JPH0565590B2 - - Google Patents

Info

Publication number
JPH0565590B2
JPH0565590B2 JP59138334A JP13833484A JPH0565590B2 JP H0565590 B2 JPH0565590 B2 JP H0565590B2 JP 59138334 A JP59138334 A JP 59138334A JP 13833484 A JP13833484 A JP 13833484A JP H0565590 B2 JPH0565590 B2 JP H0565590B2
Authority
JP
Japan
Prior art keywords
gas supply
gas
electrode
discharge
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138334A
Other languages
Japanese (ja)
Other versions
JPS6115978A (en
Inventor
Juji Enokuchi
Hirohisa Kitano
Masanori Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP13833484A priority Critical patent/JPS6115978A/en
Publication of JPS6115978A publication Critical patent/JPS6115978A/en
Publication of JPH0565590B2 publication Critical patent/JPH0565590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、円筒状基体上に成膜するためのプラ
ズマCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma CVD apparatus for forming a film on a cylindrical substrate.

(従来技術) プラズマCVD技術は、薄膜を比較的低温で成
長できることを特長とする成膜技術である。プラ
ズマCVD技術において、たとえば高周波放電に
より反応ガスを放電プラズマ状態におくことによ
り、反応ガスの化学結合は低温で分解され、活性
化された粒子が作り出され、そして、この活性化
された粒子間の反応によりCVD膜が形成される。
プラズマCVD膜の性質は、多数の因子に影響を
受ける。この因子には、生成温度、生成ガス比、
生成圧力、電極構造、反応容器構造、排気速度、
生成RFパワー、RF周波数、プラズマ発生方式等
がある。したがつて、プラズマCVD膜の成膜の
ためには、多くの因子を制御せねばならない。
(Prior Art) Plasma CVD technology is a film-forming technology characterized by the ability to grow thin films at relatively low temperatures. In plasma CVD technology, for example, by placing a reactive gas in a discharge plasma state using high-frequency discharge, the chemical bonds of the reactive gas are decomposed at low temperatures, creating activated particles, and the interaction between these activated particles is The reaction forms a CVD film.
The properties of plasma CVD films are influenced by numerous factors. These factors include production temperature, production gas ratio,
Generation pressure, electrode structure, reaction vessel structure, pumping speed,
There are generation RF power, RF frequency, plasma generation method, etc. Therefore, many factors must be controlled in order to form a plasma CVD film.

プラズマCVD技術は、種々の物質の成膜に利
用されていて、たとえば非晶質シリコン(a−
Si)を成膜することもできる。a−Siは、電子写
真用感光体としても適している。電子写真用感光
体として使用する場合、a−Si膜は、大面積の円
筒状基体上に、比較的厚く(20〜50μm)、且つ、
均一に成膜されねばならない。
Plasma CVD technology is used to form films of various materials, such as amorphous silicon (a-
It is also possible to form a film of Si). a-Si is also suitable as an electrophotographic photoreceptor. When used as an electrophotographic photoreceptor, the a-Si film is relatively thick (20 to 50 μm) and coated on a large area cylindrical substrate.
The film must be formed uniformly.

第4図は、従来のa−Si用プラズマCVD装置
の一例を図式的に示す。アルミニウム円筒からな
る基体1は、そ軸の周りに回転可能に、円筒状の
電極2の内部に設けられる。電極2は、この基体
1と軸を共通に配置された二枚の円筒板2a,2
bからなり、ガス室3がこの二枚の円筒板2a,
2bにより区画される。外側の円筒板2aには、
図示しないガス供給装置から原料ガスを導入する
ための導入口4が設けられ、一方、内側の円筒板
2bには、この円筒板2bの内部の空間(放電領
域)に原料ガスを導入するための図示しない多数
の小さなガス供給穴が設けられる。基体1と電極
2とは、チヤンバー5内に設置される。チヤンバ
ー5内に上記のガス供給穴から導入されるガス
は、チヤンバー5の下部から、排気口6を介して
真空ポンプ7により排気される。RF電源8は、
導入口4を介して電極2に接続され、一方、基体
1は、接地される。なお、図示しないが、ヒータ
ーは、それぞれ、基体1と電極2に取り付けら
れ、ヒーター用電源に接続される。
FIG. 4 schematically shows an example of a conventional a-Si plasma CVD apparatus. A base body 1 made of an aluminum cylinder is provided inside a cylindrical electrode 2 so as to be rotatable around its axis. The electrode 2 is made up of two cylindrical plates 2a, 2 that share an axis with the base 1.
b, and the gas chamber 3 consists of these two cylindrical plates 2a,
2b. On the outer cylindrical plate 2a,
An inlet 4 for introducing raw material gas from a gas supply device (not shown) is provided in the inner cylindrical plate 2b, and an inlet 4 for introducing raw material gas into the internal space (discharge area) of this cylindrical plate 2b is provided. A number of small gas supply holes (not shown) are provided. The base 1 and the electrode 2 are placed within the chamber 5. The gas introduced into the chamber 5 from the gas supply hole described above is exhausted from the lower part of the chamber 5 via the exhaust port 6 by the vacuum pump 7. The RF power supply 8 is
It is connected to the electrode 2 via the inlet 4, while the base 1 is grounded. Although not shown, the heaters are attached to the base 1 and the electrode 2, respectively, and connected to a heater power source.

第5図は、従来のa−Si用プラズマCVD装置
の他の例を図式的に示す。第4図に示した装置と
の第一の相違は、電極2がチヤンバー5の一部に
なつていることである。チヤンバー5は、電極
2、上部5a、下部5bとからなり、下部5bは
電極2に対して絶縁されている。第二の相違は、
電極2の上側の側壁が円板状であり、放電領域に
面する部分に、多数の小さなガス供給穴が一様に
設けられていることである。第三の相違は、チヤ
ンバーの上部5aと側壁2cとが一つの室3aを
区画し、導入口4が上部5aに取り付けられてい
ることである。原料ガスは、第5図に矢印で示す
ように、まず、ガス室3aに導入され、次いで、
一部は直接に、大部分は、ガス室3を経て間接的
に、放電領域に流れる。
FIG. 5 schematically shows another example of a conventional a-Si plasma CVD apparatus. The first difference with the device shown in FIG. 4 is that the electrode 2 is now part of the chamber 5. The chamber 5 consists of an electrode 2, an upper part 5a, and a lower part 5b, and the lower part 5b is insulated from the electrode 2. The second difference is
The upper side wall of the electrode 2 is disk-shaped, and a large number of small gas supply holes are uniformly provided in the portion facing the discharge area. The third difference is that the upper part 5a of the chamber and the side wall 2c define one chamber 3a, and the inlet 4 is attached to the upper part 5a. The raw material gas is first introduced into the gas chamber 3a as shown by the arrow in FIG.
A portion flows directly and a large portion indirectly via the gas chamber 3 into the discharge region.

第6図は、従来のa−Si用プラズマCVD装置
の他の例を示す。4個のアルミニウム円筒からな
る基体1,1,…が、その軸の周りに回転可能な
ように、その軸を平行にして一列に配置される。
この一列の基体1,1,…に両側に平板状の電極
2,2が配置される。この電極2は、外壁2aと
内壁2bとからなり、外壁2aと内壁2bとの間
にガス室3を区画する。外壁2aには、ガスを外
部から導入するための導入口4が設けられ、一
方、内壁2bには、この内壁2bと基体1との間
の空間(放電領域)に原料ガスを供給するための
図示しない多数の小さなガス供給穴が設けられ
る。図において、矢印は、この原料ガスを通して
のガスの供給を示す。基体1,1,…と電極2,
2とは、チヤンバー5内に設置される。上記のガ
ス供給穴から放電領域内に導入されるガスは、チ
ヤンバー5に設た排気口6から、図示しない真空
ポンプ7によつて排気され、所定の圧力に保たれ
る。RF電源8は、導入口4,4を介して、電極
2に接続され、一方、基体1,1,…は接地され
る。なお、図示しないが、ヒーターが基体1,
1,…と電極2,2とに取り付けられる。
FIG. 6 shows another example of a conventional a-Si plasma CVD apparatus. Base bodies 1, 1, . . . consisting of four aluminum cylinders are arranged in a row with their axes parallel to each other so as to be rotatable around their axes.
Flat electrodes 2, 2 are arranged on both sides of this row of substrates 1, 1, . This electrode 2 consists of an outer wall 2a and an inner wall 2b, and defines a gas chamber 3 between the outer wall 2a and the inner wall 2b. The outer wall 2a is provided with an inlet 4 for introducing gas from the outside, while the inner wall 2b is provided with an inlet 4 for supplying source gas to the space (discharge area) between the inner wall 2b and the base 1. A number of small gas supply holes (not shown) are provided. In the figure, arrows indicate the supply of gas through this source gas. Substrate 1, 1, ... and electrode 2,
2 is installed within the chamber 5. The gas introduced into the discharge region through the gas supply hole is exhausted from an exhaust port 6 provided in the chamber 5 by a vacuum pump 7 (not shown) and maintained at a predetermined pressure. The RF power source 8 is connected to the electrode 2 via the inlets 4, 4, while the bases 1, 1, . . . are grounded. Although not shown, the heater is connected to the base 1,
1,... and electrodes 2, 2.

プラズマCVDにおるa−Siの成膜は、次のよ
うに行われる。パツシエン則から、自続放電開始
電圧は、電極2と基体1との間隔dと基体の圧力
pとの積pdに依存して変化する。従来は、この
間隔dは、基体の圧力が1Torr近傍では、自続放
電開始電圧がほぼ最小になる30〜50mmの範囲内で
選定されていて、通常は、40mm程度が選ばれて
る。この領域では、放電の安定性と基体へのガス
の均一な供給とが得られやすいという長所があ
る。シラン等の原料ガスは、ガス室3から円筒板
2bに設けられた多数のガス供給穴を経て、第4
に矢印で示すように、電極2と基体1との間の空
間内に導入される。チヤンバー内の圧力は、0.1
〜数Torrに保たれる。基体1は、成膜の均一性
を保つために、10〜30rpmで回転される。基体1
の温度は、150〜300℃に加熱される。電極2と電
極(基体)1との間にRF電圧を印加すると、グ
ロー放電が生じ、原料ガスは分解され、a−Si膜
が、基体1上に成膜される。
A-Si film formation by plasma CVD is performed as follows. According to Patsien's law, the self-sustaining discharge starting voltage changes depending on the product pd of the distance d between the electrode 2 and the substrate 1 and the pressure p of the substrate. Conventionally, this distance d has been selected within the range of 30 to 50 mm, where the self-sustaining discharge starting voltage is almost at a minimum when the base pressure is around 1 Torr, and usually about 40 mm is selected. This region has the advantage that it is easy to obtain stability of discharge and uniform supply of gas to the substrate. Raw material gas such as silane is supplied from the gas chamber 3 through a large number of gas supply holes provided in the cylindrical plate 2b, and then passes through the fourth
It is introduced into the space between the electrode 2 and the base 1 as shown by the arrow in FIG. The pressure inside the chamber is 0.1
~Kept at a few Torr. The substrate 1 is rotated at 10 to 30 rpm to maintain uniformity of film formation. Base 1
The temperature is heated to 150-300℃. When an RF voltage is applied between the electrode 2 and the electrode (substrate) 1, a glow discharge occurs, the source gas is decomposed, and an a-Si film is formed on the substrate 1.

(発明により解決すべき問題点) 膜厚の均一なプラズマCVD膜を得る手段とし
ては、第4図〜第6図に示したプラズマCVD装
置におけるように、ガス室に設けた多数の小径の
ガス供給穴から基体へ原料ガス吹きつける方法が
最良である。
(Problems to be Solved by the Invention) As a means of obtaining a plasma CVD film with a uniform film thickness, as in the plasma CVD apparatus shown in Figs. 4 to 6, a large number of small diameter gas The best method is to blow the raw material gas from the supply hole onto the substrate.

成膜速度を高くする必要があるときは、原料ガ
スの供給量を増加させねばならない。このため、
ガス供給穴の径を大きくするか、あるいは、数を
増す必要がある。
When it is necessary to increase the film formation rate, the amount of raw material gas supplied must be increased. For this reason,
It is necessary to increase the diameter or number of gas supply holes.

ガス供給穴の径を大きくすると、穴の周辺で放
電が乱れる。このため、穴の周辺で膜の剥離や微
粉((SiH2)n)の発生が生じ、基体上の成膜中
にとりこまれ、膜質を悪化させる。その結果、電
子写真におけるドラムのノイズ(白斑点としてで
るピンホール等の異常点)の原因の一つとなる。
また、ガス供給穴からの原料ガスの流速が大きい
と、乱流が生じ、チヤンバー内のダストを舞い上
げる等の好ましくない影響を与える。そこで、ガ
ス供給穴の径を放電を乱さない大きさにし、ガス
供給穴の数を、ガス室内の圧力がチヤンバー内の
圧力よりも少し高い程度にし、原料ガスの流速を
ゆるやかにすることが好ましいと考えられる。
When the diameter of the gas supply hole is increased, the discharge becomes disordered around the hole. For this reason, peeling of the film and generation of fine powder ((SiH 2 )n) occur around the holes, which is incorporated during film formation on the substrate and deteriorates the film quality. As a result, this becomes one of the causes of drum noise (abnormal points such as pinholes that appear as white spots) in electrophotography.
Furthermore, if the flow rate of the raw material gas from the gas supply hole is high, turbulence will occur, which will have undesirable effects such as kicking up dust within the chamber. Therefore, it is preferable to set the diameter of the gas supply hole to a size that does not disturb the discharge, set the number of gas supply holes to such an extent that the pressure inside the gas chamber is slightly higher than the pressure inside the chamber, and make the flow rate of the source gas gentle. it is conceivable that.

特開昭59−38377号公報に開示されたプラズマ
CVD装置においては、膜厚調整の目的で、ガス
供給穴にネジ穴加工を施し、ガス供給穴の径と分
布を調整できる。すなわち、ビスでガス供給穴を
塞ぐことができ、また、軸方向に開口したビスで
ガス供給穴を塞ぎ、穴径を小さくできる。ところ
で、この従来例は、膜厚調整の目的で、原料ガス
の供給を調整するものである。
Plasma disclosed in Japanese Patent Application Laid-Open No. 59-38377
In CVD equipment, the diameter and distribution of the gas supply holes can be adjusted by drilling screw holes in the gas supply holes for the purpose of adjusting the film thickness. That is, the gas supply hole can be closed with a screw, and the gas supply hole can be closed with a screw opened in the axial direction, thereby making it possible to reduce the hole diameter. By the way, in this conventional example, the supply of raw material gas is adjusted for the purpose of adjusting the film thickness.

本発明の目的は、放電異常を起さず且つ原料ガ
スをスムーズに供給できるガス供給穴を備えたプ
ラズマCVD装置を提供することである。
An object of the present invention is to provide a plasma CVD apparatus equipped with a gas supply hole that does not cause discharge abnormalities and can supply raw material gas smoothly.

(問題点を解決するための手段) 本発明に係るプラズマCVD装置は、真空槽と、
該真空槽内に配置された膜形成用の基体と、該基
体と所定の間隔をおいて配置され、原料ガスを供
給するためのガス室を形成する電極と、該電極に
形成され、内径2mm以下で且つ前記基体と対向す
る側の縁に曲面を有するか、もしくは面取り加工
されている多数のガス供給穴とを備え、該ガス供
給穴から原料ガスを前記基体に向けて放出しつ
つ、プラズマ放電によつて基体上に成膜すること
を特徴とする。
(Means for solving the problems) A plasma CVD apparatus according to the present invention includes a vacuum chamber,
A substrate for film formation placed in the vacuum chamber, an electrode placed at a predetermined distance from the substrate and forming a gas chamber for supplying raw material gas, and an electrode formed on the electrode with an inner diameter of 2 mm. and a large number of gas supply holes having curved or chamfered edges on the side facing the base, and discharging raw material gas toward the base from the gas supply holes, while plasma It is characterized by forming a film on a substrate by electric discharge.

(作用) ガス供給穴の内径を2mm以下とすることによ
り、ガス供給穴近傍でのプラズマ放電の異常がな
くなる。このため、成膜の均質性が向上する。ま
た、ガス供給穴近傍での膜の剥離や微粉の発生が
なくなり、これらが成膜の中に取り込まれること
により生じる膜質の悪化が防止される。
(Function) By setting the inner diameter of the gas supply hole to 2 mm or less, abnormalities in plasma discharge near the gas supply hole are eliminated. Therefore, the uniformity of film formation is improved. Further, peeling of the film and generation of fine powder near the gas supply hole are eliminated, and deterioration of film quality caused by these being taken into the film formation is prevented.

(実施例) 第2図に示す装置で、放電条件とガス供給穴の
穴径との関係を調べた。この装置においては、チ
ヤンバー11内に、ガス室12を設けた電極13
と基体14とを対向して配置する。電極13に
は、原料ガス導入用の導入口15を設け、基体1
4に対向する側には、多数のガス供給穴16,1
6,…を開口する。チヤンバー11には、排気口
17を設ける。RF電源18を電極13と基体1
4との間に接続する。いま、基体14をヒーター
19を内蔵した基体ホルダ20を介して間接的に
加熱し、原料ガスをガス供給穴16,16,…か
ら供給し、高周波電界を印加すると、電極13と
基体14との間の点描で示す放電領域で、プラズ
マ放電が生じ、基体14上にa−Si膜が堆積す
る。
(Example) Using the apparatus shown in FIG. 2, the relationship between discharge conditions and the hole diameter of the gas supply hole was investigated. In this device, an electrode 13 in which a gas chamber 12 is provided is provided in a chamber 11.
and the base body 14 are arranged to face each other. The electrode 13 is provided with an inlet 15 for introducing raw material gas, and the base 1
On the side opposite to 4, there are a number of gas supply holes 16, 1
6. Open... The chamber 11 is provided with an exhaust port 17. The RF power source 18 is connected to the electrode 13 and the base 1.
Connect between 4 and 4. Now, when the substrate 14 is indirectly heated via the substrate holder 20 with a built-in heater 19, raw material gas is supplied from the gas supply holes 16, 16, and a high-frequency electric field is applied, the contact between the electrode 13 and the substrate 14 is increased. Plasma discharge occurs in the discharge region indicated by dotted lines in between, and an a-Si film is deposited on the substrate 14.

プラズマCVDにおける放電異常の発生は、ガ
ス供給穴が異常に光ることで検知できる。本発明
者らは、放電条件とガス供給穴の寸法との関係を
種々調べたところ、異常の生じる程度が、同じガ
ス供給穴でも放電条件により異なり、また、同じ
放電条件でもガス供給穴の形状と寸法とにより異
なることを見出した。
The occurrence of discharge abnormality in plasma CVD can be detected by the abnormal glow of the gas supply hole. The present inventors investigated various relationships between discharge conditions and the dimensions of the gas supply hole, and found that the degree of abnormality that occurs varies depending on the discharge conditions even with the same gas supply hole.Also, even under the same discharge conditions, the shape of the gas supply hole It was found that there were differences depending on the size and dimensions.

はじめに、放電条件とガス供給穴の穴径との関
係について説明する。プラズマ放電においては、
放電領域において、電極13と基体14の近傍
に、それぞれイオンシース21,21が、そして
これに接して、明部22,22が生じる。(イオ
ンシースは、明部に比べ暗いので、ダークスペー
クとも呼ばれる。)イオンシース21の幅をdi
し、ガス供給穴16の内径をφとしたとき、次に
説明するように、異常発光がφ>2diのときに生
じることが見出された。
First, the relationship between discharge conditions and the hole diameter of the gas supply hole will be explained. In plasma discharge,
In the discharge region, ion sheaths 21 and 21 are formed near the electrode 13 and the base 14, respectively, and bright parts 22 and 22 are formed in contact with these. (Since the ion sheath is darker than the bright part, it is also called a dark spake.) When the width of the ion sheath 21 is d i and the inner diameter of the gas supply hole 16 is φ, the abnormal light emission is φ, as explained next. It was found that this occurs when >2d i .

第1図a,b,cは、内径φを変化させたとき
のガス供給穴16の近傍での放電状態の変化を、
それぞれ、φ〜diの場合、φ〜2diの場合、φ>
2diの場合の放電状態を図式的に示す。内径φが
電極2側のイオンシース21の幅diを越えると、
イオンシース21の形が変りはじめる。さらに、
内径φが2diより大きくなると、明部22が、ガ
ス供給穴16の中に入り込み、ガス供給穴16の
付近が異常に明るくなる。
Figures 1a, b, and c show changes in the discharge state near the gas supply hole 16 when the inner diameter φ is changed.
If φ~d i , φ~2d i , φ>
The discharge state in the case of 2d i is schematically shown. When the inner diameter φ exceeds the width d i of the ion sheath 21 on the electrode 2 side,
The shape of the ion sheath 21 begins to change. moreover,
When the inner diameter φ becomes larger than 2d i , the bright portion 22 enters into the gas supply hole 16, and the vicinity of the gas supply hole 16 becomes abnormally bright.

電極2側のイオンシース21の幅diは、RF周
波数が13.56MHz、RFパワーが0.1W/cm2のとき、
0.1Torrで約1.5mm、2.0Torrで約1mmである。成
膜は、通常、0.5〜1.5Torrで行うので、ガス供給
穴16の内径φは、2.0mm以下にすれば、異常な
発光は生じない。
The width d i of the ion sheath 21 on the electrode 2 side is when the RF frequency is 13.56MHz and the RF power is 0.1W/cm 2 .
It is approximately 1.5 mm at 0.1 Torr and approximately 1 mm at 2.0 Torr. Since film formation is normally performed at 0.5 to 1.5 Torr, if the inner diameter φ of the gas supply hole 16 is set to 2.0 mm or less, no abnormal light emission will occur.

ところで、ガス供給穴16の縁に突起がある
と、上記のφ<2diの関係を満足していても、突
起部で電界が強くなり、異常発光が生じる。そこ
で、放電とガス供給穴16の形状との関係につい
て研究した。第3図a〜eに示す5種の形状のガ
ス供給穴16を加工した。これらの図において、
基体14は、電極13の右側に配置されている。
第3図aは、基体14側の縁に突起がある場合、
第3図bは、円形の開口を設けた場合、第3図c
は、基体14側の縁にRをつけた場合、第3図d
は、同じく基体14側の縁にRをつけ、且つ、穴
の深さを深くした場合、第3図eは、基体14側
の縁に面取り加工を行つた場合である。各形状に
ついてのプラズマ放電時の性状評価は、第3図a
〜eの各図の下側の記号で示される。◎は良好、
○は可、×は付加を表わす。
By the way, if there is a protrusion on the edge of the gas supply hole 16, even if the above relationship φ<2d i is satisfied, the electric field will become stronger at the protrusion and abnormal light emission will occur. Therefore, we studied the relationship between discharge and the shape of the gas supply hole 16. Five types of gas supply holes 16 shown in FIGS. 3a to 3e were machined. In these figures,
The base body 14 is arranged on the right side of the electrode 13.
FIG. 3a shows that when there is a protrusion on the edge of the base 14,
Figure 3b shows the case where a circular opening is provided, and Figure 3c
If the edge on the base 14 side is rounded, the figure 3d
3 shows a case where the edge on the base 14 side is similarly rounded and the depth of the hole is increased, and FIG. 3e shows a case where the edge on the base 14 side is chamfered. The evaluation of the properties during plasma discharge for each shape is shown in Figure 3a.
Indicated by symbols at the bottom of each figure. ◎ is good,
○ indicates possible, × indicates addition.

第3図c〜eに示す形状のガス供給穴16、す
なわち、基体14に対向する側の縁にR加工また
は面取り加工を施したガス供給穴16は、放電異
常の抑制に効果的であることがわかつた。これ
は、基体14側の穴開口縁に鋭いエツジがないの
で電気力線の歪みが小さくなるためと考えられ
る。また、c〜eに示す形状のガス供給穴16は
a,bに比べ、原料ガスの吹出しがよりゆるやか
になり、ストレスにより穴周辺の膜の剥離が減少
することから、より良好な成膜を得ることができ
る。
The gas supply holes 16 having the shapes shown in FIGS. 3c to 3e, that is, the gas supply holes 16 whose edges facing the base body 14 are rounded or chamfered, are effective in suppressing discharge abnormalities. I understood. This is thought to be because there are no sharp edges on the edge of the hole opening on the base 14 side, so the distortion of the lines of electric force is reduced. In addition, the gas supply holes 16 having the shapes shown in c to e blow out the raw material gas more slowly than those shown in holes a and b, and the peeling of the film around the holes due to stress is reduced, so that better film formation is possible. Obtainable.

第4図から第6図に示したプラズマCVD装置
において、ガス供給穴16の穴径を2mmとし、第
3図c〜eに示す形状に加工した。得られた成膜
の性質は良好であつた。
In the plasma CVD apparatus shown in FIGS. 4 to 6, the gas supply hole 16 had a hole diameter of 2 mm and was processed into the shape shown in FIGS. 3c to 3e. The properties of the resulting film were good.

(発明の効果) ガス供給穴での異常な放電がなくなつたことに
より、膜の均質性が向上した。すなわち、(1)ガス
供給穴周辺での成膜性が良好になり、電極上の膜
の剥離に起因する膜質の悪化がなくなつた。(2)異
常放電域での微粉の発生がなくなり、これに起因
する膜質の悪化がなくなつた。(3)放電が安定で且
つ均一であり、成膜の性質の再現性が良好になつ
た。
(Effect of the invention) The homogeneity of the film was improved by eliminating abnormal discharge at the gas supply hole. That is, (1) film formation properties around the gas supply holes were improved, and deterioration in film quality caused by peeling of the film on the electrodes was eliminated. (2) The generation of fine powder in the abnormal discharge area has been eliminated, and the deterioration of film quality caused by this has been eliminated. (3) The discharge was stable and uniform, and the reproducibility of the film formation properties was improved.

成膜の性質が良好になつた結果、電子写真にお
けるノイズが減少した。
As a result of improved film deposition properties, noise in electrophotography was reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは、それそれ、φ〜di、φ〜
2di、φ>2diの場合のガス供給穴近傍での放電の
状態を図式的に示す断面説明図である。第2図
は、プラズマCVD装置の図式的な断面図である。
第3図a〜eは、それぞれ、ガス供給穴の形状を
示す断面説明図である。第4図〜第6図は、それ
ぞれ、従来のプラズアCVD装置の図式的な断面
説明図である。 1……基体、2……電極、3,3a……ガス
室、4……導入口、5……チヤンバー、6……排
気口、7……真空ポンプ、8……RF電源、11
……チヤンバー、12……ガス室、13……電
極、14……基体、15……導入口、16……ガ
ス供給穴、17……排気口、18……RF電源、
19……ヒーター、21,21……イオンシー
ス、22,22……明部。
Figure 1 a, b, c are respectively φ~d i , φ~
2d i , φ>2d i is a cross-sectional explanatory diagram schematically showing the state of discharge near the gas supply hole. FIG. 2 is a schematic cross-sectional view of the plasma CVD apparatus.
FIGS. 3 a to 3 e are cross-sectional explanatory views showing the shapes of gas supply holes, respectively. FIGS. 4 to 6 are schematic cross-sectional views of conventional plasma CVD apparatuses, respectively. 1... Base, 2... Electrode, 3, 3a... Gas chamber, 4... Inlet, 5... Chamber, 6... Exhaust port, 7... Vacuum pump, 8... RF power supply, 11
... Chamber, 12 ... Gas chamber, 13 ... Electrode, 14 ... Base, 15 ... Inlet, 16 ... Gas supply hole, 17 ... Exhaust port, 18 ... RF power supply,
19... Heater, 21, 21... Ion sheath, 22, 22... Light section.

Claims (1)

【特許請求の範囲】 1 真空槽と、 該真空槽内に配置された膜形成用の基体と、 該基体と所定の間隔をおいて配置され、原料ガ
スを供給するためのガス室を形成する電極と、 該電極に形成され、内径2mm以下で且つ前記基
体と対向する側の縁に曲面を有するか、もしくは
面取り加工されている多数のガス供給穴とを備
え、 該ガス供給穴から原料ガスを前記基体に向けて
放出しつつ、プラズマ放電によつて基体上に成膜
することを特徴とするプラズマCVD装置。
[Scope of Claims] 1. A vacuum chamber; a substrate for forming a film disposed within the vacuum chamber; and a gas chamber disposed at a predetermined distance from the substrate for supplying raw material gas. an electrode, and a number of gas supply holes formed in the electrode, each having an inner diameter of 2 mm or less and having a curved surface or a chamfered edge on the side facing the base, and supplying raw material gas from the gas supply holes. A plasma CVD apparatus characterized in that a film is formed on a substrate by plasma discharge while emitting a substance toward the substrate.
JP13833484A 1984-07-03 1984-07-03 Plasma cvd device Granted JPS6115978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13833484A JPS6115978A (en) 1984-07-03 1984-07-03 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13833484A JPS6115978A (en) 1984-07-03 1984-07-03 Plasma cvd device

Publications (2)

Publication Number Publication Date
JPS6115978A JPS6115978A (en) 1986-01-24
JPH0565590B2 true JPH0565590B2 (en) 1993-09-20

Family

ID=15219478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13833484A Granted JPS6115978A (en) 1984-07-03 1984-07-03 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS6115978A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121429A (en) * 1984-11-19 1986-06-09 Matsushita Electric Ind Co Ltd Plasma cvd device
JPS61260623A (en) * 1985-05-14 1986-11-18 Matsushita Electric Ind Co Ltd Plasma vapor growth equipment
KR100476872B1 (en) * 1997-09-26 2005-07-05 삼성전자주식회사 Cathode for etching fabrication of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169116A (en) * 1980-05-28 1981-12-25 Sanyo Electric Co Ltd Manufacture of amorphous silicon film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169116A (en) * 1980-05-28 1981-12-25 Sanyo Electric Co Ltd Manufacture of amorphous silicon film

Also Published As

Publication number Publication date
JPS6115978A (en) 1986-01-24

Similar Documents

Publication Publication Date Title
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
US4897284A (en) Process for forming a deposited film on each of a plurality of substrates by way of microwave plasma chemical vapor deposition method
JPH0510428B2 (en)
JPH06177056A (en) Gas treatment device
JPS6137354B2 (en)
JPH0565590B2 (en)
JPS6010618A (en) Plasma cvd apparatus
JPS6117151A (en) Plasma cvd device
JPH11135442A (en) Method and apparatus for forming deposited film
US4418645A (en) Glow discharge apparatus with squirrel cage electrode
JPS62146268A (en) Apparatus for producing thin film
JPS6357503B2 (en)
JP3387616B2 (en) Plasma processing equipment
JP2848755B2 (en) Plasma CVD equipment
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JP3802990B2 (en) Plasma CVD equipment
JPS60215766A (en) Decomposing device by glow discharge
JPH05217915A (en) Plasma cvd device
GB2286200A (en) Plasma treatment of substrates having non planar surfaces; contoured electrodes
JP3368142B2 (en) Deposition film forming equipment
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPS60162777A (en) Plasma cvd apparatus
JPS6013074A (en) Plasma cvd device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term