JPS6115987B2 - - Google Patents

Info

Publication number
JPS6115987B2
JPS6115987B2 JP8467981A JP8467981A JPS6115987B2 JP S6115987 B2 JPS6115987 B2 JP S6115987B2 JP 8467981 A JP8467981 A JP 8467981A JP 8467981 A JP8467981 A JP 8467981A JP S6115987 B2 JPS6115987 B2 JP S6115987B2
Authority
JP
Japan
Prior art keywords
concentrated solution
refrigerant vapor
refrigerant
condenser
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8467981A
Other languages
Japanese (ja)
Other versions
JPS57198970A (en
Inventor
Hiroyoshi Tanaka
Yoshiaki Yamamoto
Isao Takeshita
Nobuhiko Wakamatsu
Tsutomu Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8467981A priority Critical patent/JPS57198970A/en
Publication of JPS57198970A publication Critical patent/JPS57198970A/en
Publication of JPS6115987B2 publication Critical patent/JPS6115987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は吸収式冷却装置に関し、システムの効
率を向上させることを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption cooling device and is directed to improving the efficiency of the system.

従来、比較的高圧の冷媒、例えばアンモニアや
フロンを冷媒とする吸収式冷却装置の発生器は、
一度濃溶液をタンクにためて加熱し、冷媒蒸気を
発生させる、所謂、満液式発生器が用いられてい
た。濃溶液を加熱し冷媒蒸気を発生させる手法と
しては、この満液式の他に、加熱部へ濃溶液をポ
ンプを使つて液を強制的に流動させて加熱し、冷
媒を蒸発させた後、冷媒蒸気と冷媒が希薄になつ
た液(以下希溶液を記す)を分離する所謂、貫流
式発生器がある。貫流式発生器は満液式発生器と
比較すると、(1)熱伝達率が大きい、(2)熱源が燃焼
ガス等を使用する際には燃焼ガス側にかなり大き
な伝熱面をとれる、(3)熱容量が小さいために立上
り特性が良い、(4)製作が容易であるために安価で
ある等の数々の利点があるにもかかわらず、現在
までほとんど使用されてこなかつた。その理由の
一つとした効率の低下の問題が上げられる。満液
式の場合には溶液をタンクに溜めた後加熱するの
で蒸発した冷媒蒸気と濃溶液を対向させて接触さ
せることが容易であり、その操作により、冷媒蒸
気は比較的低温の濃溶液と平衡に達し、その純度
が高くなると同時に、自己の顕熱を濃溶液へ与え
るために加熱による入熱量が少くなり冷却装置の
効率が向上する。しかしながら、貫流式の場合に
は濃溶液をポンプによつて加熱部へ強制的に循環
させているため、冷媒蒸気と比較的低温の濃溶液
を対向させて接触させることは不可能に近い。そ
れ故、アンモニアと水を使用した吸収式冷凍機の
ように精留を必要とするものでは精留のために凝
縮器から還流させる冷媒量を冷媒蒸気の純度が低
い分だけ増加させる必要があり、効率の著しい低
下をきたす。また、冷媒と溶媒の沸点差が大きく
精留がそれ程重要でない様な系においても、冷媒
蒸気が凝縮器で外部へ捨て去る熱量が増加するの
で装置の効率が低下するばかりでなく、凝縮器の
サイズが大きくなる。
Conventionally, generators for absorption cooling systems that use relatively high-pressure refrigerants, such as ammonia or fluorocarbons,
A so-called flooded generator was used in which a concentrated solution was stored in a tank and heated to generate refrigerant vapor. In addition to this method of heating a concentrated solution to generate refrigerant vapor, there is also a method of heating the concentrated solution by forcing the liquid to flow into the heating section using a pump, then evaporating the refrigerant. There is a so-called once-through type generator that separates refrigerant vapor and a liquid in which the refrigerant is diluted (hereinafter referred to as diluted solution). Compared to flooded type generators, once-through type generators (1) have a higher heat transfer coefficient, (2) when using combustion gas as the heat source, can have a considerably larger heat transfer surface on the combustion gas side. Although it has many advantages such as 3) good start-up characteristics due to its small heat capacity, and (4) low cost because it is easy to manufacture, it has hardly been used until now. One of the reasons for this is the problem of decreased efficiency. In the case of a flooded type, the solution is stored in a tank and then heated, so it is easy to bring the evaporated refrigerant vapor and the concentrated solution into contact with each other facing each other. Equilibrium is reached and the purity increases, and at the same time, the amount of heat input due to heating is reduced because the solution gives its own sensible heat to the concentrated solution, improving the efficiency of the cooling device. However, in the case of the once-through type, since the concentrated solution is forcibly circulated to the heating section by a pump, it is almost impossible to bring the refrigerant vapor and the relatively low temperature concentrated solution into contact with each other facing each other. Therefore, in devices that require rectification, such as absorption refrigerators that use ammonia and water, it is necessary to increase the amount of refrigerant refluxed from the condenser for rectification by the amount of refrigerant vapor that is low in purity. , resulting in a significant decrease in efficiency. Furthermore, even in systems where the boiling point difference between the refrigerant and the solvent is large and rectification is not that important, the amount of heat that refrigerant vapor throws away to the outside in the condenser increases, which not only reduces the efficiency of the equipment but also reduces the size of the condenser. becomes larger.

第1図は貫流式発生器をもつたガス燃焼を熱源
とする吸収式冷却装置において本発明を用いない
場合の一例を示したものである。図により、この
装置について説明する。ポンプ8で送られる濃溶
液は熱交換器9で高温の希溶液と熱交換し、フイ
ンチユーブ2へ入る。濃溶液はここでバーナ4で
燃焼したガスから熱を得て、自己内部の冷媒を蒸
発させ希釈される。冷媒蒸気と希溶液が混在した
二相流体は容器3に入り、冷媒蒸気と溶液に分離
され、冷媒蒸気は上部より希溶液は下部より流出
する。この様な容器は気相と液相に分離するので
気液分離器と呼ばれる、冷媒蒸気は凝縮器5へ入
り熱が奪われて凝縮する。凝縮た液体となつた冷
媒は、その後蒸発器6で外気から熱を奪い蒸発し
気体状態で吸収器7へ入る。一方気分液離器3で
冷媒蒸気と分離した希溶液は熱交換器9で濃溶液
へ熱を与え吸収器7へ入る。この吸収器7では蒸
発器6から流入してきた冷媒蒸気と希溶液とが混
合され、その時出る熱を外部へ捨てることによつ
て再び濃溶液として再生され前記ポンプ8によつ
て循環する。
FIG. 1 shows an example of an absorption type cooling device having a once-through type generator and using gas combustion as a heat source, in which the present invention is not used. This device will be explained with reference to figures. The concentrated solution sent by the pump 8 exchanges heat with the high temperature dilute solution in the heat exchanger 9, and then enters the finch tube 2. Here, the concentrated solution receives heat from the gas burned in the burner 4, evaporates the refrigerant inside itself, and is diluted. A two-phase fluid containing a mixture of refrigerant vapor and dilute solution enters the container 3 and is separated into refrigerant vapor and solution, with the refrigerant vapor flowing out from the top and the dilute solution flowing out from the bottom. Such a container is called a gas-liquid separator because it separates into a gas phase and a liquid phase, and the refrigerant vapor enters the condenser 5 where heat is removed and condensed. The condensed liquid refrigerant then takes heat from the outside air in the evaporator 6, evaporates, and enters the absorber 7 in a gaseous state. On the other hand, the dilute solution separated from the refrigerant vapor in the partial liquid separator 3 gives heat to the concentrated solution in the heat exchanger 9 and enters the absorber 7. In this absorber 7, the refrigerant vapor that has flowed in from the evaporator 6 and the dilute solution are mixed, and the heat generated at the time is discarded to the outside to be regenerated as a concentrated solution, which is then circulated by the pump 8.

この様な装置では、気液分離器3から吐出され
凝縮器5へ送られる冷媒蒸気は、気液分離器3内
部に液状態の最高温度となつた希溶液と平衡に達
しており、温度が高いばかりでなく、もし冷媒と
溶媒の沸点の差が小さければ、冷媒の純度は低く
なつている。この様な場合には気液分離器の上部
に凝縮器5から冷媒を還流させる精留器を付ける
必要があるが、前述した様に満液式の場合より還
流比は大きくなり冷却装置の効率は低下する。
In such a device, the refrigerant vapor discharged from the gas-liquid separator 3 and sent to the condenser 5 reaches equilibrium with the dilute solution that has reached the maximum temperature in the liquid state inside the gas-liquid separator 3, and the temperature increases. Not only is it high, but if the difference in boiling point between the refrigerant and the solvent is small, the purity of the refrigerant is low. In such a case, it is necessary to attach a rectifier to the upper part of the gas-liquid separator to reflux the refrigerant from the condenser 5, but as mentioned above, the reflux ratio is higher than in the case of a flooded type, which reduces the efficiency of the cooling system. decreases.

本発明は上記貫流式発生器の問題点を改善し、
吸収式冷却装置の効率の向上を計るものである。
The present invention improves the problems of the above-mentioned once-through type generator,
This is intended to improve the efficiency of absorption cooling equipment.

以下図面とともに本発明の詳細について説明す
る。第2図は本発明による一実施例である。第1
図との相違点は、熱交換器19をフインチユーブ
12の管路を分岐し、分岐管路10を設けた点に
ある。この分岐管路10はポンプ18とフインチ
ユーブ12の間であればどの部分から分岐しても
良い。この分岐管路10によつてポンプ18より
送られる濃溶液の一部は燃焼ガスにより加熱され
ることなく直接気液分離器13に送り込まれる。
気液分離器13で分離した高温の冷媒蒸気は、分
岐管路10により送り込まれた濃溶液と対向して
接触し濃溶液と平衡に達し、比較的低温の冷媒蒸
気となつて凝縮器15へ吐出される。凝縮器15
の冷媒は蒸発器16で蒸発し吸収器17へ導かれ
る。つまり高温冷媒蒸気の顕熱は分岐された濃溶
液に回収され、回収された分だけ効率は向上す
る。また冷媒蒸気は比較的低温での高濃度の濃溶
液と接するために冷媒蒸気自身の純度が上がり、
この面でも効率の向上につながる。冷媒純度の向
上は精留を必要とする系においても冷媒還流比の
低下に寄与するので、ここで実施例として上げた
精留をそれ程必要としない系と様に装置の効率は
向上する。
The details of the present invention will be explained below with reference to the drawings. FIG. 2 shows an embodiment according to the present invention. 1st
The difference from the figure is that the heat exchanger 19 is branched from the pipe line of the finch tube 12, and a branch pipe line 10 is provided. This branch line 10 may branch from any part between the pump 18 and the finch tube 12. A part of the concentrated solution sent from the pump 18 through this branch line 10 is sent directly to the gas-liquid separator 13 without being heated by combustion gas.
The high-temperature refrigerant vapor separated by the gas-liquid separator 13 faces and contacts the concentrated solution sent through the branch pipe 10, reaches equilibrium with the concentrated solution, becomes relatively low-temperature refrigerant vapor, and is sent to the condenser 15. It is discharged. Condenser 15
The refrigerant is evaporated in the evaporator 16 and guided to the absorber 17. In other words, the sensible heat of the high-temperature refrigerant vapor is recovered into the branched concentrated solution, and the efficiency is improved by the amount recovered. In addition, since the refrigerant vapor comes into contact with a highly concentrated solution at a relatively low temperature, the purity of the refrigerant vapor itself increases.
This aspect also leads to improved efficiency. Improving refrigerant purity contributes to lowering the refrigerant reflux ratio even in systems that require rectification, so the efficiency of the apparatus improves as in the system that does not require rectification as described in the example here.

第3図と第4図は本発明による実施例の効果を
実験によつて確認したものである。第3図は気液
分離器内の希溶液温度に対する冷却装置の効率を
示したものである。分岐流量0の曲線は本発明を
実施しない場合の効率を示している。また分岐流
量0.2と0.5は本発明を実施した濃溶液の分岐を行
い、分岐する液量の変化させたものである。この
図によると明らかに濃溶液の分岐による効果が見
られ、冷却装置の効率は向上している。
FIGS. 3 and 4 show the effects of the embodiment of the present invention confirmed through experiments. FIG. 3 shows the efficiency of the cooling device with respect to the temperature of the dilute solution in the gas-liquid separator. The zero branch flow rate curve shows the efficiency without implementing the invention. Further, the branching flow rates of 0.2 and 0.5 are obtained by branching a concentrated solution according to the present invention and changing the amount of liquid to be branched. According to this figure, the effect of branching the concentrated solution is clearly seen, and the efficiency of the cooling device is improved.

第4図は分岐流量に対して凝縮器へ吐出される
冷媒蒸気温度がどの程度降下していくのか示した
ものであり、降下温度が大きくなるにしたがつて
回収される熱量は多くなり、凝縮器の不要な負担
は減少していく。
Figure 4 shows how much the refrigerant vapor temperature discharged to the condenser falls with respect to the branch flow rate. As the temperature drop increases, the amount of heat recovered increases and Unnecessary burden on the equipment will be reduced.

以上の様に本発明においては発生器を貫流式と
しても発生器からの吐出冷媒蒸気の熱回収と純度
向上に著しい効果が期待され、その結果として吸
収式冷却装置の効率が向上する。
As described above, in the present invention, even if the generator is a once-through type, a remarkable effect is expected in improving the heat recovery and purity of the refrigerant vapor discharged from the generator, and as a result, the efficiency of the absorption type cooling device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は貫流式発生器を有する従来の吸収式冷
却装置の構成図、第2図は本発明の実施例による
吸収式冷却装置の構成図、第3図は分岐流量の変
化による冷却装置効率の変化を示す特性図、第4
図は分岐流量の変化による吐出冷媒蒸気の降下温
度の変化を示す特性図である。 1,11……貫流式発生器、2,12……フイ
ンチユーブ、3,13……気液分離器、10……
濃溶液分岐管。
Fig. 1 is a block diagram of a conventional absorption type cooling device having a once-through generator, Fig. 2 is a block diagram of an absorption type cooling device according to an embodiment of the present invention, and Fig. 3 is a block diagram of the cooling device efficiency due to changes in branch flow rate. Characteristic diagram showing changes in , 4th
The figure is a characteristic diagram showing changes in temperature drop of discharged refrigerant vapor due to changes in branch flow rate. 1, 11... Once-through generator, 2, 12... Finch tube, 3, 13... Gas-liquid separator, 10...
Concentrated solution branch tube.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも発生器、吸収器、凝縮器、蒸発器
およびポンプを連結してなる吸収式冷却装置にお
いて、前記発生器が外部より加熱される単一また
は複数の並列された管とその出口端部に取り付け
られた容器とから構成され、前記ポンプにより送
られてくる冷媒濃度の高い溶液(以下濃溶液と記
す)の大部分が前記管を貫流し残りの濃溶液が前
記管を貫流することなく前記容器へ分流され、前
記容器を通過して前記凝縮器へ吐出される高温の
冷媒蒸気と熱交換器することを特徴とする吸収式
冷却装置。
1. In an absorption cooling system comprising at least a generator, an absorber, a condenser, an evaporator, and a pump connected, the generator is connected to a single or multiple parallel pipes heated from the outside and their outlet ends. Most of the solution with high refrigerant concentration (hereinafter referred to as the concentrated solution) sent by the pump flows through the pipe, and the remaining concentrated solution does not flow through the pipe. An absorption type cooling device characterized by a heat exchanger with high-temperature refrigerant vapor that is diverted to a container, passes through the container, and is discharged to the condenser.
JP8467981A 1981-06-01 1981-06-01 Absorption type cooling device Granted JPS57198970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8467981A JPS57198970A (en) 1981-06-01 1981-06-01 Absorption type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8467981A JPS57198970A (en) 1981-06-01 1981-06-01 Absorption type cooling device

Publications (2)

Publication Number Publication Date
JPS57198970A JPS57198970A (en) 1982-12-06
JPS6115987B2 true JPS6115987B2 (en) 1986-04-26

Family

ID=13837375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8467981A Granted JPS57198970A (en) 1981-06-01 1981-06-01 Absorption type cooling device

Country Status (1)

Country Link
JP (1) JPS57198970A (en)

Also Published As

Publication number Publication date
JPS57198970A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US5584193A (en) Absorption-type refrigeration systems and methods
JPS61119954A (en) Absorption heat pump/refrigeration system
US5419145A (en) Chemical energy storage system
RU2224189C2 (en) Cooling absorption plant
JPS6115987B2 (en)
JP2924397B2 (en) Absorption type heat pump device
JPH01256766A (en) Freezing device
JPH07198222A (en) Heat pump including reverse rectifying part
JP3003554B2 (en) Absorption heat pump
JPS6353456B2 (en)
JP3161321B2 (en) Absorption heat pump
JP3785737B2 (en) Refrigeration equipment
US3270523A (en) Solution heat exchanger arrangement for absorption refrigeration system
JP4740519B2 (en) Multi-column generator for improved ammonia water absorption system
US6427478B1 (en) Aqua-ammonia absorption system generator with split vapor/liquid feed
RU2047057C1 (en) Sorption cooling machine
JPS6115991B2 (en)
KR100208181B1 (en) Refrigerant vapor of absorption type cycle
JPH1026009A (en) Non-azeotropic mixture medium recycle generating system
JPH06221710A (en) Absorption type heat pump
JPS6193212A (en) Condenser for non-azeotropic mixture
JPS6115992B2 (en)
JPH07133970A (en) Freezer
JPS59164856A (en) Heat pump device
JPH0345819A (en) Apparatus for space heating