JPS6115991B2 - - Google Patents

Info

Publication number
JPS6115991B2
JPS6115991B2 JP10282081A JP10282081A JPS6115991B2 JP S6115991 B2 JPS6115991 B2 JP S6115991B2 JP 10282081 A JP10282081 A JP 10282081A JP 10282081 A JP10282081 A JP 10282081A JP S6115991 B2 JPS6115991 B2 JP S6115991B2
Authority
JP
Japan
Prior art keywords
solution
concentrated solution
refrigerant vapor
generator
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10282081A
Other languages
Japanese (ja)
Other versions
JPS586375A (en
Inventor
Hiroyoshi Tanaka
Nobuhiko Wakamatsu
Tsutomu Harada
Isao Takeshita
Yoshiaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10282081A priority Critical patent/JPS586375A/en
Publication of JPS586375A publication Critical patent/JPS586375A/en
Publication of JPS6115991B2 publication Critical patent/JPS6115991B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は吸収式冷却装置に性能の改善に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improved performance in absorption cooling devices.

従来、吸収式冷却装置を構成する発生器とし
て、濃溶液フインチユーブ等の熱交換器内部を強
制的に循環させ、外部熱源により加熱する様な構
成を有する貫流式形状とした場合、凝縮器に向う
冷媒蒸気の純度を向上させ、かつ、顕熱を回収す
る目的で濃溶液の一部を分流させ、その分流濃溶
液を冷媒蒸気と直接または間接、またはその両方
を組み合わせて接触させる方法が用いられる。第
1図は、この種貫流式発生器の一例を示したもの
である。矢印1,4,6,7はそれぞれ主濃溶
液、分岐濃溶液、冷媒が希薄となつた希溶液およ
び冷媒蒸気の流れの方向を示している。方向1か
ら流入して来た主濃溶液はフインチユーブ2でガ
スバーナ8により燃焼するLNG等の燃焼ガスか
ら熱を得て、沸騰および蒸発し気液分離器3へ入
り、冷媒蒸気と希溶液はその比重差により分離さ
れる。冷媒蒸気はラシヒリング等の充填物5の間
を上昇し、矢印4の方向から流入し、充填物5の
間を下降してくる分岐濃溶液と向流的に接触し、
物質及び熱の交換を行い、矢印7の方向つまり凝
縮器へ向つて吐出される。また冷媒蒸気と接触後
の分岐濃溶液は気液分離器3の下部に溜つている
希溶液と混合されて、その後矢印6の方向つまり
吸収器へ向つて、吐出される(この吸収器へ向つ
て、吐出される溶液を最終希溶液という)。最終
希溶液の温度と濃度は混合される分岐濃溶液の温
度、濃度および量により決まるが、一般には分岐
濃溶液の濃度は、混合される以前の希溶液の濃度
より高く、かつ、温度も希溶液温度より低いため
に最終希溶液の濃度は高くなり、温度も低くな
る。この様な発生器を有する吸収冷却装置の性能
を向上させるためには、最終希溶液の濃度と温度
ができうる限り、当初の希溶液つまり分岐濃溶液
と混合される以前の希溶液の状態に近いことが望
ましい。さもなければエントロビーの増加が生
じ、装置の効率が低下することになる。また冷媒
としてフロン系のものを使用する場合には耐熱性
の面からできるだけ低い温度で性能の良い装置が
望まれるが、従来の冷却装置では所定の温度、濃
度の最終希溶液を得るために一度希溶液温度を最
終希溶液温度より高い温度とする必要があり、溶
液の寿命を低下させていた。
Conventionally, as a generator for an absorption cooling device, when a once-through type was used, in which the concentrated solution was forcibly circulated inside a heat exchanger such as a finch tube and heated by an external heat source, In order to improve the purity of the refrigerant vapor and recover sensible heat, a method is used in which a part of the concentrated solution is separated and the separated concentrated solution is brought into contact with the refrigerant vapor directly or indirectly, or in a combination of both. . FIG. 1 shows an example of this type of once-through generator. Arrows 1, 4, 6, and 7 indicate the flow directions of the main concentrated solution, branched concentrated solution, diluted refrigerant solution, and refrigerant vapor, respectively. The main concentrated solution flowing from the direction 1 receives heat from the combustion gas such as LNG burned by the gas burner 8 in the finch tube 2, boils and evaporates, and enters the gas-liquid separator 3, where the refrigerant vapor and dilute solution are Separated by difference in specific gravity. The refrigerant vapor rises between the packings 5 such as Raschig rings, flows in from the direction of the arrow 4, and comes into countercurrent contact with the branched concentrated solution descending between the packings 5,
After exchanging substances and heat, the liquid is discharged in the direction of arrow 7, that is, toward the condenser. The branched concentrated solution after contact with the refrigerant vapor is mixed with the dilute solution accumulated at the bottom of the gas-liquid separator 3, and then discharged in the direction of arrow 6, that is, toward the absorber. The solution that is dispensed is called the final dilute solution). The temperature and concentration of the final dilute solution are determined by the temperature, concentration, and amount of the branched concentrated solution to be mixed, but in general, the concentration of the branched concentrated solution is higher than the concentration of the diluted solution before being mixed, and the temperature is also diluted. Since it is lower than the solution temperature, the concentration of the final dilute solution will be higher and the temperature will also be lower. In order to improve the performance of an absorption chiller with such a generator, the concentration and temperature of the final dilute solution should be as close as possible to the original dilute solution state before it is mixed with the branched concentrated solution. Preferably close. Otherwise, an increase in entropy will occur and the efficiency of the device will decrease. In addition, when using a fluorocarbon-based refrigerant, a device with good performance at as low a temperature as possible is desired in terms of heat resistance, but with conventional cooling devices, it is necessary to The dilute solution temperature must be higher than the final dilute solution temperature, which shortens the life of the solution.

本発明は従来のこの様な問題点を改善すること
を目的とするものである。
The present invention aims to improve these conventional problems.

この目的を達成するために、本発明は、少なく
とも発生器、凝縮器、蒸発器、吸収器および溶液
ポンプを有する吸収式冷却装置の前記吸収器から
発生器へ送られる冷媒を多量に含む溶液(以下濃
溶液という)の一部を分岐した濃溶液(以下分岐
濃溶液という)を加熱することなく前記発生器出
口部分に設けた気液分離器から凝縮器へ向う冷媒
蒸気通路に流入させ、前記冷媒蒸気から顕熱を吸
収し、前記顕熱を吸収した分岐濃溶液を、前記発
生器にて加熱され冷媒蒸気を放出し冷媒濃度の減
少した希溶液と混合させた後、前記吸収器に還流
させる還流通路を設け、前記還流通路の前記冷媒
蒸気と熱交換および物質交換(精留)を行つた分
岐濃溶液を、外部熱源にて加熱する熱交換器を設
けたものである。
To achieve this objective, the present invention provides a refrigerant-enriched solution ( A branched concentrated solution (hereinafter referred to as branched concentrated solution) is made to flow into the refrigerant vapor passage from the gas-liquid separator provided at the outlet of the generator to the condenser without heating. Sensible heat is absorbed from the refrigerant vapor, and the branched concentrated solution that has absorbed the sensible heat is heated in the generator to release the refrigerant vapor and mixed with the dilute solution in which the refrigerant concentration has decreased, and then is returned to the absorber. A heat exchanger is provided for heating the branched concentrated solution that has undergone heat exchange and mass exchange (rectification) with the refrigerant vapor in the reflux passage using an external heat source.

以下本発明の詳細について図面の第2図、第3
図とともに説明する。第2図は本発明による一実
施例である。第2図は、分岐濃溶液を冷媒蒸気と
接触させた後主希溶液温度にまで昇温させる手段
として、外部から加熱するという方法として、燃
焼ガスの熱を利用した実施例である。矢印9,1
4,15,16,19は各々主濃溶液、分岐濃溶
液、冷媒蒸気、冷媒ガス、と接触後分岐濃溶液お
よび最終希溶液の流動の方向を示している。矢印
9から入つて来る主濃溶液はフインチユーブ10
内でバーナ20で燃焼するガスから熱を得て、沸
騰し、冷媒蒸気を発生させて気液二相流となつて
気液分離器11へ入りその比重差により主希溶液
と冷媒蒸気に分れら。冷媒蒸気は充填槽13内を
上昇する際に、上方より降り注いでくる分岐濃溶
液と直接接触し、熱と物質を交換し温度は降下し
同時に純度は上がり、矢印15の方向つまり凝縮
器へ向つて吐出される。一方分岐濃溶液は、冷媒
蒸気と接触した後溶液溜12にたまり、矢印16
から熱交換器17へ流れる。熱交換器17は、バ
ーナ20の周囲に巻かれたドラム18とろ付けさ
れており、燃焼ガスの熱を吸収し沸騰し、冷媒蒸
気を発生する。冷媒蒸気と分岐希溶液の混合物は
気泡ポンプにより上昇し、気液分離器11へ入
り、冷媒蒸気と分岐希溶液に分かれる。分岐希溶
液は主希溶液と混合され、最終希溶液となる。分
岐希溶液は熱交換器17の大きさを適当に変化さ
せることにより、主希溶液の温度と濃度に一致さ
せる。これにより最終希溶液、主希溶液、分岐希
溶液の温度は一致し、従洛例のにような混合によ
る効率の低下は起こらない。
The details of the present invention will be described in FIGS. 2 and 3 of the drawings below.
This will be explained with figures. FIG. 2 shows an embodiment according to the present invention. FIG. 2 shows an embodiment in which the heat of combustion gas is used as a method of externally heating the branched concentrated solution to bring it into contact with refrigerant vapor and then raise the temperature of the main diluted solution to the temperature of the main diluted solution. arrow 9,1
4, 15, 16, and 19 indicate the flow directions of the branch concentrated solution and the final dilute solution after contact with the main concentrated solution, branched concentrated solution, refrigerant vapor, and refrigerant gas, respectively. The main concentrated solution coming in from arrow 9 is Finch Yube 10
Heat is obtained from the gas burned in the burner 20, which boils and generates refrigerant vapor, which becomes a gas-liquid two-phase flow that enters the gas-liquid separator 11 and is separated into the main dilute solution and refrigerant vapor due to the difference in specific gravity. They. As the refrigerant vapor rises in the filling tank 13, it comes into direct contact with the branched concentrated solution falling from above, exchanging heat and substances, lowering the temperature and increasing the purity at the same time, and moving in the direction of the arrow 15, that is, toward the condenser. It is then discharged. On the other hand, the branched concentrated solution accumulates in the solution reservoir 12 after coming into contact with the refrigerant vapor, and is indicated by the arrow 16.
to the heat exchanger 17. The heat exchanger 17 is connected to a drum 18 wrapped around the burner 20, and absorbs the heat of the combustion gas, boils it, and generates refrigerant vapor. The mixture of refrigerant vapor and branch dilute solution is raised by the bubble pump and enters the gas-liquid separator 11, where it is separated into refrigerant vapor and branch dilute solution. The branch dilute solution is mixed with the main dilute solution to form the final dilute solution. The branch dilute solution is brought to match the temperature and concentration of the main dilute solution by appropriately changing the size of the heat exchanger 17. As a result, the temperatures of the final dilute solution, main dilute solution, and branch dilute solution are the same, and there is no reduction in efficiency due to mixing as in the prior art.

第3図は前述した従来例に比較して効率の向上
率の推定値を表わしている。横軸は分岐濃溶液重
量を冷媒重量で除した無次元数を表わされている
が、効率の向上率はこの量が大きくなるにしたが
つて上昇する。これは分岐濃溶液量が多くなるに
したがい、従来例に示した発生器では、最終希溶
液温度が主希溶液温度より著しく低下し、効率の
低下をきたすからである。従来例では冷媒蒸気を
純化し、かつ、その顕熱を分岐濃溶液に回収する
ためには、分岐濃溶液量が多い程効果が大きいが
半面、分岐濃溶液量が多くなる程最終希溶液温度
の主希溶液温度からの低下が著しく、濃溶液を分
岐することによる効率向上を妨げていた。本発明
はこの様な問題を分岐濃溶液を冷媒蒸気を接触し
た後外部熱源で加熱することで改善し、著しい効
果を収めたものである。
FIG. 3 shows an estimated value of the rate of improvement in efficiency compared to the conventional example described above. The horizontal axis represents a dimensionless number obtained by dividing the weight of the branched concentrated solution by the weight of the refrigerant, and the efficiency improvement rate increases as this amount increases. This is because as the amount of branched concentrated solution increases, in the generator shown in the conventional example, the final diluted solution temperature becomes significantly lower than the main diluted solution temperature, resulting in a decrease in efficiency. In conventional methods, in order to purify refrigerant vapor and recover its sensible heat into a branched concentrated solution, the larger the amount of branched concentrated solution, the greater the effect, but on the other hand, the larger the amount of branched concentrated solution, the lower the final dilute solution temperature. The drop in temperature from the main dilute solution temperature was significant, hindering efficiency improvement by branching the concentrated solution. The present invention solves this problem by bringing the branched concentrated solution into contact with refrigerant vapor and then heating it with an external heat source, thereby achieving remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸収式冷却装置用発生器の構成
図、第2図は本発明の一実施例による吸収式冷却
装置用発生器の構成図、第3図は効率向上率を示
す特性図である。 2,10……フインチユーブ、3,11……気
液分離器、17……熱交換器、12……溶液溜、
18……ドラム。
Fig. 1 is a block diagram of a conventional generator for absorption type cooling equipment, Fig. 2 is a block diagram of a generator for absorption type cooling equipment according to an embodiment of the present invention, and Fig. 3 is a characteristic diagram showing efficiency improvement rate. It is. 2, 10... Finch tube, 3, 11... Gas-liquid separator, 17... Heat exchanger, 12... Solution reservoir,
18...Drums.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも発生器、凝縮器、蒸発器、吸収器
および溶液ポンプを有する吸収式冷却装置の前記
吸収器から発生器へ送られる冷媒を多量に含む溶
液(以下濃溶液という)の一部を分岐した濃溶液
(以下分岐濃溶液という)を加熱することなく前
記発生器出口部分に設けた気液分離器から凝縮器
へ向う冷媒蒸気通路に流入させ、前記冷媒蒸気か
ら顕熱を吸収し、前記顕熱を吸収した分岐濃溶液
を、前記発生器にて加熱され冷媒蒸気を放出し冷
媒濃度の減少した希溶液と混合させた後、前記吸
収器に還流させる還流通路を設け、前記還流通路
の前記冷媒蒸気と熱交換および物質交換(精留)
を行つた分岐濃溶液を、外部熱源にて加熱する熱
交換器を設けた吸収式冷却装置用発生器。
1 A part of the solution containing a large amount of refrigerant (hereinafter referred to as concentrated solution) sent from the absorber to the generator of an absorption cooling device having at least a generator, a condenser, an evaporator, an absorber, and a solution pump is branched. A concentrated solution (hereinafter referred to as a branched concentrated solution) is caused to flow into the refrigerant vapor passage from the gas-liquid separator provided at the outlet of the generator to the condenser without being heated, absorb sensible heat from the refrigerant vapor, and remove the sensible heat from the refrigerant vapor. A reflux passage is provided in which the branched concentrated solution that has absorbed heat is heated in the generator, releases refrigerant vapor, and is mixed with a dilute solution with a reduced refrigerant concentration, and then refluxed to the absorber. Heat and mass exchange with refrigerant vapor (rectification)
A generator for absorption cooling equipment equipped with a heat exchanger that heats the branched concentrated solution using an external heat source.
JP10282081A 1981-06-30 1981-06-30 Generator for absorption type cooling device Granted JPS586375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10282081A JPS586375A (en) 1981-06-30 1981-06-30 Generator for absorption type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10282081A JPS586375A (en) 1981-06-30 1981-06-30 Generator for absorption type cooling device

Publications (2)

Publication Number Publication Date
JPS586375A JPS586375A (en) 1983-01-13
JPS6115991B2 true JPS6115991B2 (en) 1986-04-26

Family

ID=14337655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10282081A Granted JPS586375A (en) 1981-06-30 1981-06-30 Generator for absorption type cooling device

Country Status (1)

Country Link
JP (1) JPS586375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340158Y2 (en) * 1987-01-30 1991-08-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017587A1 (en) * 1998-09-24 2000-03-30 Osaka Gas Co., Ltd. Regenerator for ammonia absorbing refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340158Y2 (en) * 1987-01-30 1991-08-23

Also Published As

Publication number Publication date
JPS586375A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US3491545A (en) Absorption refrigeration system
KR0177726B1 (en) Ammonia gax absorptive cycle apparatus
JPS6115991B2 (en)
US2223752A (en) Refrigeration
US2210496A (en) Refrigeration
JP2881593B2 (en) Absorption heat pump
US2298029A (en) Refrigeration
JP2009236477A (en) Absorption chiller and heater
US2295064A (en) Refrigeration
US3279202A (en) Concentration control for absorption refrigeration systems
US2129982A (en) Refrigeration
JPS6115992B2 (en)
JP2563416Y2 (en) Absorption evaporator water heater
US1993764A (en) Refrigeration
JP2787111B2 (en) Absorption heat pump
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JPH07198222A (en) Heat pump including reverse rectifying part
US1914861A (en) Refrigeration
US2257986A (en) Refrigeration
JPH0213902Y2 (en)
US3270524A (en) Solution heat exchange arrangement in absorption refrigeration system
JP3236722B2 (en) Regenerator for absorption refrigerator
US1974728A (en) Refrigeration
JPS6115990B2 (en)
JP3236721B2 (en) Regenerator for absorption refrigerator