JP2004309154A - Infrared analyzer - Google Patents

Infrared analyzer Download PDF

Info

Publication number
JP2004309154A
JP2004309154A JP2003098915A JP2003098915A JP2004309154A JP 2004309154 A JP2004309154 A JP 2004309154A JP 2003098915 A JP2003098915 A JP 2003098915A JP 2003098915 A JP2003098915 A JP 2003098915A JP 2004309154 A JP2004309154 A JP 2004309154A
Authority
JP
Japan
Prior art keywords
gas
comparison
wavelength
measurement
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098915A
Other languages
Japanese (ja)
Other versions
JP4176535B2 (en
Inventor
Tsukasa Satake
司 佐竹
Kazuyuki Ikemoto
和幸 池本
Satoyuki Onishi
智行 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003098915A priority Critical patent/JP4176535B2/en
Publication of JP2004309154A publication Critical patent/JP2004309154A/en
Application granted granted Critical
Publication of JP4176535B2 publication Critical patent/JP4176535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared analyzer used for both measurement and calibration even in cases where a gas for calibration which is a specific constituent gas is a type of gas not easily supplied by gas containers. <P>SOLUTION: This infrared analyzer is equipped with a means for detecting a wavelength for measurement of a gas 1 and a wavelength undergoing only absorption which is negligible order of absorption, and a comparison wavelength detection means. As a comparison gas 2, one is selected having an absorption wavelength as close as possible to the wavelength for measurement. The analyzer is equipped with a calculation part having the function of calculating a measurement signal of the gas 1 obtained by removing a factor affecting detection sensitivity by subtracting a signal from the means for the comparison wavelength detection from what is obtained by multiplying a signal from the comparison wavelength detection means by measurement gain when introducing the gas 1 into a cell while calculating a concentration comparing signal of a gas 2 obtained by removing a factor affecting the detection sensitivity by subtracting a comparison wavelength signal from what is obtained by multiplying a measurement wavelength signal by calibration gain when introducing the gas 2 of known concentration into the cell, and the function of switching between the introduction of the gas 1 and that of the gas 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、赤外線分析装置に関する。
【0002】
【従来の技術】
光源からの赤外線が、特定成分ガスを含む試料ガスが導入されたセルを通過するようにして、そのとき得られる特定成分ガスの固有吸収波長の赤外線のエネルギーに比例した信号(測定信号)と、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない波長の赤外線のエネルギーに比例した信号(比較信号)との差を増幅して、測定用波長(固有吸収波長)の赤外線の吸収量から特定成分ガスの濃度を求めるようにした赤外線分析装置においては、定期的にゼロ校正とスパン校正とを行う必要がある。
【0003】
そして、上記赤外線分析装置においてゼロ校正とスパン校正とを行うのに、従来は、セル内にゼロガスを導入して指示が安定した後、ゼロ点調整を行い、次いで、ガスボンベで供給されるスパンガス(所定の既知濃度の特定成分ガス)をセル内に導入して指示が安定した後、スパン調整を行っている。
【0004】
【発明が解決しようとする課題】
しかしながら、半導体プロセスのガス供給側に導入され、半導体装置の製造に用いられるガスの多くは、ガスボンベで容易に供給されないものであり、その場合には校正手段がない。
【0005】
この発明は、前記の点に留意してなされたものであり、その目的は、特定成分ガスの校正用ガスが、ガスボンベで容易に供給されないガス種である場合において、測定とともに校正も行える赤外線分析装置を提供することである。
【0006】
【課題を解決するための手段】
前記課題を解決するために、この発明の赤外線分析装置は、特定成分ガスの測定用波長、および、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない比較用波長の二種類を、それぞれ検知する測定用波長検知手段、および、比較用波長検知手段を備えており、前記比較用波長のうち、前記測定用波長にできるだけ近い吸収波長を有するものが比較ガスとして選択されており、更に、特定成分ガスを赤外線分析計のセルに導入したときには、前記比較用波長検知手段より出力される比較波長信号に測定時ゲインを乗じたものから前記測定用波長検知手段より出力される測定波長信号を引き算して光源光量等の赤外線分析計の検出感度に影響する要素を除去した特定成分ガスの濃度測定信号を演算する一方、既知濃度の前記比較ガスを前記セルに導入したときには、前記測定波長信号に校正時ゲインを乗じたものから前記比較波長信号を引き算して光源光量等の赤外線分析計の検出感度に影響する要素を除去した前記比較ガスの濃度比較信号を演算する機能と、特定成分ガスと前記比較ガスの前記セルへの導入を相互に切換える信号切換処理機能とを有する演算部を備えたことを特徴とする。
【0007】
【発明の実施の形態】
以下にこの発明の実施の形態について説明する。なお、この発明はそれによって限定されるものではない。
【0008】
図1〜図4は、この発明の一実施形態を示す。
【0009】
図1は、いわゆる1光源1セルタイプの赤外線分析計20を備えた赤外線分析装置の概略構成を示している。図2は、赤外線分析装置の使用環境を示す。また、図3(A)は、半導体プロセスにおけるガスの供給状態を示し、図3(B)は、その拡大部分を示している。
【0010】
図4は、校正用ガスが容易に供給できない、例えば1350cm−1〜1400cm−1の測定用波長を有する特定成分ガス(測定対象ガス)Aの赤外線吸収スペクトルQと、前記特定成分ガスAによる吸収がないかあるいは無視できる程度の吸収しかなく、かつ、前記測定用波長にできるだけ近い吸収波長(例えば880cm−1〜920cm−1)を有する比較ガスAの赤外線吸収スペクトルPとを示す。この実施形態では、半導体装置に用いられる成膜の原料となる粉体のPb(DPM)を昇華させて特定成分ガスAを発生させている。また、この実施形態では、上記条件に当てはまる比較ガスAとしてNFガスを用いている。
【0011】
図1において、1は、赤外線分析計20のセルで、ガス導入口2、ガス導出口3を備え、両端部に赤外線透過性のセル窓4,5が形成されている。6は、このセル1の一方のセル窓4の外方に設けられた赤外線を発する光源で、この光源6からの赤外線はセル1内を通過して後述する検出部8に入射するようにしてある。図5には、用いる光源6の光量特性が示されている。Lは、光量特性曲線である。なお、赤外線分析計20として、非分散型赤外線分析計を用いている。
【0012】
7は、セル1と検出部8との間に設けられた変調用のチョッパで、図外の駆動機構によって回転するように構成されている。なお、変調用のチョッパ7をセル1と光源6との間に設けてもよい。
【0013】
8はセル1の他方のセル窓5の外方に設けられた検出部で、互いに並列に配置された比較波長検出器10と測定波長検出器(測定用波長検知手段)9とより主としてなる。測定波長検出器9は、特定成分ガスAが吸収する1350cm−1〜1400cm−1の測定用波長の赤外線を透過させるバンドパスフィルタ11を備えており、透過した赤外線エネルギーに比例した測定波長信号(以下S信号という)を出力する。また、比較波長検出器10は、特定成分ガスAによる吸収がないかあるいは無視できる程度の吸収しかなく、かつ、前記測定用波長にできるだけ近い880cm−1〜920cm−1の比較用波長の赤外線を通過させるバンドパスフィルタ12を備えており、透過した赤外線エネルギーに比例した比較波長信号(以下C信号という)を出力する。そして、比較波長検出器10とバンドパスフィルタ12とから、比較用波長を検知する比較用波長検知手段が構成され、また、測定波長検出器9とバンドパスフィルタ11とから、測定用波長を検知する測定用波長検知手段が構成される。
【0014】
ところで、一般に赤外線分析計などの各種分析計は、検出部、増幅部などの温度ドリフトあるいは経時変化によって生ずる誤差を補正するために、測定を行うに際してはその測定作業に先立って、分析計のゼロ調整およびスパン校正を行う必要がある。そして、所定の既知濃度の特定成分ガス(測定対象ガス)の校正用ガスをガスボンベ等からセルに供給することでスパン校正が行われる。
【0015】
しかし、上述したように、校正用ガスがガスボンベによって容易に供給されないガスである場合は、校正手段がない。この発明は、特定成分ガスAの校正用ガスを容易に供給できない場合の近似波長を有する校正用ガスが収容されているガスボンベを使って校正できるようにしたものである。
【0016】
すなわち、この発明は、校正用ガスがガスボンベによって容易に供給されない、例えばPb(DPM)を昇華させてなるガスAを測定対象とする赤外線分析計を持つ赤外線分析装置であって、この赤外線分析装置は、例えば1350cm−1〜1400cm−1の測定用波長と、例えば880cm−1〜920cm−1の比較用波長の二種類を検知する手段として、前記測定用波長検知手段、比較用波長検知手段を持っている。
【0017】
そして、この発明では、測定用波長と比較用波長の二波長を用いて、特定成分ガスAの濃度測定信号Cと比較ガスの濃度比較信号Dを演算するよう構成されている。
【0018】
15は、その演算部で、特定成分ガス〔Pb(DPM)を昇華させてなるガス〕Aの濃度測定信号を演算するとともに、前記比較ガス(NF)Aの濃度比較信号を演算する機能を有し、また、特定成分ガスAと前記比較ガスAの前記セル1への導入を例えば三方電磁弁33によって相互に切換える信号切換処理機能を有し、更に、信号切換を数回繰り返して得られた前記濃度測定信号Cおよび濃度比較信号Dに基づいて特定成分ガスAと前記比較ガスAの濃度検量線を作成する機能を有し、また、測定作業時において既知濃度Dの前記比較ガスAを前記セル1に導入して得られる前記濃度比較信号D’と前記濃度検量線とに基づいて赤外線分析計20の校正の要否を判断する機能を有する。
【0019】
更に、濃度測定信号Cの演算は、特定成分ガスAを赤外線分析計20のセル1に導入した状態で、前記比較用波長検知手段10,12より出力されるC信号に測定時ゲインGを乗じたものから前記測定用波長検知手段9,11より出力されるS信号を引き算するよう行われる。

Figure 2004309154
【0020】
また、濃度比較信号Dの演算は、既知濃度の前記比較ガスAを前記セル1に導入した状態で、前記S信号に校正時ゲインGを乗じたものから前記C信号を引き算するよう行われる。
Figure 2004309154
【0021】
そして、これら演算にあたり、演算前に予め、特定成分ガスAと比較ガスAの信号強度比を求め、測定時ゲインGおよび校正時ゲインGを最適化しておくのが好ましい。
【0022】
なお、測定用波長と比較用波長の二波長を用いて、特定成分ガスAの濃度測定信号Cと比較ガスの濃度比較信号Dを演算するのは、光源6から発せられる赤外線光量が、図5に示すように、特定成分ガスAによる吸収信号量50、ならびに、比較ガスAによる吸収信号量51の10〜100倍と極端に大きいことから、測定用波長帯として例えば1350cm−1〜1400cm−1を選択するとともに、そのときの光量検出用波長を例えば880cm−1〜920cm−1に選択性を持つバンドパスフィルタ11で検出し、かつ、前記(1),(2)式に示したように差をとることによって、光源光量等の赤外線分析計の検出感度に影響する要素を除去できるからである。
【0023】
而して、赤外線分析装置を介して半導体プロセスにおけるCVDチャンバー内に特定成分ガスAを流す測定作業に先立って、特定成分ガスAと前記比較ガスAの濃度検量線を作成する。
【0024】
この場合、粉体のPb(DPM)が収容された容器52をヒータで加熱することにより、Pb(DPM)を昇華させて特定成分ガスAを発生させながら、三方電磁弁33を測定ライン70の側に切換えた状態でセル1内に、Arをキャリアガスとして特定成分ガスAを導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0025】
特定成分ガスAを流しているので、前記(1)式から濃度測定信号Cを得ることができる。
【0026】
その後、セル1のパージを行って三方電磁弁33を測定ライン70から比較ガス供給ライン80の側に切換える。これら二つの切換えは、演算部15が行う。
【0027】
切換後セル1内に、既知濃度の比較ガスAを導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0028】
比較ガスAを流しているので、前記(2)式から濃度測定信号Dを得ることができる。
【0029】
信号切換を数回繰り返して得られた濃度測定信号C,Dから特定成分ガスAと前記比較ガスAの濃度検量線を作成できる。
【0030】
次に、赤外線分析装置を介してCVDチャンバー内に特定成分ガスAを流す測定作業を行う。
【0031】
セル1内に特定成分ガスAを導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0032】
特定成分ガスAを流しているので、前記(1)式から濃度測定信号Cを得る。
【0033】
その後、セル1のパージを行って三方電磁弁33を測定ライン70から比較ガス供給ライン80の側に切換える。これら二つの切換えは、演算部15が行う。
【0034】
切換後セル1内に、既知濃度の比較ガスAを導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0035】
比較ガスAを流しているので、前記(2)式から濃度測定信号D’を得ることができる。
【0036】
前記セル1に導入して得られた濃度測定信号D’と濃度測定信号Dを前記濃度検量線とに基づいて赤外線分析計の校正の要否を判断する。
【0037】
そして、校正が必要な場合は、(D’/D)×Cのスパン校正を行ってCVDチャンバー内に流された特定成分ガスAの濃度C’が計測できる。
【0038】
以上、半導体プロセスにおけるガスは、その校正用ガス(比較ガス)Aがガスボンベ等によって容易に供給されないものである場合が多いが、上述したように、可能な限り測定用波長に近い比較用波長を有するガスを用い、測定用波長と比較用波長の二波長を検知する測定用波長検知手段9,11、比較用波長検知手段10,12を設け、また、特定成分ガスA濃度測定時は前記(1)式を用い、比較ガスA濃度測定時は前記(2)式を用いることにより、簡単な構成で構成機能および測定機能を有する赤外線分析装置を得ることができる。
【0039】
なお、前記S信号またはC信号は、それぞれが光学系の全体光量を表しているが、例えば光路の汚れによる光量低下(図5においてL’で示す)を前記S信号またはC信号の出力信号で確認できるように構成し、更に、例えば光路の汚れにより初期光量から所定の光量(アラームレベル)に低下した時点でアラーム信号を発するように構成してもよい。
【0040】
【発明の効果】
以上この発明では、特定成分ガスの校正用ガスが、ガスボンベで容易に供給されないガス種である場合において、測定とともに校正も行える赤外線分析装置を提供することができる効果がある。
【図面の簡単な説明】
【図1】この発明の一実施形態を示す全体構成説明図である。
【図2】上記実施形態における使用環境を示す構成説明図である。
【図3】(A)は、半導体プロセスにおけるガスの供給状態を示す図である。(B)は、図3(A)における一部を拡大して示す図である。
【図4】特定成分ガス(測定対象ガス)と比較ガスの赤外線吸収スペクトルを示す特性図である。
【図5】特定成分ガスによる吸収信号量、ならびに、比較ガスによる吸収信号量を示す図である。
【符号の説明】
1…セル、9,11…測定用波長検知手段、10,12…比較用波長検知手段、15…演算部、20…赤外線分析計、A…特定成分ガス、A…比較ガス。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an infrared analyzer.
[0002]
[Prior art]
A signal (measurement signal) proportional to the energy of the infrared light having a specific absorption wavelength of the specific component gas obtained by passing infrared light from the light source through the cell into which the sample gas containing the specific component gas has been introduced, Amplifies the difference from the signal (comparison signal) proportional to the energy of infrared light of a wavelength that has no or negligible absorption by the specific component gas, and absorbs infrared light at the measurement wavelength (specific absorption wavelength). In the infrared analyzer which determines the concentration of the specific component gas from the above, it is necessary to periodically perform zero calibration and span calibration.
[0003]
Conventionally, in order to perform zero calibration and span calibration in the infrared analyzer, conventionally, zero gas is introduced into the cell, and after the indication is stabilized, zero point adjustment is performed, and then span gas (supplied by a gas cylinder) is supplied. After the indication is stabilized by introducing a specific component gas having a predetermined known concentration into the cell, the span is adjusted.
[0004]
[Problems to be solved by the invention]
However, most of the gases introduced into the gas supply side of the semiconductor process and used for manufacturing semiconductor devices are not easily supplied by gas cylinders, in which case there is no calibration means.
[0005]
The present invention has been made in consideration of the above points, and an object of the present invention is to provide an infrared spectrometer capable of performing calibration together with measurement when a gas for calibration of a specific component gas is a gas type that is not easily supplied by a gas cylinder. It is to provide a device.
[0006]
[Means for Solving the Problems]
In order to solve the problem, the infrared analyzer of the present invention has two types of wavelengths for measurement of a specific component gas, and comparison wavelengths that have no or negligible absorption by the specific component gas, Each of which has a measuring wavelength detecting means for detecting, and a comparative wavelength detecting means, and among the comparative wavelengths, one having an absorption wavelength as close as possible to the measuring wavelength is selected as a comparative gas. When the specific component gas is introduced into the cell of the infrared spectrometer, the measurement wavelength signal output from the measurement wavelength detection means is obtained by multiplying the comparison wavelength signal output from the comparison wavelength detection means by the gain at the time of measurement. While calculating the concentration measurement signal of the specific component gas by removing the factors that affect the detection sensitivity of the infrared analyzer such as the light source light amount by subtracting When the comparison gas is introduced into the cell, the comparison wavelength signal is subtracted from the measurement wavelength signal multiplied by the gain at the time of calibration to remove an element such as a light source amount that affects the detection sensitivity of the infrared analyzer. An arithmetic unit having a function of calculating a gas concentration comparison signal and a signal switching processing function of mutually switching the introduction of the specific component gas and the comparison gas into the cell is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited thereby.
[0008]
1 to 4 show one embodiment of the present invention.
[0009]
FIG. 1 shows a schematic configuration of an infrared analyzer provided with an infrared analyzer 20 of a so-called one light source and one cell type. FIG. 2 shows a use environment of the infrared analyzer. FIG. 3A shows a gas supply state in a semiconductor process, and FIG. 3B shows an enlarged portion thereof.
[0010]
4, it can not be easily supplied calibration gas, for example an infrared absorption spectrum Q of the specific component gas (measurement target gas) A 1 having a measurement wavelength of 1350cm -1 ~1400cm -1, the specific component gas A 1 2 shows an infrared absorption spectrum P of a comparative gas A2 that has no or negligible absorption due to and has an absorption wavelength (for example, 880 cm −1 to 920 cm −1 ) as close to the measurement wavelength as possible. In this embodiment, by generating a specific component gas A 1 was sublimed powder of Pb (DPM) 2 as a raw material for film formation used in a semiconductor device. In this embodiment, the NF 3 gas is used as the comparative gas A 2 satisfying the above conditions.
[0011]
In FIG. 1, reference numeral 1 denotes a cell of an infrared spectrometer 20, which has a gas inlet 2 and a gas outlet 3, and has infrared-transparent cell windows 4 and 5 formed at both ends. Reference numeral 6 denotes a light source that emits infrared light provided outside one cell window 4 of the cell 1. The infrared light from the light source 6 passes through the cell 1 and enters a detection unit 8 described later. is there. FIG. 5 shows the light amount characteristics of the light source 6 used. L is a light amount characteristic curve. In addition, a non-dispersive infrared analyzer is used as the infrared analyzer 20.
[0012]
Reference numeral 7 denotes a modulation chopper provided between the cell 1 and the detection unit 8, and is configured to be rotated by a driving mechanism (not shown). Note that a modulation chopper 7 may be provided between the cell 1 and the light source 6.
[0013]
Reference numeral 8 denotes a detection unit provided outside the other cell window 5 of the cell 1, and is mainly composed of a comparison wavelength detector 10 and a measurement wavelength detector (measurement wavelength detection means) 9 arranged in parallel with each other. The measurement wavelength detector 9 includes a bandpass filter 11 that transmits infrared light having a measurement wavelength of 1350 cm −1 to 1400 cm −1 absorbed by the specific component gas A 1 , and a measurement wavelength signal proportional to the transmitted infrared energy. (Hereinafter referred to as an S signal). The comparison wavelength detector 10 is not only the extent of absorption absorption is no or negligible due to the specific component gas A 1, and infrared comparative wavelength as close as possible 880cm -1 ~920cm -1 in the measuring wavelength , And outputs a comparison wavelength signal (hereinafter, referred to as a C signal) proportional to the transmitted infrared energy. The comparison wavelength detector 10 and the bandpass filter 12 constitute comparison wavelength detection means for detecting the comparison wavelength, and the measurement wavelength detector 9 and the bandpass filter 11 detect the measurement wavelength. The measuring wavelength detecting means is configured.
[0014]
By the way, in general, various analyzers such as an infrared analyzer are required to perform zero measurement prior to the measurement work in order to correct an error caused by a temperature drift or a change with time of a detection unit and an amplification unit. Adjustment and span calibration must be performed. Then, span calibration is performed by supplying a gas for calibration of a specific component gas (gas to be measured) having a predetermined known concentration to the cell from a gas cylinder or the like.
[0015]
However, as described above, when the calibration gas is a gas that is not easily supplied by the gas cylinder, there is no calibration means. This invention has to be able to calibrate using the gas cylinder in which the calibration gas having an approximate wavelength when not readily supply the calibration gas of the specific component gas A 1 is housed.
[0016]
That is, this invention is not easily supplied calibration gas by gas cylinder, an infrared spectrometer with an infrared spectrometer to be measured the gas A 1 comprising subliming, for example Pb (DPM) 2, the infrared analyzer, for example a measuring wavelength of 1350cm -1 ~1400cm -1, for example, as a means for detecting the two kinds of comparative wavelength of 880cm -1 ~920cm -1, the measuring wavelength detector, a wavelength detection comparator Have the means.
[0017]
And, in this invention, using a two-wavelength of the comparison wavelength and measuring wavelength, it is configured for calculating a density comparison signal D of the comparator gas concentration measurement signal C of a specific component gas A 1.
[0018]
Reference numeral 15 denotes a calculation unit for calculating a concentration measurement signal of the specific component gas [gas obtained by sublimating Pb (DPM) 2 ] A 1 and calculating a concentration comparison signal of the comparison gas (NF 3 ) A 2. has a function of, also has a signal switching processing function for switching from one another by a specific component gas a 1 and the reference gas a introduced for example three-way electromagnetic valve 33 to the cell 1 of 2, further, the number of the signal switching It has the ability to create concentration calibration curve of the specific component gas a 1 and the reference gas a 2 based on the concentration measurement signals C and concentration comparison signal D obtained repeated times, also known concentration during measurement operation It has a function to determine the necessity of calibration of the infrared gas analyzer 20 based on the reference gas a 2 of D to said density calibration curve and the concentration comparison signal D 'obtained by introducing to the cell 1.
[0019]
Further, the calculation of the concentration measurement signal C is performed by measuring the measurement gain G X with the C signal output from the comparison wavelength detecting means 10 or 12 while the specific component gas A 1 is introduced into the cell 1 of the infrared spectrometer 20. Is subtracted from the S signal output from the measuring wavelength detecting means 9 and 11 from the product of the above.
Figure 2004309154
[0020]
Further, the calculation of the density comparison signal D, and the reference gas A 2 of known concentration in a state introduced into the cell 1, so as to subtract the C signal from which the multiplied calibration during gain G C to S signal line Is
Figure 2004309154
[0021]
Then, when these operations, in advance before operation, obtains the signal intensity ratio of reference gas A 2 and the specific component gas A 1, preferably keep optimizing measurement time gain G X and calibration during gain G C.
[0022]
Incidentally, by using a dual wavelength of the comparison wavelength and measuring wavelength, for calculating the concentration comparison signal D of the comparator gas concentration measurement signal C of a specific component gas A 1, infrared light intensity emitted from the light source 6 is, FIG. as shown in 5, the absorption signal of 50 by a particular component gas a 1, and, since the extremely and 10 to 100 times the absorption signal amount 51 according to comparative gas a 2 large, as the measurement wavelength band for example 1350 cm -1 ~ with selecting 1400 cm -1, detected by the band-pass filter 11 having a selective light quantity detection wavelength at that time for example, 880cm -1 ~920cm -1, and wherein (1), shown in equation (2) By taking the difference as described above, it is possible to remove factors that influence the detection sensitivity of the infrared analyzer, such as the light source light amount.
[0023]
And Thus, prior to the measurement operation to flow a specific component gas A 1 into the CVD chamber in a semiconductor process through an infrared analyzer, to create a concentration calibration curve of the specific component gas A 1 and the reference gas A 2.
[0024]
In this case, by heating the container 52 to which the particles of Pb (DPM) 2 is accommodated in the heater, while generating a specific component gas A 1 by sublimating Pb (DPM) 2, measuring a three-way solenoid valve 33 in the cell 1 in a state where switching to the side of the line 70, to introduce a specific component gas a 1 Ar as carrier gas, performs modulation by chopper 7 thereto by projecting infrared radiation from the light source 6.
[0025]
Since flowing the specific component gas A 1, wherein (1) can be obtained concentration measurement signal C from the equation.
[0026]
Thereafter, the cell 1 is purged, and the three-way solenoid valve 33 is switched from the measurement line 70 to the comparison gas supply line 80. The arithmetic unit 15 switches between these two.
[0027]
After the switching, a comparative gas A 2 having a known concentration is introduced into the cell 1, an infrared ray from the light source 6 is projected on the gas, and modulation is performed by the chopper 7.
[0028]
Since flowing the reference gas A 2, it is possible to obtain a density measurement signal D from the equation (2).
[0029]
Concentration measurement signal obtained by repeating several times the signal switching C, can create concentration calibration curve of the specific component gas A 1 and the reference gas A 2 from D.
[0030]
Next, the measurement operation performed by flowing a specific component gas A 1 to the CVD chamber via an infrared analyzer.
[0031]
A specific component gas A 1 is introduced into the cell 1, and infrared rays from a light source 6 are projected on the gas A 1 for modulation by a chopper 7.
[0032]
Since flowing the specific component gas A 1, to obtain a density measurement signal C from the equation (1).
[0033]
Thereafter, the cell 1 is purged, and the three-way solenoid valve 33 is switched from the measurement line 70 to the comparison gas supply line 80. The arithmetic unit 15 switches between these two.
[0034]
After the switching, a comparative gas A 2 having a known concentration is introduced into the cell 1, an infrared ray from the light source 6 is projected on the gas, and modulation is performed by the chopper 7.
[0035]
Since flowing the reference gas A 2, wherein (2) can be obtained concentration measurement signal D 'from the equation.
[0036]
Based on the concentration measurement signal D ′ and the concentration measurement signal D obtained by being introduced into the cell 1, the calibration of the infrared analyzer is determined based on the concentration calibration curve.
[0037]
When calibration is required, it can be measured is (D '/ D) × concentration of a specific component gas A 1 which flowed into the CVD chamber by performing a span calibration of the C C'.
[0038]
Above, the gas in the semiconductor process, but the calibration gas (reference gas) A 2 is often one that is not easily supplied by a gas cylinder or the like, as described above, comparative wavelength close to the measuring wavelength as possible using a gas having a measuring wavelength detection means 9, 11 for detecting the two wavelengths of the comparison wavelength and measuring wavelength, the comparison wavelength detection means 10, 12 provided, also, the time of the specific component gas a 1 concentration measurement using the equation (1), when compared gas a 2 concentration measurement by using the equation (2) can be obtained infrared analysis device having a structure function and measurement functions with a simple structure.
[0039]
Each of the S signal and the C signal represents the total light amount of the optical system. For example, a decrease in the light amount (indicated by L ′ in FIG. 5) due to contamination of the optical path is indicated by the output signal of the S signal or the C signal. The configuration may be such that confirmation is possible, and furthermore, an alarm signal may be generated at the time when the amount of light decreases from the initial light amount to a predetermined light amount (alarm level) due to, for example, contamination of the optical path.
[0040]
【The invention's effect】
As described above, according to the present invention, when the calibration gas of the specific component gas is a gas type that is not easily supplied by the gas cylinder, it is possible to provide an infrared analyzer that can perform calibration together with measurement.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an overall configuration showing an embodiment of the present invention.
FIG. 2 is a configuration explanatory diagram showing a use environment in the embodiment.
FIG. 3A is a diagram showing a gas supply state in a semiconductor process. FIG. 3B is an enlarged view of a part of FIG.
FIG. 4 is a characteristic diagram showing infrared absorption spectra of a specific component gas (gas to be measured) and a comparative gas.
FIG. 5 is a diagram showing an absorption signal amount by a specific component gas and an absorption signal amount by a comparative gas.
[Explanation of symbols]
1 ... cell, 9,11 ... measuring wavelength detection means, 10, 12 ... comparison wavelength detection means, 15 ... operation unit, 20 ... infrared spectrometer, A 1 ... specific component gas, A 2 ... reference gas.

Claims (2)

特定成分ガスの測定用波長、および、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない比較用波長の二種類を、それぞれ検知する測定用波長検知手段、および、比較用波長検知手段を備えており、前記比較用波長のうち、前記測定用波長にできるだけ近い吸収波長を有するものが比較ガスとして選択されており、更に、特定成分ガスを赤外線分析計のセルに導入したときには、前記比較用波長検知手段より出力される比較波長信号に測定時ゲインを乗じたものから前記測定用波長検知手段より出力される測定波長信号を引き算して光源光量等の赤外線分析計の検出感度に影響する要素を除去した特定成分ガスの濃度測定信号を演算する一方、既知濃度の前記比較ガスを前記セルに導入したときには、前記測定波長信号に校正時ゲインを乗じたものから前記比較波長信号を引き算して光源光量等の赤外線分析計の検出感度に影響する要素を除去した前記比較ガスの濃度比較信号を演算する機能と、特定成分ガスと前記比較ガスの前記セルへの導入を相互に切換える信号切換処理機能とを有する演算部を備えたことを特徴とする赤外線分析装置。Measurement wavelength detection means for detecting two types of wavelengths for measurement of the specific component gas, and comparison wavelengths having no or negligible absorption by the specific component gas, and comparison wavelength detection means Among the comparison wavelengths, those having an absorption wavelength as close as possible to the measurement wavelength are selected as the comparison gas, and further, when a specific component gas is introduced into the cell of the infrared spectrometer, The measurement wavelength signal output from the measurement wavelength detection means is subtracted from the product of the comparison wavelength signal output from the comparison wavelength detection means multiplied by the gain at the time of measurement to affect the detection sensitivity of the infrared analyzer such as the light source light quantity. While calculating the concentration measurement signal of the specific component gas from which the element to be removed is removed, when the reference gas having a known concentration is introduced into the cell, the measurement wavelength signal A function of calculating the concentration comparison signal of the comparison gas by subtracting the comparison wavelength signal from the product obtained by multiplying the gain at the time of calibration and removing elements that affect the detection sensitivity of the infrared analyzer such as the light source light amount, and a specific component gas. An infrared analyzer comprising: a calculation unit having a signal switching processing function of mutually switching the introduction of the comparison gas into the cell. 前記演算部は、特定成分ガスを半導体プロセスのガス供給側に導入する測定作業に先立って、信号切換を数回繰り返して得られた前記濃度測定信号および濃度比較信号に基づいて特定成分ガスと前記比較ガスの濃度検量線を作成する機能と、測定作業時において既知濃度の前記比較ガスを前記セルに導入して得られる前記濃度比較信号と前記濃度検量線とに基づいて赤外線分析計の校正の要否を判断する機能とを有する請求項1に記載の赤外線分析装置。Prior to the measurement operation of introducing the specific component gas to the gas supply side of the semiconductor process, the calculation unit performs the specific component gas and the specific component gas based on the concentration measurement signal and the concentration comparison signal obtained by repeating the signal switching several times. A function of creating a concentration calibration curve of a comparison gas, and calibration of an infrared analyzer based on the concentration comparison signal and the concentration calibration curve obtained by introducing the reference gas having a known concentration into the cell during a measurement operation. The infrared analyzer according to claim 1, further comprising a function of determining necessity.
JP2003098915A 2003-04-02 2003-04-02 Infrared analyzer Expired - Lifetime JP4176535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098915A JP4176535B2 (en) 2003-04-02 2003-04-02 Infrared analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098915A JP4176535B2 (en) 2003-04-02 2003-04-02 Infrared analyzer

Publications (2)

Publication Number Publication Date
JP2004309154A true JP2004309154A (en) 2004-11-04
JP4176535B2 JP4176535B2 (en) 2008-11-05

Family

ID=33463519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098915A Expired - Lifetime JP4176535B2 (en) 2003-04-02 2003-04-02 Infrared analyzer

Country Status (1)

Country Link
JP (1) JP4176535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076182A (en) * 2006-09-20 2008-04-03 Denso Corp Infrared gas detector and infrared gas detection method
DE102010025708A1 (en) 2009-06-30 2011-02-03 Advantest Corp. Output device and test device
CN113825985A (en) * 2019-05-24 2021-12-21 郑庆焕 Gas measuring device and gas measuring method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076182A (en) * 2006-09-20 2008-04-03 Denso Corp Infrared gas detector and infrared gas detection method
DE102007039884B4 (en) * 2006-09-20 2013-11-14 Denso Corporation Infrared gas measuring device and method
DE102010025708A1 (en) 2009-06-30 2011-02-03 Advantest Corp. Output device and test device
CN113825985A (en) * 2019-05-24 2021-12-21 郑庆焕 Gas measuring device and gas measuring method thereof
CN113825985B (en) * 2019-05-24 2023-08-01 郑庆焕 Gas measuring device and gas measuring method thereof

Also Published As

Publication number Publication date
JP4176535B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
US5464983A (en) Method and apparatus for determining the concentration of a gas
EP0916937B1 (en) Method for measuring the concentration of hydrogen peroxide vapor
KR102291810B1 (en) Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption
US8128874B2 (en) Pressurized detectors substance analyzer
US20170016816A1 (en) Gas analysis method and gas analysis device
JP5347983B2 (en) Gas analyzer
JP2010190824A (en) Absorption spectrometric apparatus for semiconductor manufacturing process
KR20010021565A (en) Method for calibration of a spectroscopic sensor
US20230417660A1 (en) Gas analysis device and gas analysis method
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
WO2005038436A2 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
US3969626A (en) Method and apparatus for detecting total reduced sulfur
JP7042742B2 (en) Wide range gas detection method using infrared gas detector
JP2004309154A (en) Infrared analyzer
CN111829971A (en) Method for reducing measurement error of wide spectrum transmittance
US4501968A (en) Infrared radiation gas analyzer
Pierce et al. Cavity ring-down spectroscopy sensor development for high-time-resolution measurements of gaseous elemental mercury in ambient air
JPH05249040A (en) Gas analyzing method and apparatus therefor
JP2002350340A (en) Apparatus and method for measuring isotopic gas
JP2006349639A (en) Differential infrared gas analysis system and its calibration method
JP3009445B2 (en) Gaseous mixture concentration measuring device
EP4111516B1 (en) Flow-through protective system of hydrogen fuel receiver and method of protection of hydrogen fuel receiver
JP4058005B2 (en) Infrared gas analyzer calibration method
EP4276444A1 (en) Optical co2 concentration meter based on ir light absorption in gas
WO2023120231A1 (en) Analysis device and analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4176535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term