JPH0226180B2 - - Google Patents

Info

Publication number
JPH0226180B2
JPH0226180B2 JP94385A JP94385A JPH0226180B2 JP H0226180 B2 JPH0226180 B2 JP H0226180B2 JP 94385 A JP94385 A JP 94385A JP 94385 A JP94385 A JP 94385A JP H0226180 B2 JPH0226180 B2 JP H0226180B2
Authority
JP
Japan
Prior art keywords
gaseous
light
window
peak height
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP94385A
Other languages
Japanese (ja)
Other versions
JPS61160043A (en
Inventor
Hajime Oosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP94385A priority Critical patent/JPS61160043A/en
Priority to US06/816,843 priority patent/US4733084A/en
Priority to DE8686100248T priority patent/DE3682592D1/en
Priority to EP86100248A priority patent/EP0187675B1/en
Publication of JPS61160043A publication Critical patent/JPS61160043A/en
Publication of JPH0226180B2 publication Critical patent/JPH0226180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なSの定量方法及び該方法を利用
したその場での高感度な検知定量が可能なSモニ
ターに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel method for quantifying S and an S monitor capable of highly sensitive detection and quantification on the spot using the method.

本発明はSを用いる半導体製造品及び製造装
置、廃棄物処理装置等、例えばZnS、CdS、
ZnSxSe1-x等の化合物半導体のエピ成長装置
(CVD炉、LPE炉等)、高圧炉HB炉、アニーリン
グ炉、S圧アニーリング炉、MBE装置、
MOCVD装置等にS検出定量高感度モニターと
して利用したり、あるいは、Sを含有する合金や
セラミツクス、ガラス等の溶解炉等に利用するこ
とができる。
The present invention relates to semiconductor manufacturing products, manufacturing equipment, waste processing equipment, etc. that use S, such as ZnS, CdS,
Epi growth equipment for compound semiconductors such as ZnSxSe 1-x (CVD furnace, LPE furnace, etc.), high pressure furnace HB furnace, annealing furnace, S pressure annealing furnace, MBE equipment,
It can be used as a high-sensitivity monitor for S detection and quantitative determination in MOCVD equipment, etc., or it can be used in melting furnaces for S-containing alloys, ceramics, glass, etc.

(従来の技術) 従来、Sを検出する場合に、非破壊で、系を乱
さず、その場でガス状Sを検知定量する方法は殆
んど知られておらず、Sの検出は破壊検知が主で
ある。ガス状物質の非破壊検出・定量法として
は、ガスクロマトグラフイーが考えられるが、
測定系内に試料を導くまでに、導入管壁に付着
し、正確な定量ができない、系内からのサンプ
リングを要するため系を乱してしまう、という本
質的な問題点があるため不適であり、実用されて
いない。また、原子吸光分析は、原子状態の試料
について厳密に測定できるが、試料を2000℃以上
の高温状態とする必要があり、原子化温度以下の
検知定量は原理的に不可能であるに加え、用いう
るホロカソードランプがない。
(Prior art) Conventionally, when detecting S, there is almost no known method for detecting and quantifying gaseous S on the spot in a non-destructive manner without disturbing the system. is the main thing. Gas chromatography can be considered as a non-destructive detection/quantification method for gaseous substances.
It is unsuitable because it has the inherent problem that it adheres to the wall of the introduction tube before the sample is introduced into the measurement system, making accurate quantification impossible, and that it disturbs the system because it requires sampling from within the system. , has not been put into practice. In addition, atomic absorption spectrometry can accurately measure samples in the atomic state, but it requires the sample to be heated to a high temperature of 2000°C or higher, and detection and quantification at temperatures below the atomization temperature is theoretically impossible. There are no hollow cathode lamps available.

(発明が解決しようとする問題点) 本発明は上記した現状に鑑みてなされたもの
で、非破壊で、系をみださず、その場でガス状S
の高感度検知・定量が可能な方法及び該方法を利
用した高感度モニターの提供を目的とするもので
ある。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned current situation.
The purpose of the present invention is to provide a method capable of detecting and quantifying with high sensitivity, and a highly sensitive monitor using the method.

(問題点を解決しようとする手段) すなわち、本発明はガス状Sに、波長263nm
及び265.5nmのスペクトル線のうちの1つまたは
2つを、入射し、上記ガス状Sによる上記入射ス
ペクトル線の吸収を測定し、各光強度のピーク高
さからSの検知・定量を行う方法および炉または
ヒータ付容器の光の進行方向に窓部を設け、一方
の窓部に263nm及び265.5nmのスペクトル線のう
ちの1つまたは2つの発光部、他方の窓にはヒー
タ付容器内のガス状Sを通過した前記スペクトル
線の光強度のピーク高さからSを検知定量する受
光、測光部を接続してなる、Sモニターである。
(Means for solving the problem) That is, the present invention provides gaseous S with a wavelength of 263 nm.
A method in which one or two of the spectral lines of 265.5 nm and 265.5 nm are incident, the absorption of the incident spectral lines by the gaseous S is measured, and S is detected and quantified from the peak height of each light intensity. A window is provided in the direction of light propagation in the furnace or heater-equipped container, and one window has a light-emitting region for one or two of the 263 nm and 265.5 nm spectral lines, and the other window has a light-emitting section for the light in the heater-equipped container. This is an S monitor that is connected to a light receiving and photometering section that detects and quantifies S based on the peak height of the light intensity of the spectral line that has passed through the gaseous S.

以下本発明につき詳細に説明する。 The present invention will be explained in detail below.

本発明者らは、ガス状S(ガス状ではS2、S4
S6、S8等になると考えられているが、特定されて
いない。)の吸光スペクトルを詳細に研究の結果、
第1図に示すように、波長263nm及び265.5nmに
吸光のピークを有することを発見した。そしてこ
のようなピークは温度300℃程度のSの分子の状
況のスペクトルで得られるという知見をも得て、
ガス状Sの吸収による263nm及び265.5nmの吸光
ピークを利用することにより、ガス状Sを高感度
でかつその場でさえ検出・定量を可能としたもの
である。特に263nm及び265.5nmの両方のスペク
トル線を同時に入射し、分光器で別々に測定して
その平均をとるときには、単一のスペクトル線を
用いる場合より他の物質との分離がより確実とな
り、しかもS定量の精度が向上する。
The present inventors have discovered that gaseous S (in gaseous form S 2 , S 4 ,
It is thought that it will be S 6 , S 8, etc., but it has not been identified. ) As a result of detailed research on the absorption spectra of
As shown in FIG. 1, it was discovered that the light absorption peaks were at wavelengths of 263 nm and 265.5 nm. We also obtained the knowledge that such a peak can be obtained in the spectrum of S molecules at a temperature of about 300℃.
By utilizing the absorption peaks of gaseous S at 263 nm and 265.5 nm, it is possible to detect and quantify gaseous S with high sensitivity even on the spot. In particular, when both 263nm and 265.5nm spectral lines are incident simultaneously, measured separately with a spectrometer, and then averaged, separation from other substances is more reliable than when using a single spectral line. The accuracy of S quantification is improved.

本発明は第2図に示すように、炉、ヒータ付セ
ルあるいは筒状1に窓2を取り付け、発光部3に
おいて263nmまたは265.5nmのスペクトル線を発
光させ、この光を窓2から入射し、受光部4にお
いて光強度のピーク高さを測定することにより、
炉またはセル中のSを検知定量するものである。
このSの検知、定量は、263nmまたは265.5nmの
ピーク吸収がS濃度に比例することから求める。
ピーク吸収とS濃度の関係は D=log1/T(%) ………(1) D∝C ………(2) 上記(1)、(2)式で表される。ここでTはピークで
の吸光度(%)、CはSの濃度である。
As shown in FIG. 2, the present invention attaches a window 2 to a furnace, a cell with a heater, or a cylindrical shape 1, emits a spectral line of 263 nm or 265.5 nm in a light emitting part 3, and makes this light enter through the window 2, By measuring the peak height of light intensity in the light receiving section 4,
It detects and quantifies S in a furnace or cell.
The detection and quantification of S is determined from the fact that the peak absorption at 263 nm or 265.5 nm is proportional to the S concentration.
The relationship between peak absorption and S concentration is expressed by the following formulas (1) and (2): D=log1/T (%) (1) D∝C (2) Here, T is the absorbance at the peak (%), and C is the concentration of S.

263nm及び265.5nmのスペクトル発光源として
は、ホロカソードランプを用い、263nm及び
265.5nmのうちの1つまたは2つを中心したフイ
ルターを各々設けたものが使用できる。また該フ
イルターは受光部に設けることもできる。
As the 263nm and 265.5nm spectrum emission source, a hollow cathode lamp is used.
It is possible to use filters each having a filter centered on one or two of 265.5 nm. Further, the filter can also be provided in the light receiving section.

さらに検出結果をコンピユータ処理し、その結
果を表示するようにできる。このようにすれば、
ほぼ実時間でSを定量検出できるので、その場で
のSの検知定量とSの投入量S圧コントロール等
を制御しうる高感度Sモニターを実現できる。
Furthermore, the detection results can be processed by a computer and the results can be displayed. If you do this,
Since it is possible to quantitatively detect S in almost real time, it is possible to realize a highly sensitive S monitor that can detect and quantify S on the spot and control the amount of S input, S pressure, etc.

(実施例) 第3図aは本発明の実施例で用いた装置の概略
図であつて、1はセル、2は窓、3は発光部、4
は受光部、5は加熱手段をあらわす。なお第3図
bはこの装置の温度分布を示すグラフである。
(Example) FIG. 3a is a schematic diagram of an apparatus used in an example of the present invention, in which 1 is a cell, 2 is a window, 3 is a light emitting part, and 4 is a schematic diagram of a device used in an example of the present invention.
5 represents a light receiving section, and 5 represents a heating means. Note that FIG. 3b is a graph showing the temperature distribution of this device.

セル1内にSを置き加熱手段5によりセル1内
の温度を298℃に一定にして保持したときのスペ
クトルを第4図に示す。263nm及び265.5nmを最
大のピークとした吸収スペクトルが明瞭に測定さ
れた。
FIG. 4 shows the spectrum obtained when S was placed in the cell 1 and the temperature inside the cell 1 was kept constant at 298° C. by the heating means 5. An absorption spectrum with maximum peaks at 263 nm and 265.5 nm was clearly measured.

一方、Sの投入量と、吸光度の間には、一般的
に第5図に示す関係があることを詳細な実験に確
認した。ここでガス状Sが存在するとき検知され
る光強度をI、ガス状Sがないときの光強度をIo
とすると、吸光度T(%)は次式(3)で与えられる。
On the other hand, it was confirmed through detailed experiments that there is generally a relationship shown in FIG. 5 between the amount of S added and the absorbance. Here, the light intensity detected when gaseous S exists is I, and the light intensity when gaseous S is absent is Io.
Then, the absorbance T (%) is given by the following equation (3).

T=I/Io×100 ………(3) したがつて、前記の(1)および(2)式により吸光度
からSを定量できる。なおA点は、温度tにおけ
る飽和点をあらわしており、 蒸気圧(logPt(mmHg)=−6750/t+11.32)によ り規定される。
T=I/Io×100 (3) Therefore, S can be quantified from the absorbance using equations (1) and (2) above. Note that point A represents the saturation point at temperature t, and is defined by vapor pressure (logPt (mmHg) = -6750/t + 11.32).

第5図の関係は263nmと265.5nmの夫々の吸収
スペクトルについて成立するので、いずれのピー
クの測定によつてもS量を求めることができ、特
に両者のスペクトルを用いるときは、精度が向上
し、0.1ppmオーダーまで検出が可能となつた。
The relationship shown in Figure 5 holds true for the absorption spectra of 263 nm and 265.5 nm, so the amount of S can be determined by measuring either peak, and especially when both spectra are used, the accuracy is improved. , it has become possible to detect down to the order of 0.1 ppm.

(発明の効果) 本発明の効果は次のとおりである。(Effect of the invention) The effects of the present invention are as follows.

(1) ガス状Sの吸収による波長263nm及び265.5n
mのスペクトルを利用することにより、ガス状
Sの高感度の検知・定量がその場で可能となつ
た。
(1) Wavelengths of 263nm and 265.5n due to absorption of gaseous S
By using the spectrum of m, it has become possible to detect and quantify gaseous S with high sensitivity on the spot.

(2) 波長263nm及び265.5nmのスペクトルのうち
の1つまたは2つのピーク高から定量を行なう
ため、Sの定量精度が向上する。
(2) Since quantification is performed from the peak height of one or two of the spectra of wavelengths 263 nm and 265.5 nm, the accuracy of quantification of S is improved.

(3) 本発明の高感度SモニターはS量のその場検
知・定量が可能であり、さらにコンピユーター
等演算装置と組合すことにより、各スペクトル
の吸光度から実時間でS量を検知定量し、該演
算装置の出力信号によりS投入量、S圧等をそ
の場で制御することができる。
(3) The high-sensitivity S monitor of the present invention is capable of on-the-spot detection and quantification of the amount of S, and when combined with a computing device such as a computer, the amount of S can be detected and quantified in real time from the absorbance of each spectrum. The S input amount, S pressure, etc. can be controlled on the spot based on the output signal of the arithmetic unit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス状Sの吸光スペクトルである。第
2図は本発明方法及びモニターの概略を示す模式
図である。第3図aは本発明の実施例で用いた装
置の概略図であり、第3図bは第3図a装置にお
ける温度分布を示すグラフである。第4図は本発
明の実施例で得られた波長と吸光度の関係を示す
グラフ、第5図はS量と吸光度の関係を示すグラ
フである。
FIG. 1 shows the absorption spectrum of gaseous S. FIG. 2 is a schematic diagram showing the outline of the method and monitor of the present invention. FIG. 3a is a schematic diagram of the apparatus used in the embodiment of the present invention, and FIG. 3b is a graph showing the temperature distribution in the apparatus of FIG. 3a. FIG. 4 is a graph showing the relationship between wavelength and absorbance obtained in an example of the present invention, and FIG. 5 is a graph showing the relationship between S amount and absorbance.

Claims (1)

【特許請求の範囲】 1 ガス状Sに、波長263nm及び265.5nmのスペ
クトル線のうちの1つまたは2つを、入射し、上
記ガス状Sによる上記入射スペクトル線の吸収を
測定し、各光強度のピーク高さからSの検知・定
量を行う方法。 2 炉またはヒータ付容器の光の進行方向に窓部
を設け、一方の窓部に波長263nm及び265.5nmの
スペクトル線のうちの1つまたは2つの発光部、
他方の窓にはヒータ付容器内のガス状Sを通過し
た前記スペクトル線の光強度のピーク高さからS
を検知定量する受光、測光部を接続してなる、S
モニター。 3 光強度のピーク高さからSを検知・定量し、
それによりS投入量コントロール・S圧コントロ
ールを実時間で制御する特許請求の範囲第2項記
載のSモニター。 4 発光部がホロカソードランプからなる特許請
求の範囲第2項記載のSモニター。 5 発光部または受光部が263nmおよび265.5nm
のうちの1つまたは2つを中心とするフイルタを
有する特許請求の範囲第2項記載のSモニター。
[Claims] 1. One or two of the spectral lines with wavelengths of 263 nm and 265.5 nm are incident on the gaseous S, and the absorption of the incident spectral lines by the gaseous S is measured. A method for detecting and quantifying S based on the intensity peak height. 2 A window is provided in the direction of light propagation of the furnace or container with a heater, and one or two light-emitting parts of the spectral lines with wavelengths of 263 nm and 265.5 nm are provided in one window,
The other window shows S from the peak height of the light intensity of the spectral line that has passed through the gaseous S in the heater-equipped container.
The S
monitor. 3 Detect and quantify S from the peak height of light intensity,
The S monitor according to claim 2, which controls S input amount control and S pressure control in real time. 4. The S monitor according to claim 2, wherein the light emitting section comprises a hollow cathode lamp. 5 Emitting part or light receiving part is 263nm and 265.5nm
3. The S monitor according to claim 2, having a filter centered on one or two of the S monitors.
JP94385A 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor Granted JPS61160043A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP94385A JPS61160043A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor
US06/816,843 US4733084A (en) 1985-01-09 1986-01-07 Method of detection and quantitative determination of sulfur and sulfur monitor using the method
DE8686100248T DE3682592D1 (en) 1985-01-09 1986-01-09 METHOD FOR DETECTING AND QUANTATIVE DETERMINATION OF SULFUR AND SULFUR MONITOR USING THIS METHOD.
EP86100248A EP0187675B1 (en) 1985-01-09 1986-01-09 Method of detection and quantitative determination of sulfur and sulfur monitor using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94385A JPS61160043A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor

Publications (2)

Publication Number Publication Date
JPS61160043A JPS61160043A (en) 1986-07-19
JPH0226180B2 true JPH0226180B2 (en) 1990-06-07

Family

ID=11487753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94385A Granted JPS61160043A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of sulfur monitor

Country Status (1)

Country Link
JP (1) JPS61160043A (en)

Also Published As

Publication number Publication date
JPS61160043A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
Van Dalen et al. Optimization of the microwave-induced plasma as an element-selective detector for non-metals
US3692415A (en) Photometric analyzer employing fiber optic light transmitting means
US20030003590A1 (en) Method for measuring concentrations of gases and vapors using controlled flames
US10101266B2 (en) Method and system for gas concentration measurement of gas dissolved in liquids
US3032654A (en) Emission spectrometer
US6589795B2 (en) Method and device for detecting mercury
CN113324973B (en) Multi-factor correction Raman spectrum quantitative analysis method combined with spectrum internal standard
EP0187675B1 (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
JPS61118647A (en) Gas detector for semiconductor
JP3206870B2 (en) Method and apparatus for measuring nitrogen gas or water vapor in argon gas, method and apparatus for simultaneous measurement of nitrogen gas and water vapor
JPH0226180B2 (en)
JPH0415412B2 (en)
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
JPS62217145A (en) Method and device for analyzing gaseous mixture and visible emission spectrum generator therefor
JPH0226181B2 (en)
US4731334A (en) Method and apparatus for detecting and quantitatively determining selenium
Klotz et al. Automatic-Recording Ultraviolet Photometer for Laboratory and Field Use
JPH0414742B2 (en)
JPS5852513Y2 (en) gas concentration meter
JPS61160042A (en) Detection and quantitative analysis of se and se monitor
US20220026367A1 (en) Pathogen screening using optical emission spectroscopy (oes)
JPS59163542A (en) High-sensitive arsenic monitor
JPH0226178B2 (en)
JP2004309154A (en) Infrared analyzer
Alvarado et al. Determination of trace levels of calcium in steels by carbon-furnace atomic-absorption and atomic-emission spectrometry