JPH0226178B2 - - Google Patents

Info

Publication number
JPH0226178B2
JPH0226178B2 JP94185A JP94185A JPH0226178B2 JP H0226178 B2 JPH0226178 B2 JP H0226178B2 JP 94185 A JP94185 A JP 94185A JP 94185 A JP94185 A JP 94185A JP H0226178 B2 JPH0226178 B2 JP H0226178B2
Authority
JP
Japan
Prior art keywords
gaseous
light
spectral lines
window
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP94185A
Other languages
Japanese (ja)
Other versions
JPS61160041A (en
Inventor
Hajime Oosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP94185A priority Critical patent/JPS61160041A/en
Priority to US06/811,760 priority patent/US4731334A/en
Priority to EP86300109A priority patent/EP0187717B1/en
Priority to DE8686300109T priority patent/DE3681460D1/en
Publication of JPS61160041A publication Critical patent/JPS61160041A/en
Publication of JPH0226178B2 publication Critical patent/JPH0226178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はSeの検知定量方法及びモニターに関
し、特に従来の原子吸光分光分析法における低温
にてガス状Seを検知・定量可能な方法及びモニ
ターに関する。本発明の方法及びモニターは、
Seを用いる半導体製品及び半導体製造装置、廃
棄物処理装置、例えば、ZnSe、CdSe等の化合物
半導体のエピ成長装置(CVD炉、LPE炉等)、高
圧HB炉、アニーリング炉、Se圧アニーリング
炉、MBE装置、MOCVD装置等に、或いは、Se
を含有する合金やセラミツクス・ガラス等の溶解
炉等におけるSeの検知・定量方法及び上記各装
置において、Seを定量検知し、Seの投入量コン
トロール、Se圧コントロールを現場で行えるモ
ニターとして利用して、多大の効果を奏する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method and monitor for detecting and quantifying Se, and particularly to a method and monitor capable of detecting and quantifying gaseous Se at low temperatures in conventional atomic absorption spectrometry. Regarding. The method and monitor of the invention include:
Semiconductor products and semiconductor manufacturing equipment using Se, waste treatment equipment, such as epitaxial growth equipment (CVD furnace, LPE furnace, etc.) for compound semiconductors such as ZnSe and CdSe, high-pressure HB furnace, annealing furnace, Se pressure annealing furnace, MBE equipment, MOCVD equipment, etc., or Se
A method for detecting and quantifying Se in melting furnaces for alloys, ceramics, glasses, etc. containing , has great effects.

(従来の技術) 近時、産業上の各分野、例えば半導体、合金、
セラミツクス、ガラス等の製造において各種の
Seを含有する化合物が開発されるに伴い、Seの
高感度検知・定量が要求されるが、これに対して
は、従来、Seを2000℃の高温度にて原子化させ、
Se特有の原子吸光スペクトルを検知する原子吸
光分光分析法によつていた。Seの原子吸光スペ
クトルは第5図〔出典:浜松ホトニクス(株)カタロ
グ〕に示されるように、波長196.03nmにおいて
鋭いピークを持つ。このピークを利用した従来の
原子吸光分光分析装置の一般的な構成は第6図に
示されるごとくであつて、光源部1からの光は、
試料原子化部2に入射され、原子化部2を通過し
た光は、選光部(例えばモノクロメーター)3を
経由して4〜6の測光部に入り検知・定量され
る。4は検知器、5は増幅器、6はメーター部で
ある。試料原子化部2においてSeを原子化する
ためには2000℃以上の原子化温度とする必要があ
り、一般的に簡便な方法として炎を用いている。
(Prior art) Recently, various industrial fields such as semiconductors, alloys,
Various types of products are used in the production of ceramics, glass, etc.
As Se-containing compounds are developed, highly sensitive detection and quantification of Se is required.
It was based on atomic absorption spectroscopy, which detects the atomic absorption spectrum unique to Se. As shown in Figure 5 [Source: Hamamatsu Photonics Catalog], the atomic absorption spectrum of Se has a sharp peak at a wavelength of 196.03 nm. The general configuration of a conventional atomic absorption spectrometer that utilizes this peak is as shown in FIG. 6, and the light from the light source section 1 is
The light that is incident on the sample atomization section 2 and passes through the atomization section 2 passes through a light selection section (for example, a monochromator) 3 and enters photometry sections 4 to 6 where it is detected and quantified. 4 is a detector, 5 is an amplifier, and 6 is a meter section. In order to atomize Se in the sample atomization section 2, it is necessary to set the atomization temperature to 2000° C. or higher, and flame is generally used as a simple method.

(発明が解決しようとする問題点) しかし、上記の原子吸光スペクトルを利用した
Seの検知法は、高温度(原子化温度)を必要と
するため、原子化温度以下でのSeの検知には不
適当であり、そのため原子化温度以下のガス状の
SeXに対してはその検知・定量法が存在しない
し、さらにその場(現場)での検知・定量法及び
モニターも存在していない。
(Problem to be solved by the invention) However, using the above atomic absorption spectrum
Se detection methods require high temperatures (atomization temperature) and are therefore unsuitable for detecting Se at temperatures below the atomization temperature.
There is no detection/quantification method for SeX, and no on-site detection/quantification method or monitoring exists.

本発明の目的は、上記の現状に鑑み、従来不可
能であつた原子化温度以下でのSeの高感度検
知・定量を可能とする新規なSeの検知定量方法
及びモニターを提供することにある。
In view of the above-mentioned current situation, an object of the present invention is to provide a novel method and monitor for detecting and quantifying Se that enables highly sensitive detection and quantification of Se at temperatures below the atomization temperature, which was previously impossible. .

(問題点を解決するための手段) 本発明は、此度本発明者らが研究途上発見し
た、ガス状Seの吸光スペクトルを利用して検
知・定量するものである。
(Means for Solving the Problems) The present invention detects and quantifies gaseous Se using the absorption spectrum, which the present inventors discovered during their research.

すなわち本発明はSeの原子化温度より低い温
度にて、ガス状Seに波長324nm、326nm、328n
m、330nm、332.5nm、335nm、337.5nm、340n
m、342nm、344.5nm、347nm、350nm、352.5n
m、355nm、357.5nm及び360nmのスペクトル線
のうちの2つあるいはそれ以上を入射し、上記ガ
ス状Seによる上記入射スペクトル線の吸収を測
定し、光強度のピーク高さからSeの検知・定量
を行う方法である。さらに本発明は炉またはヒー
タ付容器の光の進行方向に窓部を設け、一方の窓
部に波長324nm、326nm、328nm、330nm、
332.5nm、335nm、337.5nm、340nm、342nm、
344.5nm、347nm、350nm、352.5nm、355nm、
357.5nm及び360nmのスペクトル線発光部、他方
の窓にはヒータ付容器内のガス状Seを通過した
前記スペクトル線の光強度のピーク高さからSe
を検知・定量する受光・測光部を接続してなる
Seモニターである。
That is, the present invention provides gaseous Se with wavelengths of 324 nm, 326 nm, and 328 nm at a temperature lower than the atomization temperature of Se.
m, 330nm, 332.5nm, 335nm, 337.5nm, 340n
m, 342nm, 344.5nm, 347nm, 350nm, 352.5n
Two or more of the spectral lines of m, 355 nm, 357.5 nm, and 360 nm are incident, and the absorption of the incident spectral lines by the gaseous Se is measured, and Se is detected and quantified from the peak height of the light intensity. This is the way to do it. Furthermore, the present invention provides a window section in the direction in which light travels through the furnace or container with a heater, and one window section has wavelengths of 324 nm, 326 nm, 328 nm, 330 nm,
332.5nm, 335nm, 337.5nm, 340nm, 342nm,
344.5nm, 347nm, 350nm, 352.5nm, 355nm,
357.5nm and 360nm spectral line emission section, and the other window shows Se from the peak height of the light intensity of the spectral line that has passed through the gaseous Se in the container with a heater.
It is connected to a light receiving/photometering section that detects and quantifies the
It is a Se monitor.

以下に本発明に到達した経緯と、本発明の方
法・モニターを具体的に説明する。
Below, the circumstances that led to the present invention and the method and monitor of the present invention will be specifically explained.

原子化温度以下、220℃〜695℃の温度範囲で
は、Seはガス状Seとなつており、Se2、Se4、Se6
等として存在していると考考えられるが特定され
てはいない〔文献:O.Kubaschewski等著、
「Metallurgical Thermochemistry」
Pergamonpress(1967)〕 本発明者らは、此度このガス状Seについて、
第1図に示すような〜の合計の16の吸光スペ
クトルを新発見した。第1図の縦軸は吸光度(任
意単位)、横軸は波長(nm)をあらわす。〜
の番号を付した各ピークの波長は、順次次のと
おりである。
Below the atomization temperature, in the temperature range of 220°C to 695°C, Se becomes gaseous Se, and Se 2 , Se 4 , Se 6
It is thought that it exists as such, but it has not been specified [References: O. Kubaschewski et al.
"Metallurgical Thermochemistry"
Pergamonpress (1967)] Regarding this gaseous Se, the present inventors have
We discovered a total of 16 new absorption spectra as shown in Figure 1. The vertical axis in FIG. 1 represents absorbance (arbitrary units), and the horizontal axis represents wavelength (nm). ~
The wavelengths of the peaks numbered are as follows.

324nm、326nm、328nm、330nm、
332.5nm、335nm、337.5nm、340nm、
342nm、344.5nm、347nm、350nm、
352.5nm、355nm、357.5nm、360nm。第
1図の吸光スペクトルでは、第6番目の波長
335nmにおけるピークが一番吸光度が大きい。
324nm, 326nm, 328nm, 330nm,
332.5nm, 335nm, 337.5nm, 340nm,
342nm, 344.5nm, 347nm, 350nm,
352.5nm, 355nm, 357.5nm, 360nm. In the absorption spectrum shown in Figure 1, the 6th wavelength
The peak at 335 nm has the highest absorbance.

本発明は、上述の〜のピークのうちの2つ
あるいはそれ以上を選んで同時に測定することに
より、Seを高感度に検知することを特徴として
いる。すなわち、波長の異なる2つあるいはそれ
以上のスペクトル線を同時に入射し、発光部にあ
る分光器を用い別々に測定してその平均をとるの
で、単一のスペクトル線を用いる場合より他物質
との分離がより確実となり、しかもSe定量の精
度が向上する。
The present invention is characterized in that Se can be detected with high sensitivity by selecting two or more of the above-mentioned peaks and measuring them simultaneously. In other words, two or more spectral lines with different wavelengths are incident at the same time, measured separately using a spectrometer in the light emitting part, and then averaged. Separation becomes more reliable, and the accuracy of Se quantification improves.

本発明のSeの検出定量方法は、原理的には第
2図にて示される構成にて行われる。第2図にお
いて、1は発光部でガス状Seの上述の〜の
ピークのうち、当該測定対象ピークの波長に対応
する光を発光する。該発光部としては例えばホロ
カソードランプを発光源とし、〜の各スペク
トル線を中心としたフイルターを設けたもの等が
利用できる。
The method for detecting and quantifying Se of the present invention is carried out in principle with the configuration shown in FIG. In FIG. 2, reference numeral 1 denotes a light emitting unit that emits light corresponding to the wavelength of the peak to be measured among the above-mentioned ~ peaks of gaseous Se. As the light-emitting section, for example, one having a hollow cathode lamp as a light-emitting source and a filter centered on each of the spectral lines .about. is used.

2は試料室であつて、内部にSeガスを保有し
うる構造を有し、少なくとも発光部1からの入射
光を入れる窓3と、Seガスによつて吸収された
後の透過光を次の受光部5へ出す窓4を有する
炉、あるいは加温手段を有するセルである。
Reference numeral 2 denotes a sample chamber, which has a structure capable of holding Se gas inside, and has a window 3 that lets in at least the incident light from the light emitting part 1, and a window 3 that allows the transmitted light to be absorbed by the Se gas. It is a furnace having a window 4 extending to a light receiving section 5, or a cell having a heating means.

受光部5は通常のモノクロメータ、検知器、増
幅器及びメーター等で構成する。
The light receiving section 5 is composed of a usual monochromator, detector, amplifier, meter, etc.

本発明の検知・定量方法の原理は、第1図の
〜のピーク吸収が、ガス状Seの濃度に比例す
ることにより求められる。試料室の入射光強度を
I0、ガス状Seによる吸光後の透過光強度をI、試
料室中のガス状Seの光の吸収率をT(%)、吸光
度をD、ガス状Seの濃度をCとするとき T(%)=I/I0×100 D=log1/T(%) D∝C の関係であらわされる。
The principle of the detection/quantification method of the present invention is that the peak absorption of ~ in Fig. 1 is determined in proportion to the concentration of gaseous Se. The incident light intensity in the sample chamber
I 0 , the transmitted light intensity after absorption by gaseous Se is I, the light absorption rate of gaseous Se in the sample chamber is T (%), the absorbance is D, and the concentration of gaseous Se is C, then T ( %)=I/I 0 ×100 D=log1/T(%) D∝C.

一方、Se投入量と吸光度Dすなわちlog
1/T(%)の間には第3図の関係のあることが判明 している。第3図においてA点は温度tにおける
Seガスの飽和点を表わすもので、次式のように
Seの蒸気圧により規定される。
On the other hand, Se input amount and absorbance D, that is, log
It has been found that there is a relationship between 1/T (%) as shown in FIG. In Figure 3, point A is at temperature t.
It represents the saturation point of Se gas, as shown in the following equation:
Specified by the vapor pressure of Se.

logPt(mmHg)=−4990/T+8.09 ただしここではTは絶対温度目盛による温度で
ある。
logPt (mmHg)=-4990/T+8.09 However, here, T is the temperature on the absolute temperature scale.

(実施例) 第4図に示すような試料室2がヒーター6を有
するセルである装置を用い、セル内にSeを含有
する試料を入れ、温度を450℃の定温に保持した
時の、吸収スペクトルは、第1図に示したもので
あつた。
(Example) Using an apparatus in which the sample chamber 2 is a cell equipped with a heater 6 as shown in Fig. 4, a sample containing Se is placed in the cell and the temperature is maintained at a constant temperature of 450°C. The spectrum was as shown in FIG.

〜のピーク中、2つあるいはそれ以上を選
んで分光器で別々に測定して平均すると、
0.01ppmオーダーのSeの検出が可能となつた。
If you select two or more of the peaks of ~ and measure them separately with a spectrometer and average them, you get
It became possible to detect Se on the order of 0.01 ppm.

(発明の効果) 以上詳述した本発明のSe検知・定量方法の奏
する効果は下記のとおりである。
(Effects of the Invention) The effects of the Se detection/quantification method of the present invention detailed above are as follows.

(1) 本発明者らにより新発見されたガス状Seの
吸収による335nm近辺の第3図〜のスペ
クトル線を利用して測定するので、従来不可能
であつたSeの原子化温度(2000℃)以下の低
温での、Seの検知・定量が可能である。
(1) Measurements are made using the spectral lines shown in Figure 3 in the vicinity of 335 nm due to the absorption of gaseous Se, which was newly discovered by the present inventors. ) It is possible to detect and quantify Se at low temperatures below.

(2) 上記のように従来よりはるかに低温で検知・
定量できるので、その場分析が可能である。
(2) As mentioned above, detection and
Since it can be quantified, on-site analysis is possible.

(3) 第1図の〜のピークのうち、2つあるい
はそれ以上のピーク波長において、同時に測定
する方法をとるので、他物質との分離が明確と
なり、かつSe定量の精度が向上する(0.01ppm
まで検出可能)。
(3) Since we use a method of measuring simultaneously at two or more peak wavelengths among the peaks ~ in Figure 1, separation from other substances becomes clear and the accuracy of Se quantification improves (0.01 ppm
(can be detected up to).

(4) 本発明の装置はSeを定量検知し、Seの投入
量コントロール、Se圧のコントロールをその
場で行なうことが可能なモニター装置として利
用できる。
(4) The device of the present invention can be used as a monitoring device that can quantitatively detect Se and control the amount of Se introduced and the Se pressure on the spot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は450℃におけるガス状Seの吸光スペク
トルで図中〜はピークを示す、第2図は本発
明のSeの検知定量法の構成を説明する図、第3
図はSe量とlog1/T%の関係を示す図、第4図は 本発明の一実施例の概略の構成及び温度分布を示
す図、第5図はSeの原子吸光スペクトル、第6
図は原子吸光分光分析法の概略フローを示す図で
ある。
Figure 1 shows the absorption spectrum of gaseous Se at 450°C, and ~ in the figure indicates the peaks. Figure 2 is a diagram explaining the configuration of the Se detection and quantitative method of the present invention. Figure 3
The figure shows the relationship between Se content and log1/T%, Figure 4 shows the schematic configuration and temperature distribution of an embodiment of the present invention, Figure 5 shows the atomic absorption spectrum of Se, and Figure 6 shows the atomic absorption spectrum of Se.
The figure is a diagram showing a schematic flow of atomic absorption spectrometry.

Claims (1)

【特許請求の範囲】 1 Seの原子化温度より低い温度にて、ガス状
Seに波長324nm、326nm、328nm、330nm、
332.5nm、335nm、337.5nm、340nm、342nm、
344.5nm、347nm、350nm、352.5nm、355nm、
357.5nm及び360nmのスペクトル線のうちの2つ
あるいはそれ以上を入射し、上記ガス状Seによ
る上記入射スペクトル線の吸収を測定し、前記ス
ペクトル線の光強度のピーク高さからSeの検
知・定量を行う方法。 2 炉またはヒータ付容器の光の進行方向に窓部
を設け、一方の窓部に波長324nm、326nm、
328nm、330nm、332.5nm、335nm、337.5nm、
340nm、342nm、344.5nm、347nm、350nm、
352.5nm、355nm、357.5nm及び360nmのスペク
トル線のうちの2つあるいはそれ以上の発光部、
他方の窓にはヒータ付容器内のガス状Seを通過
した前記スペクトル線の光強度のピーク高さから
Seを検知・定量する受光測光部を接続してなる
Seモニター。
[Claims] 1 At a temperature lower than the atomization temperature of Se, gaseous
Se has wavelengths of 324nm, 326nm, 328nm, 330nm,
332.5nm, 335nm, 337.5nm, 340nm, 342nm,
344.5nm, 347nm, 350nm, 352.5nm, 355nm,
Two or more of the spectral lines of 357.5 nm and 360 nm are incident, absorption of the incident spectral lines by the gaseous Se is measured, and Se is detected and quantified from the peak height of the light intensity of the spectral lines. How to do it. 2 A window is provided in the direction of light propagation of the furnace or container with a heater, and one window has wavelengths of 324 nm, 326 nm,
328nm, 330nm, 332.5nm, 335nm, 337.5nm,
340nm, 342nm, 344.5nm, 347nm, 350nm,
emitters of two or more of the 352.5nm, 355nm, 357.5nm and 360nm spectral lines;
The other window shows the peak height of the light intensity of the spectral line that has passed through the gaseous Se in the heater-equipped container.
It is connected to a light-receiving photometer that detects and quantifies Se.
Se monitor.
JP94185A 1985-01-09 1985-01-09 Detection and quantitative analysis of se and se monitor Granted JPS61160041A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP94185A JPS61160041A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of se and se monitor
US06/811,760 US4731334A (en) 1985-01-09 1985-12-20 Method and apparatus for detecting and quantitatively determining selenium
EP86300109A EP0187717B1 (en) 1985-01-09 1986-01-08 Quantitative determination of selenium
DE8686300109T DE3681460D1 (en) 1985-01-09 1986-01-08 QUANTITATIVE DETERMINATION OF SELENIUM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94185A JPS61160041A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of se and se monitor

Publications (2)

Publication Number Publication Date
JPS61160041A JPS61160041A (en) 1986-07-19
JPH0226178B2 true JPH0226178B2 (en) 1990-06-07

Family

ID=11487696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94185A Granted JPS61160041A (en) 1985-01-09 1985-01-09 Detection and quantitative analysis of se and se monitor

Country Status (1)

Country Link
JP (1) JPS61160041A (en)

Also Published As

Publication number Publication date
JPS61160041A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
Van Dalen et al. Optimization of the microwave-induced plasma as an element-selective detector for non-metals
DK1175602T3 (en) Process for characterizing fluorescent molecules or other particles using generating functions
WO1989002072A1 (en) Method and apparatus for optically measuring concentration of material
JP2009510480A (en) Calibration of two-line gas spectroscopy
JPS6056242A (en) Fluorophotometer
KR100822099B1 (en) Method and apparatus for measuring nitrogen in a gas
JPH0347450B2 (en)
JPS61118647A (en) Gas detector for semiconductor
US4733084A (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
CN1904588B (en) Microchip measurement device
JPH0226178B2 (en)
US6509194B1 (en) Method and apparatus for determining concentration of NH-containing species
JPH0226179B2 (en)
Danet et al. Portable minianalyzer based on cold vapor atomic absorption spectrometry at 184.9 nm for atmospheric mercury determination
Zeeman et al. The use of a non-absorbing reference line in the simultaneous determination of platinum, rhodium, palladium and gold by atomic-absorption spectroscopy
JPS62217145A (en) Method and device for analyzing gaseous mixture and visible emission spectrum generator therefor
US4731334A (en) Method and apparatus for detecting and quantitatively determining selenium
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
JPH08114550A (en) Method and device for separately or simultaneosuly measuring nitrogen gas and steam in argon gas
JP3245144U (en) Gas concentration measuring device
JPH0226180B2 (en)
Hood et al. Determination of sulfur-and phosphorus-containing compounds using metastable transfer emission spectrometry
JPH0415412B2 (en)
JPH11508053A (en) Analysis system
Jora et al. Double tungsten coil atomic absorption spectrometer based on an acousto-optic tunable filter