JPS6115978A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS6115978A
JPS6115978A JP13833484A JP13833484A JPS6115978A JP S6115978 A JPS6115978 A JP S6115978A JP 13833484 A JP13833484 A JP 13833484A JP 13833484 A JP13833484 A JP 13833484A JP S6115978 A JPS6115978 A JP S6115978A
Authority
JP
Japan
Prior art keywords
gas supply
electrode
gas
film
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13833484A
Other languages
Japanese (ja)
Other versions
JPH0565590B2 (en
Inventor
Yuji Enokuchi
江ノ口 裕二
Hirohisa Kitano
博久 北野
Masanori Fujiwara
正典 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP13833484A priority Critical patent/JPS6115978A/en
Publication of JPS6115978A publication Critical patent/JPS6115978A/en
Publication of JPH0565590B2 publication Critical patent/JPH0565590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a plasma CVD device constituted in such a manner that a gaseous raw material can be smoothly supplied without generating abnormality in discharge by specifying the inside diameter of many gas supply holes formed to an electrode. CONSTITUTION:The electrode forming a gas chamber and a substrate to be formed with a film thereon are disposed apart from each other at a prescribed space. The gaseous raw material is released from the many gas supply holes formed to the electrode toward the substrate so that the film is formed on the substrate by plasma discharge. The inside diameter of the gas supply holes 16 provided to the electrode 13 is restricted to <=2mm.. The holes 16 are preferably made into the shape formed by rounding the edge on the substrate side (c), and increasing the depth of the hole (d) or chamfering the edge on the substrate side (e). The abnormal discharge at the holes 16 is eliminated by such device, by which the uniformily of the film is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、円筒状基体上に成膜するためのプラズマCV
D装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a plasma CV method for forming a film on a cylindrical substrate.
Regarding D device.

(従来技術) プラズマCVD技術は、薄膜を比較的低温で成長できる
ことを特長とする成膜技術である。プラズマCVD技術
において、たとえば高周波放電により反応ガスを放電プ
ラズマ状態におくことにより、反応ガスの化学結合は低
温で分解され、活性化された粒子が作り出され、そして
、この活性化された粒子間の反応によl) CV D膜
が形成される。
(Prior Art) Plasma CVD technology is a film forming technology characterized by being able to grow thin films at relatively low temperatures. In plasma CVD technology, for example, by placing a reactive gas in a discharge plasma state using high-frequency discharge, the chemical bonds of the reactive gas are decomposed at low temperatures to create activated particles, and the interaction between these activated particles is The reaction results in the formation of a CVD film.

プラズマCVDIEの性質は、多数の因子に影響を受け
る。この因子には、生成温度、生成ガス比、生成圧力、
電極構造、反応容器構造、排気速度、生成RFパワー、
RF周波数、プラズマ発生方式等がある。したがって、
プラズマCVD膜の成膜のためには、多くの因子を制御
せねばならない。
The properties of plasma CVDIE are influenced by a number of factors. These factors include production temperature, production gas ratio, production pressure,
Electrode structure, reaction vessel structure, pumping speed, generated RF power,
There are RF frequencies, plasma generation methods, etc. therefore,
In order to form a plasma CVD film, many factors must be controlled.

プラズマCVD技術は、種々の物質の成膜に利用されて
いて、たとえば非晶質シリコン(a  Si)を成膜す
ることもできる。a−3iは、電子写真用感光体として
も適している。電子写真用感光体として使用する場合、
a−8i膜は、大面積の円筒状基体上に、比較的厚く(
20〜50μm)、且つ、均一に成膜されねばならない
Plasma CVD technology is used to form films of various substances, and can also form films of amorphous silicon (aSi), for example. a-3i is also suitable as an electrophotographic photoreceptor. When used as a photoreceptor for electrophotography,
The a-8i film is a relatively thick (
20 to 50 μm) and must be formed uniformly.

第4図は、従来のa−8i用プラズマCV D装置の一
例を図式的に示す。アルミニ′ウム円筒からなる基体1
は、その軸の周りに回転可能に、円筒状の電極2の内部
14設けられる。電極2は、この基体1と軸を共通に配
置された二枚の円筒板2a、 2bからなり、ガス室3
がこの二枚の円筒板2a、 2bにより区画される。外
側の円筒板2aには、図示しないガス供給装置から原料
ガスを導入するための導入口4が設けられ、一方、内側
の円筒板2bには、この円筒板2bの内部の空間(放電
領域)に原料ガスを導入するだめの図示しない多数の小
さなガス供給穴が設けられる。基体1と電極2とは、チ
ャンバー5内に設置される。チャンバー5内に上記のガ
ス供給穴から導入されるガスは、チャンバー5の下部か
呟排気口6を介して真空ポンプ7により排気される。R
F電源8は、導入口4を介して電極2に接続され、一方
、基体1は、接地される。なお、図示しないが、ヒータ
ーは、それぞれ、基体1と電極2に取り付けられ、ヒー
ター用電源に接続される。
FIG. 4 schematically shows an example of a conventional plasma CVD apparatus for A-8I. Substrate 1 consisting of an aluminum cylinder
is provided inside 14 of the cylindrical electrode 2 so as to be rotatable around its axis. The electrode 2 consists of two cylindrical plates 2a and 2b that share the same axis as the base 1, and is connected to the gas chamber 3.
is divided by these two cylindrical plates 2a and 2b. The outer cylindrical plate 2a is provided with an inlet 4 for introducing raw material gas from a gas supply device (not shown), while the inner cylindrical plate 2b is provided with an internal space (discharge area) of the cylindrical plate 2b. A large number of small gas supply holes (not shown) are provided for introducing raw material gas into the chamber. The base 1 and the electrode 2 are placed in a chamber 5. The gas introduced into the chamber 5 through the gas supply hole is exhausted by the vacuum pump 7 through the lower part of the chamber 5 or the exhaust port 6. R
The F power source 8 is connected to the electrode 2 via the inlet 4, while the base 1 is grounded. Although not shown, the heaters are attached to the base 1 and the electrode 2, respectively, and connected to a heater power source.

第5図は、従来のa−8i用プラズマCVD装置の他の
例を図式的に示す。第4図に示した装置との第一の相違
は、電極2がチャンバー5の一部になっていることであ
る。チャンバー5は、電極2゜上部5a、下部5bとか
らなり、下部5bは電極2に対して絶縁されている。第
二の相違は、電極2の上側の側壁が円板状であり、放電
領域に面する部分に、多数の小さなガス供給穴が一様に
設けられていることである。第三の相違は、チャンバー
の上部5aと側壁2cとが一つの室3aを区画し、導入
口4が上部5aに取り付けられていることである。原料
ガスは、第5図に矢印で示すように、まず、ガス室3a
に導入され、次いで、一部は直接に、大部分は、ガス室
3を経て間接的に、放電領域に流れる。
FIG. 5 schematically shows another example of the conventional plasma CVD apparatus for A-8I. The first difference from the device shown in FIG. 4 is that the electrode 2 is now part of the chamber 5. The chamber 5 consists of an upper part 5a and a lower part 5b of the electrode 2, and the lower part 5b is insulated from the electrode 2. The second difference is that the upper side wall of the electrode 2 is disk-shaped, and a large number of small gas supply holes are uniformly provided in the portion facing the discharge area. The third difference is that the upper part 5a of the chamber and the side wall 2c define one chamber 3a, and the introduction port 4 is attached to the upper part 5a. The raw material gas is first supplied to the gas chamber 3a as shown by the arrow in FIG.
and then flows, partly directly and partly indirectly via the gas chamber 3, into the discharge region.

第6図は、従来のa−8i用プラズマCVD装置の他の
例を示す。4個のアルミニウム円筒からなる基体1,1
.・・・が、その軸の周りに回転可能なように、その軸
を平行にして一列に配置される。
FIG. 6 shows another example of the conventional plasma CVD apparatus for A-8I. Substrate 1, 1 consisting of four aluminum cylinders
.. ... are arranged in a row with their axes parallel so that they can rotate around the axis.

この−列の基体、1,1.・・・の両側に平板状の電極
2.2が配置される。この電極2は、外壁2aと内壁2
bとからなり、外壁2aと内壁2bとの間にガス室3を
区画する。外壁2aには、ガスを外部から導入するため
の導入口4が設けられ、一方、内壁2bには、この内壁
2bと基体1との間の空間(放電領域)に原料ガスを供
給するための図示しない多数の小さなガス供給穴が設け
られる。図において、矢印は、この原料ガスを通しての
ガスの供給を示す。基体1,1.・・・と電fii2.
2とは、チャンバー5内に設置される。上記のガス供給
穴から放電領域内に導入されるガスは、チャンバ―5に
設けた排気口6から、図示しない真空ポンプ7によって
排気され、所定の圧力に保たれる。RF電源8は、導入
口4,4を介して、電極2に接続され、一方、基体1,
1.・・・は接地される。なお、図示しないが、ヒータ
ーが基体1,1.・・・と電極2,2とに取り付けられ
る。
This -row of substrates, 1,1. . . . Flat electrodes 2.2 are arranged on both sides. This electrode 2 has an outer wall 2a and an inner wall 2.
b, and a gas chamber 3 is defined between the outer wall 2a and the inner wall 2b. The outer wall 2a is provided with an inlet 4 for introducing gas from the outside, while the inner wall 2b is provided with an inlet 4 for supplying source gas to the space (discharge area) between the inner wall 2b and the base 1. A number of small gas supply holes (not shown) are provided. In the figure, arrows indicate the supply of gas through this source gas. Substrate 1, 1. ...and electric fii2.
2 is installed inside the chamber 5. The gas introduced into the discharge region through the gas supply hole is exhausted from an exhaust port 6 provided in the chamber 5 by a vacuum pump 7 (not shown) and maintained at a predetermined pressure. The RF power source 8 is connected to the electrode 2 via the inlets 4, 4, while the base 1,
1. ... is grounded. Although not shown, the heaters are connected to the bases 1, 1 . ... and the electrodes 2, 2.

プラズマCVDによるa−3iの成膜は、次のように行
われる。パッシェン則がら、自続放電開始電圧は、電極
2と基体1との間隔dと気体の圧力pとの積pdに依存
して変化する。従来は、この開隔dは、気体の圧力がI
 Torr近傍では、自続放電開始電圧がほぼ最小にな
る30〜50III111の範囲内で選定されていて、
通常は、40mm程度が選ばれている。この領域では、
放電の安定性と基体へのガスの均一な供給とが得られや
すいという長所がある。シラン等の原料ガスは、ガス室
3がら円筒板2bに設けられた多数のガス供給穴を経て
、第4に矢印で示すように、電極2と基体1との開の空
間内に導入される。チャンバー内の圧力は、0.1〜数
T orrに保たれる。基体1は、成膜の均一性を保つ
ために、10〜30rpmで回転される。
Film formation of a-3i by plasma CVD is performed as follows. According to Paschen's law, the self-sustaining discharge starting voltage changes depending on the product pd of the distance d between the electrode 2 and the substrate 1 and the gas pressure p. Conventionally, this gap d was determined when the gas pressure was I.
In the vicinity of Torr, the voltage is selected within the range of 30 to 50III111, where the self-sustaining discharge starting voltage is almost minimum.
Usually, about 40 mm is selected. In this area,
It has the advantage that it is easy to obtain stability of discharge and uniform supply of gas to the substrate. A raw material gas such as silane is introduced from the gas chamber 3 into the open space between the electrode 2 and the base 1, as shown by the fourth arrow, through a number of gas supply holes provided in the cylindrical plate 2b. . The pressure within the chamber is maintained at 0.1 to several Torr. The substrate 1 is rotated at 10 to 30 rpm to maintain uniformity of film formation.

基体1の温度は、150〜300℃に加熱される。The temperature of the base body 1 is heated to 150 to 300°C.

電極2と電極(基体)1との開にRF雷電圧印加すると
、グロー放電が生じ、原料ガスは分解され、a−8i膜
が、基体1上に成膜される。
When an RF lightning voltage is applied across the gap between the electrode 2 and the electrode (substrate) 1, a glow discharge occurs, the source gas is decomposed, and an a-8i film is formed on the substrate 1.

(発明により解決すべき問題点) 膜厚の均一なプラズマCVD膜を得る手段としては、第
4図〜第6図に示したプラズマCVD装置におけるよう
に、ガス室に設けた多数の小径のガス供給穴から基体へ
原料ガスを吹きつける方法が最良である。
(Problems to be Solved by the Invention) As a means for obtaining a plasma CVD film with a uniform film thickness, as in the plasma CVD apparatus shown in FIGS. 4 to 6, a large number of small diameter gas The best method is to blow the raw material gas from the supply hole onto the substrate.

成膜速度を高くする必要があるときは、原料ガスの供給
量を増加させねばならない。このため、ガス供給穴の径
を大きくするか、あるいは、数を増す必要がある。
When it is necessary to increase the film formation rate, the amount of raw material gas supplied must be increased. Therefore, it is necessary to increase the diameter or number of gas supply holes.

ガス供給穴の径を大きくすると、穴の周辺で放電が乱れ
る。このため、穴の周辺で膜の剥離や微粉((SiH2
)。)の発生が生じ、基体上の成膜中にとりこまれ、膜
質を悪化させる。その結果、電子写真におけるドラムの
ノイズ(白斑点としてでるピンホール等の異常点)の原
因の一つとなる。また、ガス供給穴からの原料ガスの流
速が大きいと、乱流が生じ、チャンバー内のダストを舞
い上げる等の好ましくない影響を与える。そこで、ガス
供給穴の径を放電を乱さない大きさにし、ガス供給穴の
数を、ガス室内の圧力がチャンバー内の圧力よりも少し
高い程度にし、原料ガスの流速をゆるやかにすることが
好ましいと考えられる。
When the diameter of the gas supply hole is increased, the discharge becomes disordered around the hole. For this reason, peeling of the film and fine powder ((SiH2
). ) is generated and incorporated during film formation on the substrate, deteriorating the film quality. As a result, this becomes one of the causes of drum noise (abnormal points such as pinholes that appear as white spots) in electrophotography. Furthermore, if the flow rate of the source gas from the gas supply hole is high, turbulence will occur, which will have undesirable effects such as kicking up dust within the chamber. Therefore, it is preferable to set the diameter of the gas supply hole to a size that does not disturb the discharge, set the number of gas supply holes to such an extent that the pressure inside the gas chamber is slightly higher than the pressure inside the chamber, and make the flow rate of the source gas gentle. it is conceivable that.

特開昭59−38377号公報lこ開示されたプラズマ
CVD装置においては、膜厚調整の目的で、ガス供給穴
にネジ穴加工を施し、ガス供給穴の径鼾分布を調整でき
る。すなわち、ビスでガス供給穴を塞ぐことができ、主
だ、軸方向に開口したビスでガス供給穴を塞ぎ、穴径を
小さくできる。ところで、この従来例は、膜厚調整の目
的で、原料ガスの供給を調整するものである。
In the plasma CVD apparatus disclosed in Japanese Unexamined Patent Publication No. 59-38377, the diameter distribution of the gas supply hole can be adjusted by threading the gas supply hole for the purpose of adjusting the film thickness. That is, the gas supply hole can be closed with a screw, and the gas supply hole can be closed mainly with a screw opening in the axial direction, thereby making it possible to reduce the hole diameter. By the way, in this conventional example, the supply of raw material gas is adjusted for the purpose of adjusting the film thickness.

本発明の目的は、放電異常を起さず且つ原料ガスをスム
ーズに供給でbるガス供給穴を備えたプラズマCVD装
置を提供することである。
An object of the present invention is to provide a plasma CVD apparatus equipped with a gas supply hole that does not cause abnormal discharge and can smoothly supply raw material gas.

(問題点を解決するための手段) 本発明1こ係るプラズマCVD装置は、真空槽内に、原
料ガスが供給されるがス室を形成する電極と膜を形成す
べき基体とが、所定の間隔をおり)で配置され、〜・電
極に形成された多数のガス供給穴から原料ガスを基体に
向けて放出しつつ、プラズマ放電によって基体上に成膜
するプラズマCVD装置において、 上記のガス供給穴の内径を2mm以下としたことを特徴
とする。
(Means for Solving the Problems) Present Invention 1 This plasma CVD apparatus has a vacuum chamber in which source gas is supplied, but electrodes forming a gas chamber and a substrate on which a film is to be formed are arranged in a predetermined position. In a plasma CVD apparatus that forms a film on a substrate by plasma discharge while emitting raw material gas toward the substrate from a large number of gas supply holes formed in the electrode, the above gas supply method is used. It is characterized in that the inner diameter of the hole is 2 mm or less.

(作用) ガス供給穴の内径を2111[11以下とすることによ
り、〃ス供給穴近傍でのプラズマ放電の異常がなくなる
。このため、成膜の均質性が向上する。また、ガス供給
穴近傍での膜の剥離や微粉の発生がなくなり、これらが
成膜の中に取り込まれることにより生じる膜質の悪化が
防止される。
(Function) By setting the inner diameter of the gas supply hole to 2111 [11 or less], abnormalities in plasma discharge near the gas supply hole are eliminated. Therefore, the uniformity of film formation is improved. Further, peeling of the film and generation of fine powder near the gas supply hole are eliminated, and deterioration of film quality caused by these being taken into the film formation is prevented.

(実施例) 第2図に示す装置で、放電条件とガス供給穴の穴径との
関係を調べた。この装置においては、チャンバー11内
に、ガス室12を設けた電極13と基体14とを対向し
て配置する。電極13には、原料ガス導入用の導入口1
5を設け、基体14に対向する側に(よ、多数のガス供
給穴16,16.・・・を開口する。チャンバー11に
は、排気口17を設ける。RF電源18を電極13と基
体14との間に接続する。いま、基体14をヒーター1
9を内蔵した基体ホルダ20を介して間接的に加熱し、
原料ガスをガス供給穴3.6−.16.・・・から供給
し、高周波電界を印加すると、電極13と基体14との
間の点描で示す放電領域で、プラズマ放電が生じ基体1
4上にa−8i膜が堆積する。
(Example) Using the apparatus shown in FIG. 2, the relationship between discharge conditions and the hole diameter of the gas supply hole was investigated. In this device, an electrode 13 provided with a gas chamber 12 and a base 14 are placed facing each other in a chamber 11 . The electrode 13 has an inlet 1 for introducing raw material gas.
5 is provided, and a large number of gas supply holes 16, 16, etc. are opened on the side facing the base 14. An exhaust port 17 is provided in the chamber 11. Now, connect the base 14 to the heater 1.
heating indirectly via the substrate holder 20 containing 9;
Source gas is supplied to gas supply hole 3.6-. 16. When a high-frequency electric field is applied, a plasma discharge is generated in the discharge region shown by stippled lines between the electrode 13 and the base 14, and the base 1
An a-8i film is deposited on 4.

プラズマCVDにおける放電異常の発生は、ガス供給穴
が異常に光ることで検知できる。本発明者らは、放電条
件とガス供給穴の寸法との関係を種々調べたところ、異
常の生じる程度が、同じガス供給穴でも放電条件により
異なり、また、同じ放電条件でもガス供給穴の形状と寸
法とにより異なることを見出した。
The occurrence of a discharge abnormality in plasma CVD can be detected by abnormal lighting of the gas supply hole. The present inventors investigated various relationships between discharge conditions and the dimensions of the gas supply hole, and found that the degree of abnormality that occurs varies depending on the discharge conditions even with the same gas supply hole.Also, even under the same discharge conditions, the shape of the gas supply hole It was found that there were differences depending on the size and dimensions.

はじめに、放電条件とガス供給穴の穴径との関係につい
て説明する。プラズマ放電においては、放電領域におい
て、電極13と基体14の近傍に、それぞれイオンシー
ス21,21が、そしてこれに接して、明部22,22
が生じる。(イオンシースは、明部に比べ暗いので、ダ
ークスペースとも呼ばれる。)イオンシース21の幅を
di とし、ガス供給穴16の内径をφとしたとき、次
に説明するように、異常発光がφ>2diのとぎに生じ
ることが見出された。
First, the relationship between discharge conditions and the hole diameter of the gas supply hole will be explained. In plasma discharge, in the discharge region, ion sheaths 21 and 21 are provided near the electrode 13 and the base 14, respectively, and bright portions 22 and 22 are provided in contact therewith.
occurs. (The ion sheath is darker than the bright area, so it is also called a dark space.) When the width of the ion sheath 21 is di and the inner diameter of the gas supply hole 16 is φ, the abnormal light emission is φ, as described next. It was found that this phenomenon occurs after >2di.

第1図(a)、(b)、(c)は、内径φを変化させた
ときのガス供給穴16の近傍での放電状態の変化を、そ
れぞれ、φ〜cliの場合、φ〜2diの場合、φ>2
diの場合の放電状態を図式的に示す。内径φが電極2
側のイオンシース21の幅di を越えると、イオンシ
ース21の形が変りはじめる。さらに、内径φが2di
 より大きくなると、明部22が、ガス供給穴16の中
に入り込み、ガス供給穴16の付近が異常に明るくなる
Figures 1 (a), (b), and (c) show the changes in the discharge state near the gas supply hole 16 when the inner diameter φ is changed, respectively, for φ~cli and φ~2di. If φ>2
The discharge state in the case of di is schematically shown. Inner diameter φ is electrode 2
When the width di of the side ion sheath 21 is exceeded, the shape of the ion sheath 21 begins to change. Furthermore, the inner diameter φ is 2di
If it becomes larger, the bright part 22 will enter into the gas supply hole 16, and the vicinity of the gas supply hole 16 will become abnormally bright.

電極2側のイオンシース21の幅diは、RF周波数が
13.56MHz、RFパワーが0.1 W/am2の
とき、0.ITorrで約’1 mm、  2 、 O
Torrで約1.5mmである。成膜は、通常、0,5
.−1.5’rprrで行うので、ガス供給穴16の内
径φは、2.0■以下にすれば、異常な発光は生じない
The width di of the ion sheath 21 on the electrode 2 side is 0.5 m when the RF frequency is 13.56 MHz and the RF power is 0.1 W/am2. Approximately '1 mm, 2, O at ITorr
Torr is approximately 1.5 mm. Film formation is usually 0.5
.. -1.5'rprr, so if the inner diameter φ of the gas supply hole 16 is set to 2.0cm or less, abnormal light emission will not occur.

ところで、ガス供給穴16の縁に突起があると、上記の
φ<2diの関係を満足していても、突起部で電界が強
くなり、異常発光が生じる。そこで、放電とガス供給穴
16の形状との関係について研究した。第3図(、)〜
(e)に示す5種の形状のガス供給穴16を加工した。
By the way, if there is a protrusion on the edge of the gas supply hole 16, even if the above relationship φ<2di is satisfied, the electric field will become stronger at the protrusion and abnormal light emission will occur. Therefore, we studied the relationship between discharge and the shape of the gas supply hole 16. Figure 3 (,)~
Five types of gas supply holes 16 shown in (e) were machined.

これらの図において、基体14は、電極13の右側に配
置されている。第3図(a)は、基体14側の縁に突起
がある場合、第3図(b)は、円形の開口を設けた場合
、第3図(c)は、基体14側の縁にRをつけた場合、
第3図(d)は、同じ゛く基体14側の緑にRをつけ、
且つ、穴の深さを深くした場合、第3図(e)は、基体
14側の縁に面取り加工を行った場合である。
In these figures, the base 14 is placed on the right side of the electrode 13. 3(a) shows a case where there is a protrusion on the edge on the base 14 side, FIG. 3(b) shows a case where a circular opening is provided, and FIG. 3(c) shows a case where the edge on the base 14 side has a radius. If you add
In FIG. 3(d), R is also added to the green on the base 14 side.
In addition, when the depth of the hole is increased, FIG. 3(e) shows a case where the edge on the base body 14 side is chamfered.

各形状についてのプラズマ放電時の性状評価は、第3図
(、)〜(e)の各図の下側の記号で示される。
The evaluation of the properties during plasma discharge for each shape is shown by the symbols at the bottom of each figure in FIGS. 3(,) to (e).

◎は良好、○は可、Xは不可を表わす。◎ means good, ○ means good, and X means bad.

第3図(c)〜(e)に示す形状のガス供給穴16、す
なわち、基体14に対向する側の縁にR加工または面取
り加工を施したガス供給穴16は、放電異常の抑制に効
果的であることがわかった。これは、基体14側の穴開
口縁に鋭いエツジがないので電気力線の歪みが小さくな
るためと考えられる。
The gas supply holes 16 having the shapes shown in FIGS. 3(c) to 3(e), that is, the gas supply holes 16 whose edges facing the base body 14 are rounded or chamfered, are effective in suppressing discharge abnormalities. It turned out to be true. This is thought to be because there are no sharp edges on the edge of the hole opening on the base 14 side, so the distortion of the lines of electric force is reduced.

また、(c)〜(、e)に示す形状のガス供給穴16は
(、)、(b)に比べ、原料ガスの吹出しがよりゆるや
かになり、ストレスによる穴周辺の膜の剥離が減少する
ことから、より良好な成膜を得ることができる。
In addition, the gas supply holes 16 having the shapes shown in (c) to (, e) blow out the raw material gas more slowly than those shown in (,) and (b), and the peeling of the film around the holes due to stress is reduced. Therefore, better film formation can be obtained.

第4図から第6図に示したプラズマCVD装置において
、〃ス供給穴16の穴径を2mmとし、第3図(c)〜
(e)に示す形状に加工した。得られた成膜の性質は良
好であった。
In the plasma CVD apparatus shown in FIGS. 4 to 6, the hole diameter of the gas supply hole 16 is 2 mm, and FIGS.
It was processed into the shape shown in (e). The properties of the resulting film were good.

(発明の効果) ガス供給穴での異常な放電がなくなったことにより、膜
の均質性が向上した。すなわち、(1)ガス供給穴周辺
での成膜性が良好になり、電極上の膜の剥離に起因する
膜質の悪化がなくなった。(2)異常放電域での微粉の
発生がなくなり、これに起因する膜質の悪化がなくなっ
た。(3)放電が安定で且つ均一であり、成膜の性質の
再現性が良好になった。
(Effect of the invention) The homogeneity of the film was improved by eliminating abnormal discharge at the gas supply hole. That is, (1) film formation properties around the gas supply holes were improved, and deterioration in film quality caused by peeling of the film on the electrodes was eliminated. (2) The generation of fine powder in the abnormal discharge area was eliminated, and the deterioration of film quality caused by this was eliminated. (3) The discharge was stable and uniform, and the reproducibility of the film formation properties was improved.

成膜の性質が良好になった結果、電子写真におけるノイ
ズが減少した。
As a result of improved film formation properties, noise in electrophotography was reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、(c)は、それぞれ、φ〜d
i 。 φ〜2di、φ>2diの場合のガス供給式近傍での放
電の状態を図式的に示す断面説明図である。 第2図は、プラズマCVD装置の図式的な断面図である
。 第3図(、)〜(e)は、それぞれ、ガス供給穴の形状
を示す断面説明図である。 第4図〜第6図は、それぞれ、従来めプラズマCVD装
置の図式的な断面説明図である。 1・・・基体、  2・・・電極、  3,3a・・・
ガス室、4・・・導入口、 5・・・チャンバー、6・
・・排気口、?・・・真空ポンプ、        訃
・・RF主電源11・・・チャンバー、      1
2・・・ガス室、13・・・電極、  14・・・基体
、  15・・・導入口、16・・・ガス供給穴、  
    17・・・排気口、18・・・RF主電源  
   19・・・ヒーター、21.21・・・イオンシ
ース、  22.22・・・明部。 特許出願人   ミノルタカメラ株式会社代  理  
人 弁理士 青白 葆 ほか2名第1rlA 第2rIA 第3図 (q)     (b)    (c)    (d)
    (・)第4因
Figures 1 (a), (b), and (c) show φ to d, respectively.
i. FIG. 2 is a cross-sectional explanatory diagram schematically showing the state of discharge in the vicinity of the gas supply type when φ~2di and φ>2di. FIG. 2 is a schematic cross-sectional view of the plasma CVD apparatus. FIGS. 3(a) to 3(e) are cross-sectional explanatory views showing the shapes of the gas supply holes, respectively. 4 to 6 are schematic cross-sectional explanatory views of conventional plasma CVD apparatuses, respectively. 1... Base body, 2... Electrode, 3, 3a...
Gas chamber, 4...Inlet, 5...Chamber, 6.
··exhaust port,? ...Vacuum pump, ...RF main power supply 11...Chamber, 1
2... Gas chamber, 13... Electrode, 14... Substrate, 15... Inlet, 16... Gas supply hole,
17...Exhaust port, 18...RF main power supply
19...Heater, 21.21...Ion sheath, 22.22...Bright area. Patent applicant Minolta Camera Co., Ltd. Representative
People Patent Attorneys Aobai Ao and 2 others 1st rlA 2nd rIA Figure 3 (q) (b) (c) (d)
(・)Fourth cause

Claims (1)

【特許請求の範囲】[Claims] (1)真空槽内に、原料ガスが供給されるガス室を形成
する電極と、膜を形成すべき基体とが、所定の間隔をお
いて配置され、電極に形成された多数のガス供給穴から
原料ガスを基体に向けて放出しつつ、プラズマ放電によ
って基体上に成膜するプラズマCVD装置において、上
記のガス供給穴の内径を2mm以下としたことを特徴と
するプラズマCVD装置。
(1) In a vacuum chamber, an electrode forming a gas chamber to which raw material gas is supplied and a substrate on which a film is to be formed are arranged at a predetermined interval, and a large number of gas supply holes are formed in the electrode. A plasma CVD apparatus for forming a film on a substrate by plasma discharge while discharging source gas toward the substrate, characterized in that the inner diameter of the gas supply hole is 2 mm or less.
JP13833484A 1984-07-03 1984-07-03 Plasma cvd device Granted JPS6115978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13833484A JPS6115978A (en) 1984-07-03 1984-07-03 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13833484A JPS6115978A (en) 1984-07-03 1984-07-03 Plasma cvd device

Publications (2)

Publication Number Publication Date
JPS6115978A true JPS6115978A (en) 1986-01-24
JPH0565590B2 JPH0565590B2 (en) 1993-09-20

Family

ID=15219478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13833484A Granted JPS6115978A (en) 1984-07-03 1984-07-03 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS6115978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121429A (en) * 1984-11-19 1986-06-09 Matsushita Electric Ind Co Ltd Plasma cvd device
JPS61260623A (en) * 1985-05-14 1986-11-18 Matsushita Electric Ind Co Ltd Plasma vapor growth equipment
KR100476872B1 (en) * 1997-09-26 2005-07-05 삼성전자주식회사 Cathode for etching fabrication of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169116A (en) * 1980-05-28 1981-12-25 Sanyo Electric Co Ltd Manufacture of amorphous silicon film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169116A (en) * 1980-05-28 1981-12-25 Sanyo Electric Co Ltd Manufacture of amorphous silicon film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121429A (en) * 1984-11-19 1986-06-09 Matsushita Electric Ind Co Ltd Plasma cvd device
JPS61260623A (en) * 1985-05-14 1986-11-18 Matsushita Electric Ind Co Ltd Plasma vapor growth equipment
KR100476872B1 (en) * 1997-09-26 2005-07-05 삼성전자주식회사 Cathode for etching fabrication of semiconductor device

Also Published As

Publication number Publication date
JPH0565590B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
JPS63187619A (en) Plasma cvd system
JPH01127679A (en) Formation of deposit film
JPS6137354B2 (en)
JPS6115978A (en) Plasma cvd device
JPS6117151A (en) Plasma cvd device
JPS62146268A (en) Apparatus for producing thin film
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JPS6115974A (en) Plasma cvd device
EP0678895B1 (en) Plasma processing apparatus
JPS6115977A (en) Plasma cvd device
JPS5832413A (en) Film forming apparatus by glow discharge
JPS6153432B2 (en)
JPS637373A (en) Deposited film forming device by plasma cvd method
JPH06252060A (en) Plasma cvd device
JPS6119779A (en) Plasma cvd apparatus
JPS6115973A (en) Plasma cvd device
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JP2784784B2 (en) Method and apparatus for forming functional deposited film by microwave plasma CVD
JP3368142B2 (en) Deposition film forming equipment
JPS6086277A (en) Formation of deposited film by discharge
GB2286200A (en) Plasma treatment of substrates having non planar surfaces; contoured electrodes
JPS6013074A (en) Plasma cvd device
JP2577397Y2 (en) Glow discharge decomposition equipment
JPS60162777A (en) Plasma cvd apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term