光度を測定したときの原子吸光度測定データで
、第5図は本発明の方法を用いて1.2.3.5回ずつ
試料溶液注入して測定したときの原子吸光度測定データ
である。なお用いた試料溶液はGaAs O,2f /
 l Ome (蒸留水+酸)(溶液A)と(’GaA
s Q、2y+Cr O,1ttP )、/ 10 m
l (蒸留水+酸)(溶液B)であり、1回の試料溶液
の注入量は20μlであり、乾燥は45A1灰化は16
0A 。
Next, one embodiment of the present invention will be described. Figure 4 shows the atomic absorption measurement data when absorbance was measured using the conventional method, and Figure 5 shows the atomic absorption measurement data when the sample solution was injected 1, 2, 3, and 5 times using the method of the present invention. This is atomic absorption measurement data. The sample solution used was GaAs O,2f/
l Ome (distilled water + acid) (solution A) and ('GaA
s Q, 2y + Cr O, 1ttP ), / 10 m
l (distilled water + acid) (solution B), the amount of sample solution injected at one time is 20 μl, drying is 45A1, ashing is 16
0A.

原子化は310Aの通電加熱である。第4図から本発明
の方法が従来の方法よりも優れていることがわかる。
Atomization was performed by heating with a current of 310A. It can be seen from FIG. 4 that the method of the present invention is superior to the conventional method.

次に本発明のもう一つの実施例を説明する。第6図は前
述の溶液Bを用いて、それぞれ20μlずつ5回の合計
100μl及び、50μl ずつ2回の合計100μl
 の注入を本発明の方法によって行ったときの原子吸光
度測定データである。これから総理入量iooμl と
した場合、50μl/回×2回よりも20μ7?/回×
5回の方が効果のあることがわかる。これは第3図(C
)に示すように少量(5〜20、le)の試料溶液を再
現性よく同じ場所に注入することにより、原子化時に、
原子吸光度測定の有効光束内での原子蒸気密度を高くす
ることができるためである。
Next, another embodiment of the present invention will be described. Figure 6 shows a total of 100 μl for 5 times of 20 μl each and 2 times of 50 μl for a total of 100 μl using the aforementioned solution B.
This is atomic absorption measurement data when the injection of 100% was performed by the method of the present invention. From now on, if we assume the amount of Prime Minister's intake iooμl, it will be 20μ7 rather than 50μl/time x 2 times? / times×
It turns out that 5 times is more effective. This is shown in Figure 3 (C
), by injecting a small amount (5 to 20 le) of the sample solution into the same location with good reproducibility, during atomization,
This is because the atomic vapor density within the effective light flux of atomic absorption measurement can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温炉法の原理図であり、第2図は原子吸光測
定過程図である。第8図は原子化密度状態を示す為の図
、第4図は従来の測定法による吸光度のデータを示す図
、第5図は本発明方法の方法による吸光度のデータを示
す図、第6図は100μl 溶液を2回と5回に分けて
乾燥灰化した後、原子化して測定した時の吸光度のデー
タを示す図である。 図中31は原子吸光度測定時の有効光束、32は黒鉛チ
ューブ、33は灰化後の試料を示す。 代理人 弁理士  上 代 哲 司1′42.71図 72図
FIG. 1 is a diagram of the principle of the high temperature furnace method, and FIG. 2 is a diagram of the atomic absorption measurement process. Fig. 8 is a diagram showing the atomization density state, Fig. 4 is a diagram showing absorbance data by the conventional measurement method, Fig. 5 is a diagram showing absorbance data by the method of the present invention, and Fig. 6 is a diagram showing the absorbance data by the method of the present invention. This is a diagram showing absorbance data when a 100 μl solution was divided into two and five times, dried and ashed, and then atomized and measured. In the figure, 31 shows the effective light flux during atomic absorption measurement, 32 shows the graphite tube, and 33 shows the sample after incineration. Agent Patent Attorney Satoshi Tsukasa 1'42.71Figure 72

Claims (1)

【特許請求の範囲】[Claims] (1)フレームレス原子吸光自動分析において、1回の
吸光度測定サイクル内に複数回の試料溶液注入を行ない
、より微量な成分元素不純物元素の分析を行なうことを
特徴とするフレームレス原子吸光自動分析法。
(1) In flameless atomic absorption automatic analysis, a sample solution is injected multiple times within one absorbance measurement cycle to analyze trace amounts of component elements and impurity elements. Law.
JP13578781A 1981-08-29 1981-08-29 Automatic analyzing method for flameless atomic absorption Pending JPS5837541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13578781A JPS5837541A (en) 1981-08-29 1981-08-29 Automatic analyzing method for flameless atomic absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13578781A JPS5837541A (en) 1981-08-29 1981-08-29 Automatic analyzing method for flameless atomic absorption

Publications (1)

Publication Number Publication Date
JPS5837541A true JPS5837541A (en) 1983-03-04

Family

ID=15159825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13578781A Pending JPS5837541A (en) 1981-08-29 1981-08-29 Automatic analyzing method for flameless atomic absorption

Country Status (1)

Country Link
JP (1) JPS5837541A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591034A (en) * 1994-02-14 1997-01-07 W. L. Gore & Associates, Inc. Thermally conductive adhesive interface
US5690739A (en) * 1993-09-28 1997-11-25 W. L. Gore & Associates, Inc. Release agent supply wick for printer apparatus and method for making and using same
EA018122B1 (en) * 2009-07-20 2013-05-30 Конструкторско-Технологическое Республиканское Унитарное Предприятие "Нуклон" Method for atomic absorption measurements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225234A (en) * 1977-08-05 1980-09-30 Beckman Instruments Gmbh Method for sampling in flameless atomic absorption spectrophotometry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225234A (en) * 1977-08-05 1980-09-30 Beckman Instruments Gmbh Method for sampling in flameless atomic absorption spectrophotometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690739A (en) * 1993-09-28 1997-11-25 W. L. Gore & Associates, Inc. Release agent supply wick for printer apparatus and method for making and using same
US5709748A (en) * 1993-09-28 1998-01-20 W. L. Gore & Associates, Inc. Release agent supply wick for printer apparatus
US5591034A (en) * 1994-02-14 1997-01-07 W. L. Gore & Associates, Inc. Thermally conductive adhesive interface
EA018122B1 (en) * 2009-07-20 2013-05-30 Конструкторско-Технологическое Республиканское Унитарное Предприятие "Нуклон" Method for atomic absorption measurements

Similar Documents

Publication Publication Date Title
Body et al. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system
Létant et al. Integration of porous silicon chips in an electronic artificial nose
US20040211906A1 (en) Method of infrared-optically determining the concentration of at least one analyte in a liquid sample
Grotti et al. Total introduction of microsamples in inductively coupled plasma mass spectrometry by high-temperature evaporation chamber with a sheathing gas stream
Frentiu et al. Low power capacitively coupled plasma microtorch for simultaneous multielemental determination by atomic emission using microspectrometers
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Goforth et al. Laser-excited atomic fluorescence of atoms produced in a graphite furnace
Frentiu et al. Determination of total mercury in fish tissue using a low-cost cold vapor capacitively coupled plasma microtorch optical emission microspectrometer: comparison with direct mercury determination by thermal decomposition atomic absorption spectrometry
JPS5837541A (en) Automatic analyzing method for flameless atomic absorption
Ljung et al. Measurements of rubidium in standard reference samples by wavelength-modulation diode laser absorption spectrometry in a graphite furnace
Pergantis et al. Simplex optimization of conditions for the determination of arsenic in environmental samples by using electrothermal atomic absorption spectrometry
US7148068B1 (en) Method of trivalent chromium concentration determination by atomic spectrometry
Koch et al. Narrow and broad band diode laser absorption spectrometry—concepts, limitations and applications
Matosek et al. Spectrometric analysis of non-metals introduced from a graphite furnace into a microwave-induced plasma
Howell et al. Internal-standardization in flame analyses using a vidicon spectrometer
Melzer et al. Determination of trace amounts of lead in water by metastable transfer emission spectrometry
He et al. Laser spectroscopy and dynamics of the jet-cooled AsH2 free radical
Alvarado et al. Peak-area measurements in electrothermal atomisation inductively coupled plasma atomic emission spectrometry
Pack et al. Use of an air/argon microwave plasma torch for the detection of tetraethyllead
Zhang et al. Elemental mercury sensing by synchronously sweeping two multimode diode lasers
Caupeil et al. Non-dispersive atomic-fluorescence spectrometry for the determination of mercury and its application to fish samples
JPS5837538A (en) Measuring method for area absorbance of flameless atomic absorption analysis
JPS5837540A (en) Automatic analyzing method for flameless atomic absorption
Anderson et al. The determination of lead in mosses by means of its catalytic effect on the persulphate oxidation of pyrogallol red
JPS5837539A (en) Flowing method for carrier gas of flameless atomic light absorption analysis