JPS586375A - Generator for absorption type cooling device - Google Patents

Generator for absorption type cooling device

Info

Publication number
JPS586375A
JPS586375A JP10282081A JP10282081A JPS586375A JP S586375 A JPS586375 A JP S586375A JP 10282081 A JP10282081 A JP 10282081A JP 10282081 A JP10282081 A JP 10282081A JP S586375 A JPS586375 A JP S586375A
Authority
JP
Japan
Prior art keywords
generator
solution
concentrated solution
refrigerant vapor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10282081A
Other languages
Japanese (ja)
Other versions
JPS6115991B2 (en
Inventor
博由 田中
若松 伸彦
努 原田
功 竹下
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10282081A priority Critical patent/JPS586375A/en
Publication of JPS586375A publication Critical patent/JPS586375A/en
Publication of JPS6115991B2 publication Critical patent/JPS6115991B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は吸収式冷却装置の4<1能の改善に関する。[Detailed description of the invention] The present invention relates to an improvement in the 4<1 performance of absorption cooling devices.

従来、吸収式冷却装置をJ’f’i成する発生器として
、濃溶液をフィンチー、−プ雪の熱交換器内部を強匍J
的に循環させ、夕1部熱源により加熱する様な構成を有
する貫流式形状とり、/(J易合、凝縮器へ向う冷媒蒸
気の純度を向−4ニさせ、かつ、顕熱を回収する目的で
濃溶液の一部を分流させ、その分流濃溶液を冷媒蒸気と
直接捷だは間1x、斗;/j fFJ、その両方を組み
合わぜて接触させる方法が用いrっれる。第1図に5、
この種11流式発生z:(の−例を示しだものである。
Conventionally, as a generator to create an absorption cooling device, a concentrated solution was used as a generator, and the inside of a heat exchanger was
It has a once-through type configuration in which the refrigerant vapor is circulated continuously and heated by a heat source in the evening, and the purity of the refrigerant vapor heading to the condenser is increased to -4, and the sensible heat is recovered. A method is used in which a part of the concentrated solution is diverted for the purpose, and the diverted concentrated solution is brought into direct contact with the refrigerant vapor by a combination of the two. 5,
An example of this kind of 11-style generation z:( is shown below.

矢印1,4,6.71:、1、ぞれぞ!1主濃溶液。Arrows 1, 4, 6.71:, 1, each! 1 Main concentrated solution.

分岐濃溶液、冷媒が希勘となっだ希溶液および冷媒蒸気
の流t」の方向を示している。方向1から流入して来た
主fA溶液乞1ノインチーーーブ2でガスバーナ8によ
り燃焼するLNG等の燃焼ガスから熱を得て、沸騰およ
び蒸発し気液分力11藩3へ入り、冷媒蒸気と希溶液は
その比重差により分離される。
The direction of the flow of the dilute solution and refrigerant vapor is indicated by the branching of the concentrated solution and the refrigerant. Heat is obtained from the combustion gas such as LNG that is combusted by the gas burner 8 in the main fA solution flowing in from direction 1, and is boiled and evaporated, entering the gas-liquid component 11 and 3, where it becomes refrigerant vapor and diluted gas. Solutions are separated based on their specific gravity differences.

冷媒蒸気はラシヒリング舌の充Jn1物6の間を上昇し
、矢印4の方向から流入し、充填物5の間を下降してく
る分岐a溶液と肉離的に接触し、物質及3、− び熱の交換を行い、矢印7の方向つ゛まり凝縮器へ向っ
て吐出される。′81:だ冷媒蒸気と接触後の分岐濃溶
液は気液分離器3の下部に溜っている希溶液と混合され
て、その後矢印6の方向つ1り吸収器へ向って、吐出さ
れる(この吸収器へ向って、吐出さJする溶液を最終希
溶液という)。最終希溶液の温度と濃度d、混合される
分岐濃溶液の温度、濃度および針により決するが、一般
には分岐濃溶液の濃度は、混合される以前の希溶液の濃
度より高く、かつ、温度も希溶液温度より低いために最
終希溶液の濃度は高くなり、温度も低くなる。この様な
発生器を有する吸収冷却装置の性能を向上させる/こめ
にdl、最終希溶液の濃度と温度ができうる限り、出初
の希溶液つまり分岐濃溶液と混合さ77、る以前の希溶
液の状態に近いことが望ましい。
The refrigerant vapor rises between the fillings 6 of the Raschig ring tongue, enters from the direction of the arrow 4 and comes into direct contact with the branch a solution descending between the fillings 5, causing the substances and 3, - and heat exchange, and is discharged in the direction of arrow 7, that is, toward the condenser. '81: After contacting the refrigerant vapor, the branched concentrated solution is mixed with the dilute solution accumulated at the bottom of the gas-liquid separator 3, and then discharged toward the absorber in the direction of arrow 6 ( The solution discharged toward this absorber is called the final dilute solution). This is determined by the temperature and concentration d of the final dilute solution, the temperature, concentration, and needle of the branched concentrated solution to be mixed, but generally the concentration of the branched concentrated solution is higher than the concentration of the diluted solution before being mixed, and the temperature is also lower. Since it is lower than the dilute solution temperature, the final dilute solution will have a higher concentration and a lower temperature. To improve the performance of absorption chillers with such generators, the concentration and temperature of the final dilute solution can be as low as possible before mixing with the initial dilute solution, i.e., the branched concentrated solution. It is desirable that the condition be close to that of .

さもなければエントロピーの増加が生じ、装置の効率が
低下することになる。址だ冷媒としてフロン系のものを
使用する場合には耐熱性の面からできるだけ低い温度で
性能の良い装置が望1れるが、従来の冷却装置では所定
の温度、濃度の最終希溶液を得るだめに一度希溶液温度
を最終希溶液温度より高い温度とする必要があり、溶液
の寿命を低下させていた。
Otherwise, an increase in entropy will occur and the efficiency of the device will decrease. However, when using a fluorocarbon-based refrigerant as a refrigerant, it is desirable to have a device that performs well at as low a temperature as possible in terms of heat resistance, but with conventional cooling devices, it is difficult to obtain a final dilute solution at a specified temperature and concentration. It is necessary to raise the dilute solution temperature to a temperature higher than the final dilute solution temperature once in each process, which shortens the life of the solution.

本発明は従来のとの様な問題点を改善することを目r白
とするものである。
The present invention aims to improve the problems of the prior art.

以下本発明の詳却] 1/Cついて[21面と、J:も
に説明する。第2図は本発明による一実施例である。第
2図は、分岐濃溶液を冷媒蒸気と接触さぜた後生希溶液
温度に寸で昇温させる手段として、外部から加熱すると
いう方法として、燃焼ガスの熱を利用した実施例である
。図により8)a明する。矢印9゜14.15,16.
19は各々主濃溶液1分岐濃溶液、冷媒蒸気、冷媒ガス
と接触後の分岐濃溶液および最終希溶液の流動の方向を
示している。矢印9から入って来る主濃溶液はフィンチ
ー−−プ10内でバーナ2Qで燃焼するガスから熱を得
て、沸騰し、冷媒蒸気を発生させて気液二相流となって
気液分離器11へ入りその比重差に上り主希溶液と冷媒
蒸気に分れる。冷媒蒸気は充填槽13内を」二昇する際
に、上方」:り降りlにいでくる分岐濃溶液と面接接触
12、熱と物質を交換し温度C降下し同時に純度はトが
り、矢印15の方向つ1り凝縮器へ向って吐出される。
Detailed Description of the Present Invention Below] 1/C will be explained on page 21 and J:. FIG. 2 shows an embodiment according to the present invention. FIG. 2 shows an embodiment in which the heat of the combustion gas is used as a method of heating from the outside as a means for bringing the branched concentrated solution into contact with refrigerant vapor and then gradually raising the temperature to the temperature of the raw dilute solution. Figure 8) a. Arrow 9°14.15,16.
19 indicates the direction of flow of the main concentrated solution, one branch concentrated solution, the refrigerant vapor, the branched concentrated solution after contact with the refrigerant gas, and the final dilute solution, respectively. The main concentrated solution coming in from arrow 9 receives heat from the gas burned in burner 2Q in FinChip 10, boils, generates refrigerant vapor, becomes a gas-liquid two-phase flow, and passes through the gas-liquid separator. 11, and due to the difference in specific gravity, it separates into the main dilute solution and refrigerant vapor. When the refrigerant vapor rises in the filling tank 13, it comes into contact with the branched concentrated solution coming down in the filling tank 13 (12), exchanging heat and substances, the temperature C falls, and at the same time the purity increases, arrow 15. It is discharged toward the condenser in both directions.

一方分岐濃溶液は、冷媒蒸気と接触L2だ後溶液溜12
に/ζまり、矢印16から中4熱交換器17へ流れる。
On the other hand, the branched concentrated solution is brought into contact with the refrigerant vapor in the solution reservoir 12.
/ζ flows from arrow 16 to middle 4 heat exchanger 17.

熱交換器17は、バーナ20の周囲に巻かれたドラム1
8とろう付けされており、燃焼ガスの熱を吸収し沸騰し
、冷媒蒸気を発生する。冷媒蒸気と分岐希溶液の混合物
は気泡ポンプにより上昇し、気液分離器11へ入り、冷
媒蒸気と分岐希溶液に分かれる。分岐希溶液は主希溶液
と混合され、最終希溶液となる。
The heat exchanger 17 includes a drum 1 wrapped around a burner 20.
8, which absorbs the heat of the combustion gas and boils, generating refrigerant vapor. The mixture of refrigerant vapor and branch dilute solution is raised by the bubble pump and enters the gas-liquid separator 11, where it is separated into refrigerant vapor and branch dilute solution. The branch dilute solution is mixed with the main dilute solution to form the final dilute solution.

分岐希溶液は熱交換器17の大きさを摘出に変化させる
ことにより、主希溶液の温度と濃度に一致させる。これ
により最終希溶液、主希溶液2分岐希溶液の温度は一致
し、従来例のような混合による効率の低下は起こらない
The branch dilute solution is made to match the temperature and concentration of the main dilute solution by varying the size of the heat exchanger 17. As a result, the temperatures of the final dilute solution, the main dilute solution, and the bifurcated dilute solution are the same, and there is no reduction in efficiency due to mixing as in the conventional example.

第3図は前述した従来例に比較して効率の向」二車の推
定値を表わしている。横軸は分岐濃溶液重量を冷媒重量
で除した無次元数で表わされているが、効率の向上率は
この計が大きくなるにしだが   − って−1−昇する。これに1、分岐濃M液111゛が多
くなるにl〜だがい、従来例に示j−だ発生器では、最
終希溶液温度が主希溶液温度より著1.り低下し、効率
の低下をきたすからである。従来例では冷媒蒸気を純化
し、かつ、その顕熱を分岐濃溶液に回収するためには、
分岐濃溶液量が多い程効果が大きいが半面、分岐濃溶液
量が多くなる程最終希溶液温度の主希溶液温度からの低
下が著1〜く、濃溶液を分岐することによる効率向上を
妨げていた。本発明はこの様な問題を分岐濃溶液を冷媒
蒸気と接触した後加熱するという手法を用いることで改
善し、著しい効果を収めたものである。
FIG. 3 shows the estimated value of the efficiency improvement compared to the conventional example described above. The horizontal axis is expressed as a dimensionless number obtained by dividing the weight of the branched concentrated solution by the weight of the refrigerant, and the efficiency improvement rate increases by -1 as this sum increases. In addition, as the amount of the branched concentrated M solution increases, the final dilute solution temperature is significantly higher than the main dilute solution temperature in the conventional generator. This is because this results in a decrease in efficiency. In conventional methods, in order to purify refrigerant vapor and recover its sensible heat into a branched concentrated solution,
The larger the amount of branched concentrated solution, the greater the effect, but on the other hand, the larger the amount of branched concentrated solution, the more the final diluted solution temperature drops from the main diluted solution temperature, which impedes efficiency improvement by branching the concentrated solution. was. The present invention has solved such problems by using a technique in which the branched concentrated solution is brought into contact with refrigerant vapor and then heated, and has achieved remarkable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の吸収式冷却装置用発生器の構成図、第2
図は本発明の一実施例による吸収式冷却装置用発生器の
構成図、第3図は効率向上率を示す特性図である。 2.10・−フィンデユープ、3.11・・・・気4、
液分離器、17−・熱交換器、12・・・溶液溜、18
−・ ドラム。 第2図 p、(5
Figure 1 is a configuration diagram of a generator for a conventional absorption cooling system, Figure 2
FIG. 3 is a block diagram of a generator for an absorption cooling device according to an embodiment of the present invention, and FIG. 3 is a characteristic diagram showing the efficiency improvement rate. 2.10・-Finduup, 3.11・・・・Ki 4,
Liquid separator, 17-・Heat exchanger, 12... Solution reservoir, 18
-・Drums. Figure 2 p, (5

Claims (1)

【特許請求の範囲】[Claims] 少なくとも発生器、凝縮器、蒸発器、吸収器および溶液
ポンプを構成要素とする吸収式冷却装置において、前記
吸収器から発生器へ送られる冷媒を多量に含む溶液(以
下濃溶液と記す)の一部を分岐し7だ濃溶液(以下分岐
濃溶液という)を加熱することなく前記発生器出口部分
に設けた気液分離器から凝縮器へ向う冷媒蒸気通路に流
入せしめ、前記冷媒蒸気から顕熱を吸収し、前記顕熱を
吸収し7た分岐濃溶液を、前記発生器にて加熱され、冷
媒蒸気を放出し、冷媒濃度の減少した希溶液と混合ぜし
め/こ後、前記吸収器に還流せしめ、前記還流通路にお
いて、前記冷媒蒸気と熱交換および物質交換(精留)を
行った分岐濃溶液を、外部熱源によりさらに加熱するこ
とを特徴とする吸収式冷却装置用発生器。
In an absorption cooling device that includes at least a generator, a condenser, an evaporator, an absorber, and a solution pump, one of the solutions containing a large amount of refrigerant (hereinafter referred to as concentrated solution) sent from the absorber to the generator is The concentrated solution (hereinafter referred to as branched concentrated solution) is made to flow into the refrigerant vapor passage from the gas-liquid separator provided at the outlet of the generator to the condenser without being heated, thereby removing sensible heat from the refrigerant vapor. The branched concentrated solution that has absorbed the sensible heat is heated in the generator, releases refrigerant vapor, and is mixed with a dilute solution with reduced refrigerant concentration. A generator for an absorption type cooling device, characterized in that a branched concentrated solution that is refluxed and subjected to heat exchange and mass exchange (rectification) with the refrigerant vapor in the reflux passage is further heated by an external heat source.
JP10282081A 1981-06-30 1981-06-30 Generator for absorption type cooling device Granted JPS586375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10282081A JPS586375A (en) 1981-06-30 1981-06-30 Generator for absorption type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10282081A JPS586375A (en) 1981-06-30 1981-06-30 Generator for absorption type cooling device

Publications (2)

Publication Number Publication Date
JPS586375A true JPS586375A (en) 1983-01-13
JPS6115991B2 JPS6115991B2 (en) 1986-04-26

Family

ID=14337655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10282081A Granted JPS586375A (en) 1981-06-30 1981-06-30 Generator for absorption type cooling device

Country Status (1)

Country Link
JP (1) JPS586375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017587A1 (en) * 1998-09-24 2000-03-30 Osaka Gas Co., Ltd. Regenerator for ammonia absorbing refrigerating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340158Y2 (en) * 1987-01-30 1991-08-23

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017587A1 (en) * 1998-09-24 2000-03-30 Osaka Gas Co., Ltd. Regenerator for ammonia absorbing refrigerating machine
GB2346434A (en) * 1998-09-24 2000-08-09 Osaka Gas Co Ltd Regenerator for ammonia absorbing refrigerating machine
US6357255B1 (en) 1998-09-24 2002-03-19 Osaka Gas Co., Ltd. Regenerator for use in ammonia absorption refrigerator

Also Published As

Publication number Publication date
JPS6115991B2 (en) 1986-04-26

Similar Documents

Publication Publication Date Title
US4363219A (en) Method and system of heat energy conversion
US3353369A (en) Absorption refrigeration system
US2284691A (en) Refrigeration
JPS586375A (en) Generator for absorption type cooling device
US2298029A (en) Refrigeration
JP2881593B2 (en) Absorption heat pump
US1960821A (en) Refrigeration
US4014183A (en) Absorption refrigerator of natural circulation type
US2326900A (en) Refrigeration
JPS6115992B2 (en)
US2266584A (en) Refrigeration
US1693970A (en) Refrigerating apparatus
US2010408A (en) Refrigerating system
US1993764A (en) Refrigeration
US2465939A (en) Refrigeration
US2257986A (en) Refrigeration
JPS6115987B2 (en)
JP4740519B2 (en) Multi-column generator for improved ammonia water absorption system
US1823497A (en) Condenser and rectifier
JPS6023266B2 (en) Double effect absorption chiller
US2785543A (en) Absorption refrigeration system
SU59508A1 (en) Mercury vapor installation
JPS6135897Y2 (en)
JPH06185827A (en) Absorption heat pump using low temperature heat source
JPS6115990B2 (en)