JPH07133970A - Freezer - Google Patents

Freezer

Info

Publication number
JPH07133970A
JPH07133970A JP27928493A JP27928493A JPH07133970A JP H07133970 A JPH07133970 A JP H07133970A JP 27928493 A JP27928493 A JP 27928493A JP 27928493 A JP27928493 A JP 27928493A JP H07133970 A JPH07133970 A JP H07133970A
Authority
JP
Japan
Prior art keywords
condenser
solution
regenerator
temperature
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27928493A
Other languages
Japanese (ja)
Inventor
Akihiro Tani
明洋 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27928493A priority Critical patent/JPH07133970A/en
Publication of JPH07133970A publication Critical patent/JPH07133970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a temperature difference between a solution in a regeneratior and a heat source, and a temperature difference between a refrigerant in a condenser and a cooling source and hence improve heat efficiency and miniaturize an apparatus by mounting an impeller, etc., with a motor on a communication passage between the regenerator and condenser of an absorption freezer. CONSTITUTION:A regenerator 1 is constructed such that a heat transfer pipe 4a is provided therein and a solution spreader 3 is provided on the upper portion of the heat transfer pipe 4a, while a condenser 2 is constructed such that a heat transfer pipe 4b is provided therein. An impeller (or compressor) 12 driven by a motor is provided on the communication passage between the regenerator 1 and the condenser 2, whereby a vapor produced upon a diluted solution being concentrated by a heat source fluid in the regenerator 1 is increased in its pressure by the impeller 12 and directed to flow into the side of the condenser 2. In the condenser 2, the refrigerant vapor is cooled, condensed and liquefied by the cooling source fluid into a refrigerant fluid. Hereby, heat transfer areas of the regenerator 1 and the condenser 2 are reduced to miniaturize the absorption freezer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機に係り、特に、
温熱源により溶液を濃縮し、この濃縮溶液を希釈する際
に、冷媒によって発生する冷熱を利用する吸収式冷凍機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to a refrigerator.
The present invention relates to an absorption refrigerating machine that utilizes cold heat generated by a refrigerant when a solution is concentrated by a heat source and the concentrated solution is diluted.

【0002】[0002]

【従来の技術】従来の技術は再生器と凝縮器はほぼ同圧
力であった。再生器で加熱されて発生した蒸気は、凝縮
器へ微差圧圧力差により流入し、冷却水に熱を奪われて
凝縮,冷媒となっていた。この時の器内圧力は、冷却源
の温度により支配されている。
2. Description of the Related Art In the prior art, the regenerator and the condenser have almost the same pressure. The steam heated by the regenerator flows into the condenser due to a slight differential pressure difference, and the heat is taken by the cooling water to condense and become a refrigerant. The internal pressure at this time is controlled by the temperature of the cooling source.

【0003】また、蒸発器と吸収器もほぼ同圧力であっ
た。蒸発器で被冷却源の熱を奪い蒸発した蒸気,吸収器
へ微差圧圧力差により流入し、溶液に吸収されていた。
この時の器内圧力は、冷却源の温度および溶液の濃度に
より支配されている。
Further, the evaporator and the absorber have almost the same pressure. The vapor that took away the heat of the source to be cooled in the evaporator flowed into the absorber due to the slight differential pressure difference, and was absorbed in the solution.
The internal pressure at this time is governed by the temperature of the cooling source and the concentration of the solution.

【0004】関連する装置としては、カタログNO.
「MR−341X,1990.5」「日立冷温水ユニッ
トコアラ」に記載の吸収式冷凍機がある。
As a related device, a catalog No.
There is an absorption refrigerator described in "MR-341X, 1990.5" and "Hitachi Cold / Hot Water Unit Koala".

【0005】[0005]

【発明が解決しようとする課題】上記技術では、再生
器,凝縮器,蒸発器,吸収器の小型化を図るには、伝熱
管の伝熱性能の向上,溶液の濃度上昇が考えられる。し
かし、前者についてはある程度は可能であるが、大幅な
小型化は望めない。また、後者については、結晶の問題
があり、これも限界がある。
In the above technique, in order to downsize the regenerator, the condenser, the evaporator, and the absorber, it is considered that the heat transfer performance of the heat transfer tube is improved and the concentration of the solution is increased. However, although the former is possible to some extent, it is not possible to expect a significant reduction in size. Further, the latter has a problem of crystal, and this also has a limit.

【0006】上記技術では、再生器の加熱源温度の低温
度化,凝縮器,吸収器での冷却水温度の高温度化,蒸発
器での被冷却源の低温度化を図るには、伝熱管の伝熱性
能の向上,伝熱面積の向上が考えられる。しかし、前者
についてはある程度は可能であるが、大幅な向上は望め
ない。また、後者については、大型化,コストの増加を
伴い、これも限界がある。
In the above technique, in order to lower the heating source temperature of the regenerator, raise the cooling water temperature of the condenser and absorber, and lower the temperature of the cooled source of the evaporator, It is possible to improve the heat transfer performance of the heat pipe and the heat transfer area. However, although the former is possible to some extent, it cannot be expected to improve significantly. In addition, the latter has a limit because of the increase in size and the increase in cost.

【0007】本発明の目的は、再生器と凝縮器の連絡通
路に圧縮機または電動機により駆動する羽根車を設ける
事により、再生器で溶液と加熱源の温度落差を大きくと
ると共に、凝縮器で冷媒と冷却源の温度落差を大きくと
り、小型化を図る。
The object of the present invention is to provide an impeller driven by a compressor or an electric motor in the communication passage between the regenerator and the condenser so that the temperature difference between the solution and the heating source can be increased in the regenerator and the condenser can be used in the condenser. The temperature difference between the refrigerant and the cooling source will be large, and the size will be reduced.

【0008】また、本発明の目的は、蒸発器と吸収器の
連絡通路に圧縮機または電動機により駆動する羽根車を
設ける事により、吸収器で、溶液と冷却源の温度落差を
大きくとると共に、蒸発器で冷媒と被冷却源の温度落差
を大きくとり、小型化を図る。
Further, an object of the present invention is to provide an impeller driven by a compressor or an electric motor in the communication passage between the evaporator and the absorber so that the temperature difference between the solution and the cooling source can be increased in the absorber. The evaporator is designed to reduce the temperature difference between the refrigerant and the source to be cooled, thereby reducing the size.

【0009】また、本発明の目的は、再生器と凝縮器の
連絡通路に圧縮機または電動機により駆動する羽根車を
設ける事により、再生器で溶液と加熱源の温度落差を大
きくとり加熱源温度の低温度化を図ると共に、凝縮器で
冷媒と冷却源の温度落差を大きくとり冷却源の高温度化
を図る。
Another object of the present invention is to provide an impeller, which is driven by a compressor or an electric motor, in the communication passage between the regenerator and the condenser, so that the temperature difference between the solution and the heating source can be made large in the regenerator, and the temperature of the heating source can be increased. In addition to lowering the temperature, the condenser has a large temperature difference between the refrigerant and the cooling source to increase the temperature of the cooling source.

【0010】また、本発明の目的は、蒸発器と吸収器の
連絡通路に圧縮機または電動機により駆動する羽根車を
設ける事により、吸収器で、溶液と冷却源の温度落差を
大きくとり冷却源の高温度化を図ると共に、蒸発器で冷
媒と被冷却源の温度落差を大きくとり被冷却源の低温度
化を図る。
Another object of the present invention is to provide an impeller, which is driven by a compressor or an electric motor, in the communication passage between the evaporator and the absorber so that the temperature difference between the solution and the cooling source can be made large in the absorber and the cooling source The temperature difference between the refrigerant and the cooled source is increased by the evaporator, and the temperature of the cooled source is lowered.

【0011】[0011]

【課題を解決するための手段】上記の問題点を解決する
ため、本発明は再生器と凝縮器の連絡通路に圧縮機また
は電動機により駆動する羽根車を設ける事により、強制
的に再生器の圧力を低下させ、かつ凝縮器の圧力を上昇
させる。こうする事により、再生器で溶液と加熱源の温
度落差を大きくとり、凝縮器で冷媒と冷却源の温度落差
を大きくとり、小型化を図る様にした。
In order to solve the above problems, the present invention forcibly regenerates a regenerator by providing an impeller driven by a compressor or an electric motor in the communication passage between the regenerator and the condenser. Decrease pressure and increase condenser pressure. By doing so, the temperature difference between the solution and the heating source is made large by the regenerator, and the temperature difference between the refrigerant and the cooling source is made large by the condenser, and the size is reduced.

【0012】また、上記の問題点を解決するため、本発
明は蒸発器と吸収器の連絡通路に圧縮機または電動機に
より駆動する羽根車を設ける事により、強制的に蒸発器
の圧力を低下させ、かつ吸収器の圧力を上昇させる。こ
うする事により、吸収器で、溶液と冷却源の温度落差を
大きくとり、蒸発器で冷媒と被冷却源の温度落差を大き
くとり、小型化を図る様にした。
In order to solve the above-mentioned problems, the present invention forcibly reduces the pressure of the evaporator by providing an impeller driven by a compressor or an electric motor in the communication passage between the evaporator and the absorber. , And increase the absorber pressure. By doing so, the temperature difference between the solution and the cooling source is made large by the absorber, and the temperature difference between the refrigerant and the cooled source is made large by the evaporator, so that the size can be reduced.

【0013】また、上記の問題点を解決するため、本発
明は再生器と凝縮器の連絡通路に圧縮機または電動機に
より駆動する羽根車を設ける事により、強制的に再生器
の圧力を低下させ、かつ凝縮器の圧力を上昇させる。こ
うする事により、再生器で溶液と加熱源の温度落差を大
きくとり、凝縮器で冷媒と冷却源の温度落差を大きくと
り、加熱源温度の低温度化,冷却源の高温度化を図る様
にした。
In order to solve the above problems, the present invention forcibly reduces the pressure of the regenerator by providing an impeller driven by a compressor or an electric motor in the communication passage between the regenerator and the condenser. , And increase the pressure in the condenser. By doing so, the temperature difference between the solution and the heating source can be made large in the regenerator, and the temperature difference between the refrigerant and the cooling source can be made large in the condenser to lower the heating source temperature and increase the cooling source temperature. I chose

【0014】また、上記の問題点を解決するため、本発
明は蒸発器と吸収器の連絡通路に圧縮機または電動機に
より駆動する羽根車を設ける事により、強制的に蒸発器
の圧力を低下させ、かつ吸収器の圧力を上昇させる。こ
うする事により、吸収器で、溶液と冷却源の温度落差を
大きくとり、蒸発器で冷媒と被冷却源の温度落差を大き
くとり、冷却源の高温度化を図り、被冷却源の低温度化
を図る様にした。
In order to solve the above problems, the present invention forcibly reduces the pressure of the evaporator by providing an impeller driven by a compressor or an electric motor in the communication passage between the evaporator and the absorber. , And increase the absorber pressure. By doing so, the temperature difference between the solution and the cooling source is made large by the absorber, the temperature difference between the refrigerant and the cooled source is made large by the evaporator, and the temperature of the cooling source is increased, and the low temperature of the cooled source is increased. I tried to make it.

【0015】[0015]

【作用】再生器では、溶液が、器内圧力と加熱源温度と
交換熱量と伝熱面積のバランスからきまる溶液飽和温度
に相当する濃溶液の濃度まで濃縮され、蒸気を発生す
る。この時、再生器と凝縮器の連絡通路に設けた圧縮機
または電動機により駆動する羽根車により、強制的に再
生器の圧力は低下するため、同じ溶液飽和温度を得るに
は伝熱面積を小さくすればよい。つまり、交換熱量は一
定のまま、溶液飽和温度と加熱源温度の温度落差を大き
くとり、伝熱面積を小さくした事になる。
In the regenerator, the solution is concentrated to the concentration of the concentrated solution, which corresponds to the solution saturation temperature determined by the balance among the internal pressure, the heating source temperature, the heat exchange amount and the heat transfer area, and vapor is generated. At this time, the pressure of the regenerator is forcibly reduced by the impeller driven by the compressor or electric motor provided in the communication passage between the regenerator and the condenser, so the heat transfer area must be small to obtain the same solution saturation temperature. do it. In other words, while the amount of heat exchanged is constant, the temperature difference between the solution saturation temperature and the heating source temperature is made large and the heat transfer area is made small.

【0016】凝縮器では、再生器で発生した蒸気が、器
内圧力と冷却源温度と交換熱量と伝熱面積のバランスか
らきまる蒸気飽和温度で凝縮して、冷媒になる。この
時、再生器と凝縮器の連絡通路に設けた圧縮機または電
動機により駆動する羽根車により、強制的に凝縮器の圧
力は上昇するため、同じ蒸気飽和温度を得るには伝熱面
積を小さくすればよい。つまり、交換熱量は一定のま
ま、蒸気飽和温度と冷却源温度の温度落差を大きくと
り、伝熱面積を小さくした事になる。
In the condenser, the steam generated in the regenerator is condensed at a steam saturation temperature determined by the balance between the internal pressure, the cooling source temperature, the amount of heat exchanged and the heat transfer area to become a refrigerant. At this time, the pressure of the condenser is forcibly increased by the impeller that is driven by the compressor or electric motor provided in the communication passage between the regenerator and the condenser, so the heat transfer area must be small to obtain the same vapor saturation temperature. do it. In other words, the amount of heat exchanged remains constant, and the temperature difference between the steam saturation temperature and the cooling source temperature is made large and the heat transfer area is made small.

【0017】吸収器では、溶液が、器内圧力と冷却源温
度と交換熱量と伝熱面積のバランスからきまる溶液飽和
温度に相当する希溶液の濃度まで希釈され、蒸気を吸収
する。この時、蒸発器と吸収器の連絡通路に設けた圧縮
機または電動機により駆動する羽根車により、強制的に
吸収器の圧力は上昇するため、同じ溶液飽和温度を得る
には伝熱面積を小さくすればよい。つまり、交換熱量は
一定のまま、溶液飽和温度と冷却源温度の温度落差を大
きくとり、伝熱面積を小さくした事になる。
In the absorber, the solution is diluted to the concentration of the dilute solution corresponding to the solution saturation temperature determined by the balance between the internal pressure, the cooling source temperature, the heat exchange amount and the heat transfer area, and absorbs the vapor. At this time, the impeller driven by a compressor or an electric motor provided in the communication path between the evaporator and the absorber forcibly raises the pressure of the absorber, so the heat transfer area must be small to obtain the same solution saturation temperature. do it. In other words, the amount of heat exchanged remains constant, and the temperature difference between the solution saturation temperature and the cooling source temperature is increased to reduce the heat transfer area.

【0018】蒸発器では、伝熱管上へ散布された冷媒
が、器内圧力と被冷却源温度と交換熱量と伝熱面積のバ
ランスからきまる蒸気飽和温度で蒸発して、蒸気にな
る。この時、蒸発器と吸収器の連絡通路に設けた圧縮機
または電動機により駆動する羽根車により、強制的に蒸
発器の圧力は低下するため、同じ蒸気飽和温度を得るに
は伝熱面積を小さくすればよい。つまり、交換熱量は一
定のまま、蒸気飽和温度と被冷却源温度の温度落差を大
きくとり、伝熱面積を小さくした事になる。
In the evaporator, the refrigerant scattered on the heat transfer tubes evaporates at a steam saturation temperature determined by the balance between the internal pressure, the temperature of the source to be cooled, the amount of heat exchanged, and the heat transfer area to become steam. At this time, the impeller driven by a compressor or an electric motor provided in the communication passage between the evaporator and the absorber forcibly reduces the pressure in the evaporator, so the heat transfer area must be small to obtain the same vapor saturation temperature. do it. In other words, the amount of heat exchanged remains constant, and the temperature difference between the vapor saturation temperature and the temperature of the source to be cooled is increased to reduce the heat transfer area.

【0019】再生器では、溶液が、器内圧力と加熱源温
度と交換熱量と伝熱面積のバランスからきまる溶液飽和
温度に相当する濃溶液の濃度まで濃縮され、蒸気を発生
する。この時、再生器と凝縮器の連絡通路に設けた圧縮
機または電動機により駆動する羽根車により、強制的に
再生器の圧力は低下するため、同じ溶液飽和温度を得る
には加熱源温度を低下させれば良い。つまり、交換熱
量,伝熱面積,溶液飽和温度と加熱源温度の温度落差は
一定のまま、加熱源温度を低下した事になる。
In the regenerator, the solution is concentrated to the concentration of the concentrated solution corresponding to the solution saturation temperature determined by the balance between the internal pressure, the heat source temperature, the amount of heat exchange and the heat transfer area, and vapor is generated. At this time, the pressure of the regenerator is forcibly reduced by the impeller driven by the compressor or electric motor provided in the communication passage between the regenerator and the condenser, so the heating source temperature must be reduced to obtain the same solution saturation temperature. You can do it. In other words, the heating source temperature is lowered while the exchange heat amount, the heat transfer area, the solution saturation temperature, and the temperature difference between the heating source temperature remain constant.

【0020】凝縮器では、再生器で発生した蒸気が、器
内圧力と冷却源温度と交換熱量と伝熱面積のバランスか
らきまる蒸気飽和温度で凝縮して、冷媒になる。この
時、再生器と凝縮器の連絡通路に設けた圧縮機または電
動機により駆動する羽根車により、強制的に凝縮器の圧
力は上昇するため、同じ蒸気飽和温度を得るには冷却源
温度を上昇させれば良い。つまり、交換熱量,伝熱面
積,蒸気飽和温度と冷却源温度の温度落差は一定のま
ま、冷却源温度を上昇した事になる。
In the condenser, the steam generated in the regenerator is condensed at the steam saturation temperature determined by the balance between the internal pressure, the cooling source temperature, the exchange heat quantity and the heat transfer area to become a refrigerant. At this time, the pressure of the condenser is forcibly increased by the impeller driven by the compressor or electric motor provided in the communication passage between the regenerator and the condenser, so the temperature of the cooling source must be increased to obtain the same vapor saturation temperature. You can do it. That is, the cooling source temperature is increased while the exchange heat quantity, the heat transfer area, the vapor saturation temperature and the temperature difference of the cooling source temperature are constant.

【0021】吸収器では、溶液が、器内圧力と冷却源温
度と交換熱量と伝熱面積のバランスからきまる溶液飽和
温度に相当する希溶液の濃度まで希釈され、蒸気を吸収
する。この時、蒸発器と吸収器の連絡通路に設けた圧縮
機または電動機により駆動する羽根車により、強制的に
吸収器の圧力は上昇するため、同じ溶液飽和温度を得る
には冷却源温度を上昇させればよい。つまり、交換熱
量,伝熱面積,溶液飽和温度と冷却源温度の温度落差は
一定のまま、冷却源温度を上昇した事になる。
In the absorber, the solution is diluted to the concentration of the dilute solution corresponding to the solution saturation temperature determined by the balance between the pressure inside the vessel, the temperature of the cooling source, the amount of heat exchanged and the heat transfer area, and absorbs the vapor. At this time, the impeller driven by a compressor or an electric motor provided in the communication passage between the evaporator and the absorber forcibly raises the pressure of the absorber, so the temperature of the cooling source must be raised to obtain the same solution saturation temperature. You can do it. That is, the temperature of the cooling source is increased while the temperature difference between the heat exchange amount, the heat transfer area, the solution saturation temperature and the cooling source temperature remains constant.

【0022】蒸発器では、伝熱管上へ散布された冷媒
が、器内圧力と被冷却源温度と交換熱量と伝熱面積のバ
ランスからきまる蒸気飽和温度で蒸発して、蒸気にな
る。この時、蒸発器と吸収器の連絡通路に設けた圧縮機
または電動機により駆動する羽根車により、強制的に蒸
発器の圧力は低下するため、同じ蒸気飽和温度を得るに
は被冷却源温度を低下させればよい。つまり、交換熱
量,伝熱面積,蒸気飽和温度と被冷却源温度の温度落差
は一定のまま、被冷却源温度を低下した事になる。
In the evaporator, the refrigerant scattered on the heat transfer tubes is vaporized at a vapor saturation temperature determined by the balance between the internal pressure, the temperature of the source to be cooled, the amount of heat exchanged, and the heat transfer area to become vapor. At this time, the pressure of the evaporator is forcibly lowered by the impeller driven by the compressor or electric motor provided in the communication passage between the evaporator and the absorber, so the temperature of the source to be cooled must be adjusted to obtain the same vapor saturation temperature. You can lower it. That is, the temperature of the cooled source is lowered while the temperature difference between the heat exchange amount, the heat transfer area, the steam saturation temperature and the cooled source temperature remains constant.

【0023】[0023]

【実施例】以下、本発明の1実施例を図1および図2に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0024】図1は本発明の再生器,凝縮器の構造図で
ある。図2は本発明の再生器,凝縮器運転中のデューリ
ング線図である。再生器1は、内部に設けた再生器伝熱
管4a,再生器伝熱管4a上部に設置した溶液スプレヘ
ッダ3,下部に設けた溶液出口8より成る。凝縮器2
は、内部に設けた凝縮器伝熱管4b,下部に設けた冷媒
出口11より成る。再生器1と凝縮器2の連絡通路に電
動機により駆動する羽根車または圧縮機12を設ける。
FIG. 1 is a structural diagram of the regenerator and condenser of the present invention. FIG. 2 is a Duhring diagram during operation of the regenerator and condenser of the present invention. The regenerator 1 includes a regenerator heat transfer tube 4a provided inside, a solution spray header 3 installed at an upper part of the regenerator heat transfer tube 4a, and a solution outlet 8 provided at a lower part. Condenser 2
Is composed of a condenser heat transfer tube 4b provided inside and a refrigerant outlet 11 provided below. An impeller or compressor 12 driven by an electric motor is provided in the communication passage between the regenerator 1 and the condenser 2.

【0025】加熱源流体入口5から加熱源流体を入れつ
つ、溶液入口7から希溶液を入れて溶液スプレヘッダ3
から再生器伝熱管4a上へ希溶液を散布する。希溶液は
加熱源流体により加熱され蒸気が発生し、希溶液は濃縮
され濃溶液に変化する。濃縮された濃溶液は、溶液出口
8から出ていく。加熱源流体は熱を奪われて温度が低下
し、加熱源流体出口6から流出する。発生した蒸気は、
電動機により駆動する羽根車または圧縮機12により、
昇圧され凝縮器2へ流入する(入口蒸気13,出口蒸気
14)。一方、凝縮器伝熱管4b内には冷却源流体が流
れており、蒸気は冷却源流体に熱を奪われて凝縮液化し
冷媒液になり冷媒出口11から流出する。冷却源流体は
温度が上昇し冷却源流体出口10から流出する。
While the heating source fluid is being introduced from the heating source fluid inlet 5, the dilute solution is introduced from the solution inlet 7 to the solution spray header 3
The diluted solution is sprayed onto the regenerator heat transfer tube 4a. The dilute solution is heated by the heating source fluid to generate steam, and the dilute solution is concentrated and changed into a concentrated solution. The concentrated concentrated solution exits from the solution outlet 8. The heat source fluid is deprived of heat to lower its temperature and flows out from the heat source fluid outlet 6. The generated steam is
By an impeller or compressor 12 driven by an electric motor,
It is pressurized and flows into the condenser 2 (inlet steam 13, outlet steam 14). On the other hand, the cooling source fluid is flowing in the condenser heat transfer tube 4b, and the vapor is deprived of heat by the cooling source fluid to be condensed and liquefied to become the refrigerant liquid, which flows out from the refrigerant outlet 11. The temperature of the cooling source fluid rises and flows out from the cooling source fluid outlet 10.

【0026】これを図2で説明する。図1の溶液入口7
の状態は反応前溶液(希)飽和点19に相当し、図1の
濃縮したあとの溶液出口8の状態は反応後溶液(濃)飽
和点20に相当する。この時の図1の加熱源流体入口5
は入口加熱源流体17に相当し、図1の加熱源流体出口
6は出口加熱源流体18に相当する。ここで発生した蒸
気は、羽根車または圧縮機で昇圧され凝縮器に入るが、
電動機により駆動する羽根車または圧縮機で昇圧される
ことによる揚程は、羽根車または圧縮機揚程31に相当
する。この時の冷媒の凝縮液および図1の冷媒出口11
の状態は、冷媒飽和点27に相当する。図1のこの蒸気
を凝縮液化するための冷却源入口9は、入口冷却源流体
25に相当し、図1の冷却源流体出口10は出口冷却源
流体26に相当する。ここで、電動機により羽根車また
は圧縮機が無いとすると、再生器側と凝縮器側の揚程分
の圧力差が生じなくなるため、反応前溶液(希)飽和点
と反応後溶液(濃)飽和点は、図2中の発明を適用しな
い場合の反応前溶液(希)飽和点21,発明を適用しな
い場合の反応後溶液(濃)飽和点22になり、冷媒飽和
点は図2中の発明を適用しない場合の冷媒飽和点28に
なる。これからわかるように、本発明を適用する事によ
り、再生器側の反応後溶液(濃)と出口加熱源流体の温
度差が、適用しない場合の図2中の24に比べて図2中
の23になり、大きくなる。また、凝縮器側の冷媒と冷
却源出口流体の温度差が、適用しない場合の図2中の3
0に比べて図2中の29になり、大きくなる。
This will be described with reference to FIG. Solution inlet 7 in FIG.
1 corresponds to the solution (dilute) saturation point 19 before reaction, and the state of the solution outlet 8 after concentration in FIG. 1 corresponds to the solution (concentration) saturation point 20 after reaction. Heat source fluid inlet 5 of FIG. 1 at this time
Corresponds to the inlet heating source fluid 17, and the heating source fluid outlet 6 of FIG. 1 corresponds to the outlet heating source fluid 18. The steam generated here is boosted by the impeller or compressor and enters the condenser.
The lift of the impeller or compressor driven by an electric motor and the pressure boosted by the compressor corresponds to the lift 31 of the impeller or compressor. At this time, the condensate of the refrigerant and the refrigerant outlet 11 of FIG.
The state of corresponds to the refrigerant saturation point 27. The cooling source inlet 9 for condensing and liquefying this vapor in FIG. 1 corresponds to the inlet cooling source fluid 25, and the cooling source fluid outlet 10 in FIG. 1 corresponds to the outlet cooling source fluid 26. If there is no impeller or compressor due to the electric motor, the pressure difference between the regenerator side and the condenser side will not occur, so the pre-reaction solution (rare) saturation point and post-reaction solution (concentration) saturation point will not occur. 2 is a solution (dilute) saturation point 21 before reaction when the invention is not applied and a solution (dense) saturation point 22 after reaction when the invention is not applied, and the refrigerant saturation point is the invention in FIG. This is the refrigerant saturation point 28 when not applied. As can be seen from the above, by applying the present invention, the temperature difference between the post-reaction solution (concentrated) on the regenerator side and the outlet heating source fluid is 23 in FIG. 2 compared to 24 in FIG. 2 when not applied. And become bigger. Further, the temperature difference between the refrigerant on the condenser side and the cooling source outlet fluid is 3 in FIG. 2 when not applied.
It becomes 29 in FIG. 2 and becomes larger than 0.

【0027】また、以下に本発明の第二の実施例を図3
および図4により説明する。
A second embodiment of the present invention will be described below with reference to FIG.
And FIG. 4 will be described.

【0028】図3は本発明の希釈器,蒸発器の構造図で
ある。図4は本発明の希釈器,蒸発器運転中のデューリ
ング線図である。希釈器32は、内部に設けた希釈器伝
熱管35a,希釈器伝熱管35a上部に設置した溶液ス
プレヘッダ34,下部に設けた溶液出口39より成る。
蒸発器33は、内部に設けた蒸発器伝熱管35b,蒸発
器伝熱管35b上部に設置した冷媒スプレヘッダ40,
下部に設けた冷媒出口42より成る。この希釈器32と
蒸発器33の連絡通路に電動機により駆動する羽根車ま
たは圧縮機45を設けてある。
FIG. 3 is a structural diagram of the diluter and evaporator of the present invention. FIG. 4 is a Duhring diagram during operation of the diluter and the evaporator of the present invention. The diluter 32 includes a diluter heat transfer tube 35a provided inside, a solution spray header 34 installed on the upper part of the diluter heat transfer tube 35a, and a solution outlet 39 provided on the lower part.
The evaporator 33 includes an evaporator heat transfer tube 35b provided therein, a refrigerant spray header 40 installed above the evaporator heat transfer tube 35b,
It consists of a refrigerant outlet 42 provided at the bottom. An impeller or compressor 45 driven by an electric motor is provided in a communication passage between the diluter 32 and the evaporator 33.

【0029】被冷却源流体入口43から被冷却源流体を
入れ、冷媒入口41から冷媒を入れて冷媒スプレヘッダ
40から蒸発器伝熱管35b上へ冷媒液を散布する。冷
媒液は被冷却源流体の熱を奪って蒸発し、被冷却源流体
は熱を奪われて温度が低下し、被冷却源流体出口44か
ら流出する。発生した蒸気は、電動機により駆動する羽
根車または圧縮機45により、昇圧され希釈器32へ流
入する(入口蒸気46,出口蒸気47)。一方、希釈器
32では、冷却源流体入口36から冷却源流体を入れ、
溶液入口38から濃溶液を入れて溶液スプレヘッダ34
から希釈器伝熱管35a上へ濃溶液を散布する。濃溶液
は流入してきた蒸気を吸収して、希釈され希溶液に変化
する。希釈された希溶液は、溶液出口39から出てい
く。冷却源流体がこの時の反応熱を奪って温度が上昇
し、冷却源流体出口37から流出する。
The cooling source fluid is introduced from the cooling source fluid inlet 43, the refrigerant is introduced from the refrigerant inlet 41, and the refrigerant liquid is sprayed from the refrigerant spray header 40 onto the evaporator heat transfer tube 35b. The refrigerant liquid deprives the heat of the cooled source fluid to evaporate, and the cooled source fluid is deprived of the heat to lower the temperature and flows out from the cooled source fluid outlet 44. The generated steam is pressurized by an impeller or compressor 45 driven by an electric motor and flows into the diluter 32 (inlet steam 46, outlet steam 47). On the other hand, in the diluter 32, the cooling source fluid is introduced from the cooling source fluid inlet 36,
A concentrated solution is added from the solution inlet 38 to the solution spray header 34.
The concentrated solution is sprayed onto the diluter heat transfer tube 35a. The concentrated solution absorbs the inflowing vapor and is diluted to be a diluted solution. The diluted diluted solution exits from the solution outlet 39. The cooling source fluid takes away the reaction heat at this time to raise the temperature and flows out from the cooling source fluid outlet 37.

【0030】これを図4で説明する。図3の溶液入口3
8の状態は反応前溶液(濃)飽和点53に相当し、図3
の希釈したあとの溶液出口39の状態は反応後溶液
(希)飽和点54に相当する。この時の図3の冷却源流
体入口36は入口冷却源流体51に相当し、図3の冷却
源流体出口37は出口冷却源流体52に相当する。ここ
で発生した蒸気は、電動機により駆動する羽根車または
圧縮機で昇圧され凝縮器に入るが、電動機により駆動す
る羽根車または圧縮機で昇圧されることによる揚程は、
羽根車または圧縮機揚程41に相当する。この時の図3
の蒸発器伝熱管35b上へ散布された冷媒液および冷媒出
口42の状態は、冷媒飽和点61に相当する。図3の被
冷却源入口43は、入口被冷却源流体59に相当し、図
3の被冷却源流体出口44は出口被冷却源流体60に相
当する。ここで、電動機により駆動する羽根車または圧
縮機が無いとすると、希釈器側と蒸発器側の揚程分の圧
力差が生じなくなるため、反応前溶液(濃)飽和点と反
応後溶液(希)飽和点は、図4中の発明を適用しない場
合の反応前溶液(濃)飽和点55,発明を適用しない場
合の反応後溶液(希)飽和点56になり、冷媒飽和点は
図4中の発明を適用しない場合の冷媒飽和点62にな
る。本発明を適用する事により、希釈器側の反応後溶液
(希)と出口冷却源流体の温度差が、適用しない場合の
図4中の58に比べて図4中の57になり、大きくな
る。また、蒸発器側の冷媒と被冷却源出口流体の温度差
が、適用しない場合の図4中の64に比べて図4中の6
3になり、大きくなる。
This will be described with reference to FIG. Solution inlet 3 in FIG.
The state of No. 8 corresponds to the pre-reaction solution (concentrated) saturation point 53, and
The state of the solution outlet 39 after dilution corresponds to the post-reaction solution (rare) saturation point 54. At this time, the cooling source fluid inlet 36 of FIG. 3 corresponds to the inlet cooling source fluid 51, and the cooling source fluid outlet 37 of FIG. 3 corresponds to the outlet cooling source fluid 52. The steam generated here is boosted by the impeller or compressor driven by the electric motor and enters the condenser, but the lift due to the boosting pressure by the impeller or the compressor driven by the electric motor is:
It corresponds to the impeller or compressor head 41. Figure 3 at this time
The state of the refrigerant liquid and the refrigerant outlet 42 scattered on the evaporator heat transfer tube 35b corresponds to the refrigerant saturation point 61. The cooled source inlet 43 in FIG. 3 corresponds to the inlet cooled source fluid 59, and the cooled source fluid outlet 44 in FIG. 3 corresponds to the outlet cooled source fluid 60. Here, if there is no impeller or compressor driven by an electric motor, there will be no pressure difference between the head of the diluter and the head of the evaporator, so the pre-reaction solution (concentration) saturation point and post-reaction solution (rare) The saturation point is the solution (concentrated) saturation point 55 before reaction when the invention is not applied in FIG. 4, and the solution (rare) saturation point 56 after reaction when the invention is not applied, and the refrigerant saturation point is shown in FIG. This is the refrigerant saturation point 62 when the invention is not applied. By applying the present invention, the temperature difference between the post-reaction solution (rare) on the diluter side and the outlet cooling source fluid becomes 57 in FIG. 4 and becomes larger than 58 in FIG. 4 when not applied. . Further, the temperature difference between the refrigerant on the evaporator side and the outlet fluid of the cooled source is 6 in FIG. 4 compared to 64 in FIG. 4 when not applied.
It becomes 3 and becomes big.

【0031】また、別の実施例として、吸収式冷凍機の
再生器と凝縮器の連絡通路、および蒸発器と吸収器の連
絡通路に電動機により駆動する圧縮機または羽根車を取
り付け、これによって再生器で、溶液と加熱源の温度落
差を大きくとると共に、凝縮器で冷媒と冷却源の温度落
差を大きくとり、かつ、これによって吸収器で、溶液と
冷却源の温度落差を大きくとり、蒸発器で冷媒と被冷却
源の温度落差を大きくとる事がある。これは、上記の二
つの実施例を組み合わせた例である。
As another embodiment, a compressor or an impeller driven by an electric motor is attached to the communication passage between the regenerator and the condenser of the absorption refrigerator and the communication passage between the evaporator and the absorber, and the regeneration is performed by this. The temperature difference between the solution and the heating source is increased by the condenser, the temperature difference between the refrigerant and the cooling source is increased by the condenser, and the temperature difference between the solution and the cooling source is increased by the absorber. Therefore, the temperature difference between the refrigerant and the source to be cooled may be large. This is an example in which the above two embodiments are combined.

【0032】また、別の実施例として、吸収式冷凍機の
再生器と凝縮器の、連絡通路に圧縮機または電動機によ
り駆動する羽根車を取り付け、これによって再生器で、
加熱源の温度を低くできると共に、凝縮器で冷却源の温
度を高くする事がある。以下に図2により説明する。
As another embodiment, an impeller driven by a compressor or an electric motor is attached to the communication passage between the regenerator and the condenser of the absorption chiller, whereby the regenerator
The temperature of the heating source can be lowered, and the temperature of the cooling source can be raised by the condenser. It will be described below with reference to FIG.

【0033】再生器と凝縮器の伝熱面積が発明適用前と
適用後で同じであるとする。まず、再生器側に注目する
と、伝熱面積が同じなので、反応後溶液(濃)と出口加
熱源流体の温度差は、発明適用前の24と適用後の23
が同じとなり、本発明を適用する事により発明適用前と
比べて、入口加熱源流体17,出口加熱源流体18共に
温度が低下する。次に、凝縮器側に注目すると、伝熱面
積が同じなので、冷媒と冷却源出口流体の温度差は、発
明適用前の30と適用後の29が同じとなり、本発明を
適用する事により発明適用前と比べて、入口冷却源流体
25,出口冷却源流体26共に温度が上昇する。
It is assumed that the heat transfer areas of the regenerator and the condenser are the same before and after the invention is applied. First, focusing on the regenerator side, since the heat transfer area is the same, the temperature difference between the solution (concentrated) after reaction and the outlet heating source fluid is 24 before application of the invention and 23 after application of the invention.
By applying the present invention, the temperatures of both the inlet heating source fluid 17 and the outlet heating source fluid 18 are reduced by applying the present invention. Next, focusing on the condenser side, since the heat transfer area is the same, the temperature difference between the refrigerant and the cooling source outlet fluid is the same 30 before the invention is applied and 29 after the invention is applied. The temperatures of both the inlet cooling source fluid 25 and the outlet cooling source fluid 26 are higher than those before application.

【0034】また、別の実施例として、吸収式冷凍機の
蒸発器と吸収器の、連絡通路に圧縮機または電動機によ
り駆動する羽根車を取り付け、これによって吸収器で、
冷却源の温度を高くすると共に、蒸発器で被冷却源の温
度を低くする事がある。以下に図4により説明する。
As another embodiment, an impeller driven by a compressor or an electric motor is attached to the communication passage between the evaporator and the absorber of the absorption refrigerator, whereby the absorber is
The temperature of the cooling source may be raised and the temperature of the cooled source may be lowered in the evaporator. This will be described below with reference to FIG.

【0035】蒸発器と吸収器の伝熱面積が発明適用前と
適用後で同じであるとする。まず、吸収器側に注目する
と、伝熱面積が同じなので、反応後溶液(希)と出口冷
却源流体の温度差は、発明適用前の58と適用後の57
が同じとなり、本発明を適用する事により発明適用前と
比べて、入口冷却源流体51,出口冷却源流体52共に
温度が上昇する。次に、蒸発器側に注目すると、伝熱面
積が同じなので、冷媒と被冷却源出口流体の温度差は、
発明適用前の64と適用後の63が同じとなり、本発明
を適用する事により発明適用前と比べて、入口被冷却源
流体59,出口冷却源流体60共に温度が上昇する。
It is assumed that the heat transfer areas of the evaporator and the absorber are the same before and after the invention is applied. First, focusing on the absorber side, since the heat transfer area is the same, the temperature difference between the solution (rare) after reaction and the outlet cooling source fluid is 58 before application of the invention and 57 after application.
However, by applying the present invention, the temperatures of both the inlet cooling source fluid 51 and the outlet cooling source fluid 52 rise compared with before applying the invention. Next, focusing on the evaporator side, since the heat transfer area is the same, the temperature difference between the refrigerant and the cooled source outlet fluid is
64 before application of the invention is the same as 63 after application of the invention, and by applying the present invention, both the inlet cooled source fluid 59 and the outlet cooling source fluid 60 have higher temperatures than before applying the invention.

【0036】また、別の実施例として、吸収式冷凍機の
再生器と凝縮器の連絡通路、および蒸発器と吸収器の連
絡通路に圧縮機または電動機により駆動する羽根車を取
り付け、これによって再生器で、加熱源の温度を低くで
きる、凝縮器で冷却源の温度を高くでき、かつ、これに
よって吸収器で、冷却源の温度と高くできると共に、蒸
発器で被冷却源の温度を低くする事がある。これは、上
記の二つの実施例を組み合わせた例である。
As another embodiment, an impeller driven by a compressor or an electric motor is attached to the communication passage between the regenerator and the condenser of the absorption refrigerator and the communication passage between the evaporator and the absorber, and the regeneration is performed by this. The temperature of the heating source can be lowered by the condenser, the temperature of the cooling source can be raised by the condenser, and the temperature of the cooling source can be raised by the absorber, and the temperature of the cooled source can be lowered by the evaporator. There is a thing. This is an example in which the above two embodiments are combined.

【0037】[0037]

【発明の効果】本発明によれば、再生器,凝縮器,希釈
器,蒸発器の伝熱面積を小さくできる。これは、吸収式
冷凍機の小型化の効果がある。
According to the present invention, the heat transfer area of the regenerator, condenser, diluter, and evaporator can be reduced. This has the effect of reducing the size of the absorption refrigerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収式冷凍機の再生器,凝縮器の説明
図。
FIG. 1 is an explanatory diagram of a regenerator and a condenser of an absorption refrigerator according to the present invention.

【図2】本発明の吸収式冷凍機の再生器,凝縮器のデュ
ーリング線図。
FIG. 2 is a Duhring diagram of the regenerator and condenser of the absorption refrigerator according to the present invention.

【図3】本発明の吸収式冷凍機の希釈器,蒸発器の説明
図。
FIG. 3 is an explanatory view of a diluter and an evaporator of the absorption refrigerator according to the present invention.

【図4】本発明の吸収式冷凍機の希釈器,蒸発器のデュ
ーリング線図。
FIG. 4 is a Duhring diagram of a diluter and an evaporator of the absorption refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

1…再生器、2…凝縮器、3…溶液スプレヘッダ、4a
…再生器伝熱管、4b…凝縮器伝熱管、5…加熱源流体
入口、6…加熱源流体出口、7…溶液入口、8…溶液出
口、9…冷却源流体入口、10…冷却源流体出口、11
…冷媒出口、12…電動機により駆動する羽根車または
圧縮機、13…入口蒸気、14…出口蒸気。
1 ... Regenerator, 2 ... Condenser, 3 ... Solution spray header, 4a
Regenerator heat transfer tube, 4b Condenser heat transfer tube, 5 Heat source fluid inlet, 6 Heat source fluid outlet, 7 Solution inlet, 8 Solution outlet, 9 Cooling source fluid inlet, 10 Cooling source fluid outlet , 11
... Refrigerant outlet, 12 ... Impeller or compressor driven by electric motor, 13 ... Inlet steam, 14 ... Outlet steam.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸収式冷凍機の再生器と凝縮器の、連絡通
路に圧縮機または電動機により駆動する羽根車を取り付
け、これによって前記再生器で、溶液と加熱源の温度落
差を大きくとると共に、前記凝縮器で冷媒と冷却源の温
度落差を大きくとることを特徴とする冷凍機。
1. An impeller driven by a compressor or an electric motor is attached to a communication passage between a regenerator and a condenser of an absorption chiller, whereby a large temperature difference between a solution and a heating source is ensured in the regenerator. A refrigerator having a large temperature difference between the refrigerant and the cooling source in the condenser.
JP27928493A 1993-11-09 1993-11-09 Freezer Pending JPH07133970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27928493A JPH07133970A (en) 1993-11-09 1993-11-09 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27928493A JPH07133970A (en) 1993-11-09 1993-11-09 Freezer

Publications (1)

Publication Number Publication Date
JPH07133970A true JPH07133970A (en) 1995-05-23

Family

ID=17609029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27928493A Pending JPH07133970A (en) 1993-11-09 1993-11-09 Freezer

Country Status (1)

Country Link
JP (1) JPH07133970A (en)

Similar Documents

Publication Publication Date Title
US5490393A (en) Generator absorber heat exchanger for an ammonia/water absorption refrigeration system
JP3287131B2 (en) Absorption chiller / heater
KR0177719B1 (en) Gax absorptive type cycle apparatus
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JP2881593B2 (en) Absorption heat pump
JPH07133970A (en) Freezer
JP2924397B2 (en) Absorption type heat pump device
JP2787182B2 (en) Single / double absorption chiller / heater
JP2835945B2 (en) Absorption refrigerator
KR100213794B1 (en) Ammonia absorption type cooler
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JP3084650B2 (en) Absorption chiller / heater and its control method
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
JP2695923B2 (en) Air-cooled absorption chiller / heater
JPH07280382A (en) Absorption refrigerator
KR100234062B1 (en) Ammonia absorber cycle
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
KR100229414B1 (en) Absorption type cooler
JP2545858Y2 (en) Absorption chiller / heater
JP3398832B2 (en) Control method of absorption chiller / heater
JPH05280823A (en) Double effective absorption refrigeration system
JPH0464871A (en) Absorption heat pump
JPH08261591A (en) Vapor boiling absorption hot or chilled water generator and controlling method therefor
JPH06221710A (en) Absorption type heat pump
JPH03105169A (en) Absorption freezer