JP4176535B2 - Infrared analyzer - Google Patents

Infrared analyzer Download PDF

Info

Publication number
JP4176535B2
JP4176535B2 JP2003098915A JP2003098915A JP4176535B2 JP 4176535 B2 JP4176535 B2 JP 4176535B2 JP 2003098915 A JP2003098915 A JP 2003098915A JP 2003098915 A JP2003098915 A JP 2003098915A JP 4176535 B2 JP4176535 B2 JP 4176535B2
Authority
JP
Japan
Prior art keywords
gas
wavelength
comparison
specific component
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003098915A
Other languages
Japanese (ja)
Other versions
JP2004309154A (en
Inventor
司 佐竹
和幸 池本
智行 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003098915A priority Critical patent/JP4176535B2/en
Publication of JP2004309154A publication Critical patent/JP2004309154A/en
Application granted granted Critical
Publication of JP4176535B2 publication Critical patent/JP4176535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、赤外線分析装置に関する。
【0002】
【従来の技術】
光源からの赤外線が、特定成分ガスを含む試料ガスが導入されたセルを通過するようにして、そのとき得られる特定成分ガスの固有吸収波長の赤外線のエネルギーに比例した信号(測定信号)と、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない波長の赤外線のエネルギーに比例した信号(比較信号)との差を増幅して、測定用波長(固有吸収波長)の赤外線の吸収量から特定成分ガスの濃度を求めるようにした赤外線分析装置においては、定期的にゼロ点調整とスパン校正とを行う必要がある。
【0003】
そして、上記赤外線分析装置においてゼロ点調整とスパン校正とを行うのに、従来は、セル内にゼロガスを導入して指示が安定した後、ゼロ点調整を行い、次いで、ガスボンベで供給されるスパンガス(所定の既知濃度の特定成分ガス)をセル内に導入して指示が安定した後、スパン校正を行っている。
【0004】
【発明が解決しようとする課題】
しかしながら、半導体プロセスのガス供給側に導入され、半導体装置の製造に用いられるガス種の多くは、ガスボンベで容易に供給されないものであり、その場合には上記のような校正手段がとれない。
【0005】
この発明は、前記の点に留意してなされたものであり、その目的は、特定成分ガスの校正用ガスが、ガスボンベで容易に供給されないガス種である場合において、測定とともに校正も行える赤外線分析装置を提供することである。
【0006】
【課題を解決するための手段】
前記課題を解決するために、請求項1に係る発明の赤外線分析装置は、特定成分ガスを測定対象とする赤外線分析計を有する赤外線分析装置であって、測定対象の前記特定成分ガスの測定用波長、および、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない比較用波長の二種類を、それぞれ検知する測定用波長検知手段、および、比較用波長検知手段と、前記特定成分ガス及びその赤外線吸収スペクトルが特定成分ガスの赤外線吸収スペクトルに重なり合わず前記比較用波長において吸収波長を有する既知濃度の比較ガスの前記赤外線分析計のセルへの導入を相互に切換えるガス導入切換部を備えており、更に、特定成分ガスを赤外線分析計のセルに導入したときには、前記比較用波長検知手段より出力される比較波長信号に測定時ゲインを乗じたものから前記測定用波長検知手段より出力される測定波長信号を引き算して特定成分ガスの濃度測定信号を演算する一方、既知濃度の前記比較ガスを前記セルに導入したときには、前記測定用波長検知手段より出力される測定波長信号に校正時ゲインを乗じたものから前記比較用波長検知手段より出力される比較波長信号を引き算して比較ガスの濃度比較信号を演算し、かつ、これら演算された特定成分ガスの濃度測定信号と比較ガスの濃度比較信号に基づいて赤外線分析計を校正する演算部を有していることを特徴とする。
また、請求項3に係る発明の赤外線分析装置は、特定成分ガスを測定対象とする赤外線分析計を有する赤外線分析装置であって、測定対象の前記特定成分ガスの測定用波長、および、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない比較用波長の二種類を、それぞれ検知する測定用波長検知手段、および、比較用波長検知手段と、前記特定成分ガス及びその赤外線吸収スペクトルが特定成分ガスの赤外線吸収スペクトルに重なり合わず前記比較用波長において吸収波長を有する既知濃度の比較ガスの前記赤外線分析計のセルへの導入を相互に切換えるガス導入切換部を備えており、更に、特定成分ガスを赤外線分析計のセルに導入したときには、前記比較用波長検知手段より出力される比較波長信号及び前記測定用波長検知手段より出力される測定波長信号並びに特定成分ガスと比較ガスの信号強度比から得られた測定時ゲインから特定成分ガスの濃度測定信号を演算する一方、前記既知濃度の比較ガスを前記セルに導入したときには、前記測定用波長検知手段より出力される測定波長信号及び前記比較用波長検知手段より出力される比較波長信号並びに特定成分ガスと比較ガスの信号強度比から得られた校正時ゲインから比較ガスの濃度比較信号を演算し、かつ、これら演算された特定成分ガスの濃度測定信号と比較ガスの濃度比較信号に基づいて赤外線分析計を校正する演算部を有していることを特徴とする。
【0007】
【発明の実施の形態】
以下にこの発明の実施の形態について説明する。なお、この発明はそれによって限定されるものではない。
【0008】
図1〜図4は、この発明の一実施形態を示す。
【0009】
図1は、いわゆる1光源1セルタイプの赤外線分析計20を備えた赤外線分析装置の概略構成を示している。図2は、赤外線分析装置の使用環境を示す。また、図3(A)は、半導体プロセスにおけるガスの供給状態を示し、図3(B)は、その拡大部分を示している。
【0010】
図4は、それの校正用ガスがガスボンベで容易に供給することができない、例えば1350cm-1〜1400cm-1の測定用波長を有する特定成分ガス(測定対象ガス)A1 の赤外線吸収スペクトルQと、前記特定成分ガスA1 による吸収がないかあるいは無視できる程度の吸収しかなく、かつ、前記測定用波長にできるだけ近い吸収波長(例えば880cm-1〜920cm-1)を有する比較ガスA2 の赤外線吸収スペクトルPとを示す。この実施形態では、半導体装置に用いられる成膜の原料となる粉体のPb(DPM)2 を昇華させて測定対象となる特定成分ガスA1 を発生させている。また、この実施形態では、上記条件に当てはまる比較ガスA2 としてNF3 ガスを用いている。
【0011】
図1において、1は、赤外線分析計20のセルで、ガス導入口2、ガス導出口3を備え、両端部に赤外線透過性のセル窓4,5が形成されている。6は、このセル1の一方のセル窓4の外方に設けられた赤外線を発する光源で、この光源6からの赤外線はセル1内を通過して後述する検出部8に入射するようにしてある。図5には、用いる光源6の光量特性が示されている。Lは、光量特性曲線である。なお、赤外線分析計20として、非分散型赤外線分析計を用いている。
【0012】
7は、セル1と検出部8との間に設けられた変調用のチョッパで、図外の駆動機構によって回転するように構成されている。なお、変調用のチョッパ7をセル1と光源6との間に設けてもよい。
【0013】
8はセル1の他方のセル窓5の外方に設けられた検出部で、互いに並列に配置された比較波長検出器10と測定波長検出器9とより主としてなる。測定波長検出器9は、特定成分ガスA1 が吸収する1350cm-1〜1400cm-1の測定用波長の赤外線を透過させるバンドパスフィルタ11を備えており、透過した赤外線エネルギーに比例した測定波長信号(以下S信号という)を出力する。また、比較波長検出器10は、特定成分ガスA1 による吸収がないかあるいは無視できる程度の吸収しかなく、かつ、前記測定用波長にできるだけ近い880cm-1〜920cm-1の比較用波長の赤外線を通過させるバンドパスフィルタ12を備えており、透過した赤外線エネルギーに比例した比較波長信号(以下C信号という)を出力する。そして、比較波長検出器10とバンドパスフィルタ12とから比較用波長を検知する比較用波長検知手段が構成され、また、測定波長検出器9とバンドパスフィルタ11とから測定用波長を検知する測定用波長検知手段が構成される。
【0014】
ところで、一般に赤外線分析計などの各種分析計は、検出部、増幅部などの温度ドリフトあるいは経時変化によって生ずる誤差を補正するために、測定を行うに際してはその測定作業に先立って、分析計のゼロ点調整およびスパン校正を行う必要がある。そのうち、スパン校正は、所定の既知濃度の特定成分ガス(測定対象ガス)の校正用ガスをガスボンベ等からセルに供給することで行われる。
【0015】
しかし、上述したように、測定対象となる特定成分ガスに対する校正用ガスがガスボンベによって容易に供給されないガスである場合は、上述のような校正手段をとることができない。この発明は、特定成分ガスA1 の校正用ガスを容易に供給できない場合の近似波長を有する既知濃度の校正用ガス(比較ガス)が収容されているガスボンベを使って校正できるようにしたものである。
【0016】
すなわち、この発明は、校正用ガスがガスボンベによって容易に供給されない、例えばPb(DPM)2 を昇華させてなるガスA1 を測定対象とする赤外線分析計を持つ赤外線分析装置であって、この赤外線分析装置は、例えば1350cm-1〜1400cm-1の測定用波長と、例えば880cm-1〜920cm-1の比較用波長の二種類を検知する手段として、前記測定用波長検知手段、比較用波長検知手段を持っている。
【0017】
そして、この発明では、測定用波長と比較用波長の二波長を用いて、特定成分ガスA1 の濃度測定信号Cと比較ガスの濃度比較信号Dを演算するよう構成されている。
【0018】
15は、その演算部で、特定成分ガス〔Pb(DPM)2 を昇華させてなるガス〕A1 の濃度測定信号を演算するとともに、前記比較ガス(NF3 )A2 の濃度比較信号を演算する機能を有し、また、特定成分ガスA1 と前記比較ガスA2 の前記セル1への導入を例えば三方電磁弁33によって相互に切換える信号切換処理機能を有し、更に、信号切換を数回繰り返して得られた前記濃度測定信号Cおよび濃度比較信号Dに基づいて特定成分ガスA1 と前記比較ガスA2 の濃度検量線を作成する機能を有し、また、測定作業時において既知濃度Dの前記比較ガスA2 を前記セル1に導入して得られる前記濃度比較信号D’と前記濃度検量線とに基づいて赤外線分析計20の校正の要否を判断する機能を有する。
【0019】
更に、濃度測定信号Cの演算は、特定成分ガスA1 を赤外線分析計20のセル1に導入した状態で、前記比較用波長検知手段10,12より出力されるC信号に測定時ゲインGX を乗じたものから前記測定用波長検知手段9,11より出力されるS信号を引き算するよう行われる。
すなわち、GX ×C信号(880cm-1〜920cm-1
−S信号(1350cm-1〜1400cm-1)=特定成分ガスA 1 濃度測定信号…(1)である。
【0020】
また、濃度比較信号Dの演算は、既知濃度の前記比較ガスA2 を前記セル1に導入した状態で、前記S信号に校正時ゲインGC を乗じたものから前記C信号を引き算するよう行われる。
すなわち、GC ×S信号(1350cm-1〜1400cm-1
−C信号(880cm-1〜920cm-1)=比較ガス(NF 3 )A 2 の濃度比較信号…(2)である。
【0021】
そして、これらの演算にあたり、演算前に予め、特定成分ガスA1 と比較ガスA2 の信号強度比を求め、測定時ゲインGX および校正時ゲインGC を最適化しておくのが好ましい。
【0022】
なお、測定用波長と比較用波長の二波長を用いて、特定成分ガスA1 の濃度測定信号Cと比較ガスの濃度比較信号Dを演算するのは、光源6から発せられる赤外線光量が、図5に示すように、特定成分ガスA1 による吸収信号量50、ならびに、比較ガスA2 による吸収信号量51の10〜100倍と極端に大きいことから、測定用波長帯として例えば1350cm-1〜1400cm-1を選択するとともに、そのときの光量検出用波長を例えば880cm-1〜920cm-1に選択性を持つバンドパスフィルタ11で検出し、かつ、前記(1),(2)式に示したように差をとることによって、光源光量等の赤外線分析計の検出感度に影響する要素を除去できるためである。
【0023】
而して、赤外線分析装置を介して半導体プロセスにおけるCVDチャンバー内に特定成分ガスA1 を流す測定作業に先立って、特定成分ガスA1 と前記比較ガスA2 の濃度検量線を作成する。
【0024】
この場合、粉体のPb(DPM)2 が収容された容器52をヒータで加熱することにより、Pb(DPM)2 を昇華させて特定成分ガスA1 を発生させながら、三方電磁弁33を測定ライン70の側に切換えた状態でセル1内に、Arをキャリアガスとして特定成分ガスA1 を導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0025】
特定成分ガスA1 を流しているので、前記(1)式から濃度測定信号Cを得ることができる。
【0026】
その後、セル1のパージを行って三方電磁弁33を測定ライン70から比較ガス供給ライン80の側に切換える。これら二つの切換えは、演算部15が行う。
【0027】
切換後セル1内に、既知濃度の比較ガスA2 を導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0028】
比較ガスA2 を流しているので、前記(2)式から濃度比較信号Dを得ることができる。
【0029】
信号切換を数回繰り返して得られた濃度測定信号C,濃度比較信号Dから特定成分ガスA1 と前記比較ガスA2 の濃度検量線を作成できる。
【0030】
次に、赤外線分析装置を介してCVDチャンバー内に特定成分ガスA1 を流す測定作業を行う。
【0031】
セル1内に特定成分ガスA1 を導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0032】
特定成分ガスA1 を流しているので、前記(1)式から濃度測定信号Cを得る。
【0033】
その後、セル1のパージを行って三方電磁弁33を測定ライン70から比較ガス供給ライン80の側に切換える。これら二つの切換えは、演算部15が行う。
【0034】
切換後セル1内に、既知濃度の比較ガスA2 を導入し、これに光源6からの赤外線を投射してチョッパ7によって変調を行う。
【0035】
比較ガスA2 を流しているので、前記(2)式から濃度比較信号D’を得ることができる。
【0036】
前記セル1に導入して得られた濃度比較信号D’と濃度比較信号Dを前記濃度検量線とに基づいて赤外線分析計の校正の要否を判断する。
【0037】
そして、校正が必要な場合は、(D’/D)×Cのスパン校正を行ってCVDチャンバー内に流された特定成分ガスA1 の濃度C’が計測できる。
【0038】
以上、半導体プロセスにおけるガスは、その校正用ガス(比較ガス)A2 がガスボンベ等によって容易に供給されないものである場合が多いが、上述したように、可能な限り測定用波長に近い比較用波長を有するガスを用い、測定用波長と比較用波長の二波長を検知する測定用波長検知手段9,11、比較用波長検知手段10,12を設け、また、特定成分ガスA1 濃度測定時は前記(1)式を用い、比較ガスA2 濃度測定時は前記(2)式を用いることにより、簡単な構成で校正機能および測定機能を有する赤外線分析装置を得ることができる。
【0039】
なお、前記S信号またはC信号は、それぞれが光学系の全体光量を表しているが、例えば光路の汚れによる光量低下(図5においてL’で示す)を前記S信号またはC信号の出力信号で確認できるように構成し、更に、例えば光路の汚れにより初期光量から所定の光量(アラームレベル)に低下した時点でアラーム信号を発するように構成してもよい。
【0040】
【発明の効果】
以上この発明では、特定成分ガスの校正用ガスが、ガスボンベで容易に供給されないガス種である場合において、測定とともに校正も行える赤外線分析装置を提供することができる効果がある。
【図面の簡単な説明】
【図1】 この発明の一実施形態を示す全体構成説明図である。
【図2】 上記実施形態における使用環境を示す構成説明図である。
【図3】 (A)は、半導体プロセスにおけるガスの供給状態を示す図である。
(B)は、図3(A)における一部を拡大して示す図である。
【図4】 特定成分ガス(測定対象ガス)と比較ガスの赤外線吸収スペクトルを示す特性図である。
【図5】 特定成分ガスによる吸収信号量、ならびに、比較ガスによる吸収信号量を示す図である。
【符号の説明】
1…セル、9,11…測定用波長検知手段、10,12…比較用波長検知手段、15…演算部、20…赤外線分析計、33…三方電磁弁、A1 …特定成分ガス、A2 …比較ガス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared analyzer.
[0002]
[Prior art]
A signal (measurement signal) proportional to the infrared energy of the intrinsic absorption wavelength of the specific component gas obtained at that time by allowing the infrared light from the light source to pass through the cell in which the sample gas containing the specific component gas is introduced, Amplification of the difference from the signal (comparison signal) proportional to the infrared energy of the wavelength where there is no absorption due to the specific component gas or only negligible absorption, and the amount of infrared absorption at the measurement wavelength (specific absorption wavelength) In the infrared analysis apparatus in which the concentration of the specific component gas is obtained from the above, it is necessary to periodically perform zero point adjustment and span calibration.
[0003]
And, in order to perform zero point adjustment and span calibration in the infrared analyzer, conventionally, after zero gas is introduced into the cell and the indication is stabilized, zero point adjustment is performed, and then the span gas supplied by the gas cylinder Span calibration is performed after the indication is stabilized by introducing (a specific component gas having a predetermined known concentration) into the cell.
[0004]
[Problems to be solved by the invention]
However, many of the gas species introduced to the gas supply side of the semiconductor process and used for manufacturing the semiconductor device are not easily supplied by the gas cylinder, and in such a case, the calibration means as described above cannot be taken.
[0005]
The present invention has been made in consideration of the above points, and its purpose is to perform infrared analysis capable of performing calibration as well as measurement when the calibration gas of the specific component gas is a gas species that is not easily supplied by a gas cylinder. Is to provide a device.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the infrared analyzer of the invention according to claim 1 is an infrared analyzer having an infrared analyzer whose measurement target is a specific component gas, and for measuring the specific component gas to be measured. Wavelength and measuring wavelength detecting means for detecting two types of comparative wavelengths which are not absorbed by the specific component gas or have a negligible absorption, respectively, and the specific component gas gas introduction switching unit for switching to each other introduction into the infrared analyzer cell of Comparative gases known concentration of the infrared absorption spectrum has an absorption wavelength in the comparison wavelength do not overlap in the infrared absorption spectrum of the specific component gas及benefactor In addition, when the specific component gas is introduced into the cell of the infrared analyzer, the comparison wavelength output from the comparison wavelength detecting means Calculate the concentration measurement signal of the specific component gas by subtracting the measurement wavelength signal output from the measurement wavelength detector from the product obtained by multiplying the signal gain by the measurement time gain, while introducing the reference gas of known concentration into the cell When this is done, the comparison wavelength signal output from the comparison wavelength detector is subtracted from the product of the calibration wavelength gain multiplied by the measurement wavelength signal output from the measurement wavelength detector, and the concentration comparison signal of the comparison gas is calculated. In addition, the present invention is characterized in that it has a calculation unit that calibrates the infrared analyzer based on the calculated concentration measurement signal of the specific component gas and the concentration comparison signal of the comparison gas.
The infrared analyzer of the invention according to claim 3 is an infrared analyzer having an infrared analyzer whose measurement target is a specific component gas, the measurement wavelength of the specific component gas to be measured, and a specific component two kinds of comparative wavelength only absorption degree absorption by the gas is not or negligible, measurement wavelength detection means for detecting, respectively, and a comparative wavelength detector, the infrared absorption spectrum of the specific component gas及benefactor Is provided with a gas introduction switching unit that mutually switches the introduction of the reference gas having a known concentration having an absorption wavelength at the comparison wavelength into the infrared analyzer cell without overlapping the infrared absorption spectrum of the specific component gas, and When the specific component gas is introduced into the cell of the infrared analyzer, the comparison wavelength signal output from the comparison wavelength detection means and the measurement wave While calculating the concentration measuring signal of the specific component gas from the measured wavelength signal and measuring the time gain obtained from the signal intensity ratio of the comparison gas and the specific component gas is output from the detecting means, a reference gas of the known concentration to the cell When introduced, from the measurement wavelength signal output from the measurement wavelength detection means, the comparison wavelength signal output from the comparison wavelength detection means, and the gain at the time of calibration obtained from the signal intensity ratio of the specific component gas and the comparison gas It has a calculation unit for calculating a concentration comparison signal of the reference gas and calibrating the infrared analyzer based on the calculated concentration measurement signal of the specific component gas and the concentration comparison signal of the comparison gas. To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The present invention is not limited thereby.
[0008]
1 to 4 show an embodiment of the present invention.
[0009]
FIG. 1 shows a schematic configuration of an infrared analysis apparatus provided with an infrared analyzer 20 of a so-called one light source and one cell type. FIG. 2 shows a use environment of the infrared analyzer. 3A shows a gas supply state in the semiconductor process, and FIG. 3B shows an enlarged portion thereof.
[0010]
4 can not calibration gas it is easily supplied by a gas cylinder, for example, the specific component gas (measurement target gas) having a measurement wavelength of 1350cm -1 ~1400cm -1 and the infrared absorption spectrum Q of A 1 Infrared rays of the comparative gas A 2 having no absorption due to the specific component gas A 1 or only negligible absorption and having an absorption wavelength as close as possible to the measurement wavelength (for example, 880 cm −1 to 920 cm −1 ). The absorption spectrum P is shown. In this embodiment, Pb (DPM) 2 as a raw material for film formation used in a semiconductor device is sublimated to generate a specific component gas A 1 to be measured. In this embodiment, NF 3 gas is used as the comparison gas A 2 that satisfies the above conditions.
[0011]
In FIG. 1, reference numeral 1 denotes a cell of the infrared analyzer 20, which includes a gas inlet 2 and a gas outlet 3, and infrared transmissive cell windows 4 and 5 are formed at both ends. 6 is a light source that emits infrared rays provided outside one cell window 4 of the cell 1 so that the infrared rays from the light source 6 pass through the cell 1 and enter a detection unit 8 described later. is there. FIG. 5 shows the light quantity characteristics of the light source 6 to be used. L is a light quantity characteristic curve. A non-dispersive infrared analyzer is used as the infrared analyzer 20.
[0012]
Reference numeral 7 denotes a modulation chopper provided between the cell 1 and the detection unit 8 and is configured to rotate by a driving mechanism (not shown). A modulation chopper 7 may be provided between the cell 1 and the light source 6.
[0013]
Reference numeral 8 denotes a detection unit provided outside the other cell window 5 of the cell 1, and mainly includes a comparison wavelength detector 10 and a measurement wavelength detector 9 arranged in parallel with each other. The measurement wavelength detector 9 includes a bandpass filter 11 that transmits infrared light having a measurement wavelength of 1350 cm −1 to 1400 cm −1 absorbed by the specific component gas A 1 , and a measurement wavelength signal proportional to the transmitted infrared energy. (Hereinafter referred to as S signal) is output. Further, the comparative wavelength detector 10 has no absorption due to the specific component gas A 1 or has negligible absorption, and an infrared ray having a comparative wavelength of 880 cm −1 to 920 cm −1 as close as possible to the measurement wavelength. And a comparative wavelength signal (hereinafter referred to as C signal) proportional to the transmitted infrared energy. The comparison wavelength detector 10 and the bandpass filter 12 constitute comparison wavelength detection means for detecting the comparison wavelength, and the measurement wavelength detector 9 and the bandpass filter 11 measure the measurement wavelength. A wavelength detecting means for use is configured.
[0014]
By the way, in general, various analyzers such as an infrared analyzer are used to correct errors caused by temperature drifts or changes with time in the detection unit, amplification unit, etc. It is necessary to perform point adjustment and span calibration. Among them, span calibration is performed by supplying a calibration gas of a specific component gas (measurement target gas) having a predetermined known concentration from a gas cylinder or the like to a cell.
[0015]
However, as described above, when the calibration gas for the specific component gas to be measured is a gas that is not easily supplied by the gas cylinder, the calibration means as described above cannot be taken. The present invention can be calibrated using a gas cylinder containing a calibration gas (comparison gas) having a known concentration having an approximate wavelength when the calibration gas of the specific component gas A 1 cannot be easily supplied. is there.
[0016]
That is, the present invention is an infrared analyzer having an infrared analyzer whose measurement object is a gas A 1 obtained by sublimating Pb (DPM) 2 , for example, in which calibration gas is not easily supplied by a gas cylinder. analyzer, for example a measuring wavelength of 1350cm -1 ~1400cm -1, for example, as a means for detecting the two kinds of comparative wavelength of 880cm -1 ~920cm -1, the measuring wavelength detector, a wavelength detection comparator Have a means.
[0017]
In the present invention, the concentration measurement signal C of the specific component gas A 1 and the concentration comparison signal D of the comparison gas are calculated using two wavelengths of the measurement wavelength and the comparison wavelength.
[0018]
The calculation unit 15 calculates a concentration measurement signal of a specific component gas [gas obtained by sublimating Pb (DPM) 2 ] A 1 and calculates a concentration comparison signal of the comparison gas (NF 3 ) A 2. A signal switching processing function for switching the introduction of the specific component gas A 1 and the comparison gas A 2 into the cell 1 by, for example, a three-way solenoid valve 33, Based on the concentration measurement signal C and the concentration comparison signal D obtained repeatedly, it has a function of creating a concentration calibration curve for the specific component gas A 1 and the comparison gas A 2 , and has a known concentration during the measurement operation. A function for determining whether calibration of the infrared analyzer 20 is necessary based on the concentration comparison signal D ′ obtained by introducing the comparison gas A 2 of D into the cell 1 and the concentration calibration curve.
[0019]
Further, the calculation of the concentration measurement signal C is performed by adding a measurement gain G X to the C signal output from the comparison wavelength detecting means 10 and 12 in a state where the specific component gas A 1 is introduced into the cell 1 of the infrared analyzer 20. The S signal output from the measurement wavelength detecting means 9 and 11 is subtracted from the product obtained by multiplying by.
That is, G x × C signal (880 cm −1 to 920 cm −1 )
-S signal (1350cm -1 ~1400cm -1) = the concentration measuring signal of the specific component gas A 1 ... (1).
[0020]
The concentration comparison signal D is calculated by subtracting the C signal from the signal obtained by multiplying the S signal by the calibration gain G C while the reference gas A 2 having a known concentration is introduced into the cell 1. Is called.
That is, G C × S signal (1350 cm −1 to 1400 cm −1 )
-C signal (880 cm -1 to 920 cm -1 ) = comparison signal of comparison gas (NF 3 ) A 2 (2).
[0021]
In these calculations, it is preferable that the signal intensity ratio between the specific component gas A 1 and the comparison gas A 2 is obtained in advance and the measurement gain G X and the calibration gain G C are optimized before the calculation.
[0022]
The concentration measurement signal C of the specific component gas A 1 and the concentration comparison signal D of the comparison gas are calculated using the two wavelengths of the measurement wavelength and the comparison wavelength because the amount of infrared light emitted from the light source 6 is As shown in FIG. 5, the absorption signal amount 50 due to the specific component gas A 1 and the absorption signal amount 51 due to the comparison gas A 2 are extremely large, 10 to 100 times, so that the measurement wavelength band is, for example, 1350 cm −1 . with selecting 1400 cm -1, detected by the band-pass filter 11 having a selective light quantity detection wavelength at that time for example, 880cm -1 ~920cm -1, and wherein (1), shown in equation (2) This is because, by taking the difference as described above, elements that affect the detection sensitivity of the infrared analyzer such as the light amount of the light source can be removed.
[0023]
Thus, prior to the measurement operation of flowing the specific component gas A 1 into the CVD chamber in the semiconductor process via the infrared analyzer, a concentration calibration curve for the specific component gas A 1 and the comparative gas A 2 is created.
[0024]
In this case, the container 52 in which the powder Pb (DPM) 2 is accommodated is heated by a heater so that the specific component gas A 1 is generated by sublimating the Pb (DPM) 2 and the three-way solenoid valve 33 is measured. In the state switched to the line 70 side, a specific component gas A 1 is introduced into the cell 1 using Ar as a carrier gas, and infrared rays from the light source 6 are projected onto the cell 1 to modulate by the chopper 7.
[0025]
Since the specific component gas A 1 is flowing, the concentration measurement signal C can be obtained from the equation (1).
[0026]
Thereafter, the cell 1 is purged and the three-way solenoid valve 33 is switched from the measurement line 70 to the comparison gas supply line 80 side. These two switching operations are performed by the calculation unit 15.
[0027]
After the switching, the reference gas A 2 having a known concentration is introduced into the cell 1, and infrared rays from the light source 6 are projected onto the reference gas A 2 and modulated by the chopper 7.
[0028]
Since the comparison gas A 2 is flowing, the concentration comparison signal D can be obtained from the equation (2).
[0029]
A concentration calibration curve of the specific component gas A 1 and the comparison gas A 2 can be created from the concentration measurement signal C and the concentration comparison signal D obtained by repeating the signal switching several times.
[0030]
Next, a measurement operation for flowing the specific component gas A 1 into the CVD chamber through an infrared analyzer is performed.
[0031]
The specific component gas A 1 is introduced into the cell 1, and the infrared rays from the light source 6 are projected onto the cell 1 and modulated by the chopper 7.
[0032]
Since the specific component gas A 1 is flowing, the concentration measurement signal C is obtained from the equation (1).
[0033]
Thereafter, the cell 1 is purged and the three-way solenoid valve 33 is switched from the measurement line 70 to the comparison gas supply line 80 side. These two switching operations are performed by the calculation unit 15.
[0034]
After the switching, the reference gas A 2 having a known concentration is introduced into the cell 1, and infrared rays from the light source 6 are projected onto the reference gas A 2 and modulated by the chopper 7.
[0035]
Since the comparison gas A 2 is flowing, the concentration comparison signal D ′ can be obtained from the equation (2).
[0036]
The necessity of calibration of the infrared analyzer is determined based on the concentration comparison signal D ′ and the concentration comparison signal D obtained by introducing them into the cell 1 based on the concentration calibration curve.
[0037]
When calibration is required, the span C of (D ′ / D) × C can be performed to measure the concentration C ′ of the specific component gas A 1 that has flowed into the CVD chamber.
[0038]
As described above, in many cases, the gas in the semiconductor process is such that the calibration gas (comparison gas) A 2 is not easily supplied by a gas cylinder or the like, but as described above, the comparison wavelength is as close to the measurement wavelength as possible. The measurement wavelength detection means 9 and 11 and the comparison wavelength detection means 10 and 12 for detecting two wavelengths of the measurement wavelength and the comparison wavelength are provided, and when measuring the concentration of the specific component gas A 1 By using the equation (1) and using the equation (2) when measuring the concentration of the reference gas A 2 , an infrared analyzer having a calibration function and a measurement function can be obtained with a simple configuration.
[0039]
Each of the S signal and the C signal represents the total light amount of the optical system. For example, a decrease in the light amount due to contamination of the optical path (indicated by L ′ in FIG. 5) is an output signal of the S signal or C signal. Further, the alarm signal may be generated when the initial light amount is reduced to a predetermined light amount (alarm level) due to contamination of the optical path, for example.
[0040]
【The invention's effect】
As described above, according to the present invention, when the calibration gas for the specific component gas is a gas species that is not easily supplied by the gas cylinder, there is an effect that it is possible to provide an infrared analyzer that can perform calibration as well as measurement.
[Brief description of the drawings]
FIG. 1 is an overall configuration explanatory view showing an embodiment of the present invention.
FIG. 2 is a configuration explanatory diagram showing a use environment in the embodiment.
FIG. 3A is a diagram showing a gas supply state in a semiconductor process.
FIG. 3B is an enlarged view of a part of FIG.
FIG. 4 is a characteristic diagram showing infrared absorption spectra of a specific component gas (measurement target gas) and a comparative gas.
FIG. 5 is a diagram showing an absorption signal amount by a specific component gas and an absorption signal amount by a comparative gas.
[Explanation of symbols]
1 ... cell, 9,11 ... measuring wavelength detection means, 10, 12 ... comparison wavelength detection means, 15 ... operation unit, 20 ... infrared analyzer, 33 ... three-way electromagnetic valve, A 1 ... specific component gas, A 2 ... comparative gas.

Claims (3)

特定成分ガスを測定対象とする赤外線分析計を有する赤外線分析装置であって、測定対象の前記特定成分ガスの測定用波長、および、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない比較用波長の二種類を、それぞれ検知する測定用波長検知手段、および、比較用波長検知手段と、前記特定成分ガス及びその赤外線吸収スペクトルが特定成分ガスの赤外線吸収スペクトルに重なり合わず前記比較用波長において吸収波長を有する既知濃度の比較ガスの前記赤外線分析計のセルへの導入を相互に切換えるガス導入切換部を備えており、更に、特定成分ガスを赤外線分析計のセルに導入したときには、前記比較用波長検知手段より出力される比較波長信号に測定時ゲインを乗じたものから前記測定用波長検知手段より出力される測定波長信号を引き算して特定成分ガスの濃度測定信号を演算する一方、既知濃度の前記比較ガスを前記セルに導入したときには、前記測定用波長検知手段より出力される測定波長信号に校正時ゲインを乗じたものから前記比較用波長検知手段より出力される比較波長信号を引き算して比較ガスの濃度比較信号を演算し、かつ、これら演算された特定成分ガスの濃度測定信号と比較ガスの濃度比較信号に基づいて赤外線分析計を校正する演算部を有していることを特徴とする赤外線分析装置。An infrared analyzer having an infrared analyzer for measuring a specific component gas, the wavelength for measurement of the specific component gas to be measured and the absorption by the specific component gas is not absorbed or negligible two kinds of comparative wavelength, measuring the wavelength detection means for detecting, respectively, and, the comparison with comparative wavelength detector, the infrared absorption spectrum of the specific component gas及patron is not overlap the infrared absorption spectrum of the specific component gas A gas introduction switching unit for mutually switching the introduction of the reference gas having a known concentration having an absorption wavelength at the wavelength for use into the cell of the infrared analyzer, and when the specific component gas is introduced into the cell of the infrared analyzer The output from the measurement wavelength detection means is obtained by multiplying the comparison wavelength signal output from the comparison wavelength detection means by the gain at the time of measurement. When the reference gas having a known concentration is introduced into the cell, the measurement wavelength signal output from the measurement wavelength detector is calibrated. The comparison wavelength signal output from the comparison wavelength detection means is subtracted from the product multiplied by the gain to calculate the concentration comparison signal of the comparison gas, and the calculated concentration measurement signal of the specific component gas and the comparison gas An infrared analyzer having an arithmetic unit for calibrating an infrared analyzer based on a concentration comparison signal. 前記演算部は、特定成分ガスを半導体プロセスのガス供給側に導入する測定作業に先立って、特定成分ガスと比較ガスの導入の切換えを数回繰り返して得られた前記濃度測定信号および濃度比較信号に基づいて特定成分ガスと前記比較ガスの濃度検量線を作成する機能と、測定作業時において前記既知濃度の比較ガスを前記セルに導入して得られる前記濃度比較信号と前記濃度検量線とに基づいて赤外線分析計の校正の要否を判断する機能とを有する請求項1に記載の赤外線分析装置。  Prior to the measurement operation for introducing the specific component gas to the gas supply side of the semiconductor process, the arithmetic unit repeats the switching of the introduction of the specific component gas and the comparison gas several times, and the concentration measurement signal and the concentration comparison signal are obtained. A concentration calibration curve for the specific component gas and the comparison gas based on the above, and the concentration comparison signal and the concentration calibration curve obtained by introducing the reference gas of the known concentration into the cell during the measurement operation. The infrared analyzer according to claim 1, having a function of determining whether calibration of the infrared analyzer is necessary based on the function. 特定成分ガスを測定対象とする赤外線分析計を有する赤外線分析装置であって、測定対象の前記特定成分ガスの測定用波長、および、特定成分ガスによる吸収がないかあるいは無視できる程度の吸収しかない比較用波長の二種類を、それぞれ検知する測定用波長検知手段、および、比較用波長検知手段と、前記特定成分ガス及びその赤外線吸収スペクトルが特定成分ガスの赤外線吸収スペクトルに重なり合わず前記比較用波長において吸収波長を有する既知濃度の比較ガスの前記赤外線分析計のセルへの導入を相互に切換えるガス導入切換部を備えており、更に、特定成分ガスを赤外線分析計のセルに導入したときには、前記比較用波長検知手段より出力される比較波長信号及び前記測定用波長検知手段より出力される測定波長信号並びに特定成分ガスと比較ガスの信号強度比から得られた測定時ゲインから特定成分ガスの濃度測定信号を演算する一方、前記既知濃度の比較ガスを前記セルに導入したときには、前記測定用波長検知手段より出力される測定波長信号及び前記比較用波長検知手段より出力される比較波長信号並びに特定成分ガスと比較ガスの信号強度比から得られた校正時ゲインから比較ガスの濃度比較信号を演算し、かつ、これら演算された特定成分ガスの濃度測定信号と比較ガスの濃度比較信号に基づいて赤外線分析計を校正する演算部を有していることを特徴とする赤外線分析装置。An infrared analyzer having an infrared analyzer for measuring a specific component gas, the wavelength for measurement of the specific component gas to be measured and the absorption by the specific component gas is not absorbed or negligible two kinds of comparative wavelength, measuring the wavelength detection means for detecting, respectively, and, the comparison with comparative wavelength detector, the infrared absorption spectrum of the specific component gas及patron is not overlap the infrared absorption spectrum of the specific component gas A gas introduction switching unit for mutually switching the introduction of the reference gas having a known concentration having an absorption wavelength at the wavelength for use into the cell of the infrared analyzer, and when the specific component gas is introduced into the cell of the infrared analyzer , measurement wavelength signals and JP output from comparator wavelength signal and the measuring wavelength detecting means is outputted from the comparison wave detecting means While calculating the concentration measurement signal of the specific component gas from the measurement gain obtained from the signal intensity ratio of the component gas and the comparison gas, when the reference gas of the known concentration is introduced into the cell, the measurement wavelength detection means Calculating a comparison gas concentration comparison signal from the output measurement wavelength signal, the comparison wavelength signal output from the comparison wavelength detection means, and the gain at the time of calibration obtained from the signal intensity ratio between the specific component gas and the comparison gas; and An infrared analysis apparatus comprising a calculation unit for calibrating the infrared analyzer based on the calculated concentration measurement signal of the specific component gas and the concentration comparison signal of the comparison gas.
JP2003098915A 2003-04-02 2003-04-02 Infrared analyzer Expired - Lifetime JP4176535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098915A JP4176535B2 (en) 2003-04-02 2003-04-02 Infrared analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098915A JP4176535B2 (en) 2003-04-02 2003-04-02 Infrared analyzer

Publications (2)

Publication Number Publication Date
JP2004309154A JP2004309154A (en) 2004-11-04
JP4176535B2 true JP4176535B2 (en) 2008-11-05

Family

ID=33463519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098915A Expired - Lifetime JP4176535B2 (en) 2003-04-02 2003-04-02 Infrared analyzer

Country Status (1)

Country Link
JP (1) JP4176535B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356724B2 (en) * 2006-09-20 2009-11-04 株式会社デンソー Infrared gas detector and gas detection method thereof
JP5232729B2 (en) 2009-06-30 2013-07-10 株式会社アドバンテスト Output device and test device
WO2020241907A1 (en) * 2019-05-24 2020-12-03 정경환 Gas measuring device and gas measuring method therefor

Also Published As

Publication number Publication date
JP2004309154A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
CA1045847A (en) Vehicle exhaust gas analysis system
CA1045405A (en) Exhaust gas analyzer having pressure and temperature compensation
US3973848A (en) Automatic gas analysis and purging system
AU753047B2 (en) Method for measuring the concentration of hydrogen peroxide vapor
US5125747A (en) Optical analytical instrument and method having improved calibration
JP7135608B2 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JP6441238B2 (en) Method and apparatus for determining concentration
JP5347983B2 (en) Gas analyzer
US9007592B2 (en) Gas analyzer
US4596931A (en) Method of eliminating measuring errors in photometric analysis
KR20010021565A (en) Method for calibration of a spectroscopic sensor
US20230417660A1 (en) Gas analysis device and gas analysis method
US20050062972A1 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
Schilt Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications
JP4176535B2 (en) Infrared analyzer
CN1971247B (en) Method for cross interference correction for correlation spectroscopy
US6710347B1 (en) Device for measuring gas concentration
US4501968A (en) Infrared radiation gas analyzer
JP2008298452A (en) Infrared gas analyzer
GB2059574A (en) Absorption cell gas monitor
WO2021053804A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JP4058005B2 (en) Infrared gas analyzer calibration method
US4499379A (en) Infrared radiation gas analyzer
JP3177379B2 (en) Oil concentration meter
JP4906477B2 (en) Gas analyzer and gas analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4176535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term