JPH04211115A - Rf plasma cvd apparatus and thin film forming method - Google Patents

Rf plasma cvd apparatus and thin film forming method

Info

Publication number
JPH04211115A
JPH04211115A JP3002908A JP290891A JPH04211115A JP H04211115 A JPH04211115 A JP H04211115A JP 3002908 A JP3002908 A JP 3002908A JP 290891 A JP290891 A JP 290891A JP H04211115 A JPH04211115 A JP H04211115A
Authority
JP
Japan
Prior art keywords
substrate
film
electrode
shower supply
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3002908A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Makoto Koguchi
虎口 信
Shigeru Suzuki
茂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fujitsu Ltd
Original Assignee
Fuji Electric Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fujitsu Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3002908A priority Critical patent/JPH04211115A/en
Publication of JPH04211115A publication Critical patent/JPH04211115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase filming rate and to make uniform the thickness and the quality of film by forming a uniform and stabilized plasma with high density in a space between a substrate constituting a ground electrode and a shower supply face of an RF electrode being fed with high frequency power from the RF electrode. CONSTITUTION:Diameter of many holes 52, made through a shower supply face 51, is set 0.4 times or less of the interval between a substrate and the shower supply face 51 and 0.75 times or less than the interval between the centers of the holes thus constituting an electrode for forming an uniform and stabilized glow discharge. Gas pressure is increased by decreasing the opposing interval of electrode thus increasing the density of plasma for same RF power supply while furthermore active species, including neutral active species, are distributed uniformly thus obtaining an RF plasma CVD apparatus for increasing the filming rate with improved uniformity in film thickness and film quality. When a film is formed on the substrate, electrode interval is set such that the density of plasma is increased and all active species are distributed uniformly and the pressure of filming gas is set at a level for causing inter-electrode discharge thus increasing the density of plasma.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体製造工程にお
ける一連の工程中、基板表面に薄膜を形成する工程で用
いられるRFプラズマCVD装置として、真空容器内に
、ヒータを内蔵しその平坦な上面に被成膜基板が載置さ
れる基板台と、該基板台に対向する対向面が成膜用ガス
を対向空間にシャワーとして供給するための多数の孔を
備えたシャワー供給面として形成されたRF端電極を備
えてなるRFプラズマCVD装置の、特に、成膜速度の
向上と膜厚、膜質の均一化とを目指した装置構成と、こ
の装置を用いて基板表面に薄膜を形成する際の薄膜形成
方法とに関する。 [0002]
[Industrial Application Field] The present invention is an RF plasma CVD apparatus used in a process of forming a thin film on a substrate surface during a series of steps in a semiconductor manufacturing process. A substrate stand on which a substrate to be film-formed is placed, and an opposing surface facing the substrate stand formed as a shower supply surface having a large number of holes for supplying film-forming gas to the opposing space as a shower. A device configuration of an RF plasma CVD device equipped with an RF end electrode aimed at improving the film formation rate and uniformity of film thickness and film quality, and a method for forming a thin film on a substrate surface using this device. The present invention relates to a thin film forming method. [0002]

【従来の技術】従来、この種のRFプラズマCVD装置
においては、ヒータを内蔵した基板台に載置されて接地
電極を構成する被成膜基板と、この基板に対向するRF
端電極シャワー供給面との対向間隔を20〜40mm、
 これらの電極を収容する真空容器内のガス圧力を数t
orrとしてRF端電極RF電圧を印加し、両電極間に
均一で安定したグロー放電を発生させるとともにRF端
電極シャワー供給面から成膜用ガスを基板の被成膜面全
面に一様に供給しつつ、一方で真空排気系により真空容
器内のガスを排気しつつ真空容器内ガス圧を一定に保っ
て均一な膜厚、膜質の薄膜形成を行っている。なお、均
一な膜厚を得るために均一なガス流を基板面にもたらす
ための孔の配置の一例が、特開平1−149964号公
報に開示されている。 [0003]
[Prior Art] Conventionally, in this type of RF plasma CVD apparatus, a substrate to be deposited is placed on a substrate stand with a built-in heater and constitutes a ground electrode, and an RF
The facing distance between the end electrode and the shower supply surface is 20 to 40 mm.
The gas pressure in the vacuum container housing these electrodes is reduced to several tons.
An RF voltage is applied to the RF end electrode as orr to generate a uniform and stable glow discharge between both electrodes, and a film forming gas is uniformly supplied to the entire surface of the substrate to be filmed from the shower supply surface of the RF end electrode. At the same time, a thin film with uniform thickness and quality is formed by evacuating the gas inside the vacuum container using a vacuum evacuation system and keeping the gas pressure inside the vacuum container constant. An example of the arrangement of holes to provide a uniform gas flow to the substrate surface in order to obtain a uniform film thickness is disclosed in Japanese Patent Application Laid-Open No. 1-149964. [0003]

【発明が解決しようとする課題】従来のRFプラズマC
VD装置においては、電極間に均一で安定したグロー放
電を発生させるために、接地電極となる加熱された基板
とRF端電極シャワー供給面との対向間隔(以下電極間
隔ともいう)を20〜40mmに取り、ガス圧力を数t
orrと低く押さえている。このため、グロー放電によ
って得られるプラズマの密度が小さく、成膜に寄与する
活性種の密度が小さい。このため、成膜速度が小さく、
装置の生産性が低いという問題があった。また、電極間
隔が大きいため、シャワー供給面から基板へ向かうガス
流の中で電界の拘束を受けない中性活性種の分布が形成
されやすくなり、基板が大面積化すると膜厚および膜質
の均一性が低くなるという問題があった。 [0004] この発明の目的は、同一のRF電源を用
いてRF端電極接地電極との対向空間に高密度の均一な
プラズマを安定に得ることができ、かつ活性種が均一に
分布するRFプラズマCVD装置の電極構成と、この装
置による被成膜基板への薄膜形成時に、成膜速度を高め
ることができ、かつ大面積基板への成膜時にも膜厚およ
び膜質の均一性が得られる薄膜形成方法とを提供するこ
とである。 [0005]
[Problem to be solved by the invention] Conventional RF plasma C
In a VD device, in order to generate a uniform and stable glow discharge between the electrodes, the facing distance between the heated substrate serving as the ground electrode and the shower supply surface of the RF end electrode (hereinafter also referred to as electrode distance) is set to 20 to 40 mm. and increase the gas pressure to several tons.
I'm keeping it as low as orr. Therefore, the density of plasma obtained by glow discharge is low, and the density of active species contributing to film formation is low. For this reason, the deposition rate is low,
There was a problem that the productivity of the device was low. In addition, because the electrode spacing is large, it is easy to form a distribution of neutral active species that are not constrained by the electric field in the gas flow from the shower supply surface to the substrate, resulting in uniform film thickness and film quality when the substrate area becomes large. There was a problem with low sex. [0004] An object of the present invention is to create an RF plasma that can stably obtain a high-density, uniform plasma in a space facing an RF end electrode and a grounded electrode using the same RF power source, and in which active species are uniformly distributed. The electrode configuration of the CVD device and the thin film that can increase the deposition rate when forming a thin film on a substrate to be deposited using this device, and that can provide uniformity in film thickness and film quality even when depositing on a large area substrate. Another object of the present invention is to provide a forming method. [0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、真空容器内に、ヒータを内蔵
しその平坦な上面に被成膜基板が載置される基板台と、
該基板台に対向する対向面が成膜用ガスを対向空間にシ
ャワーとして供給するための多数の孔を備えたシャワー
供給面として形成されたRF端電極を備えてなるRFプ
ラズマCVD装置を、前記シャワー供給面の孔の直径が
基板台に載置された被成膜基板とシャワー供給面との対
向間隔の0.4倍以下に、かつ孔相互の中心間隔の0゜
75倍以下となるように形成されている装置とするもの
とする。 [0006]そして、シャワー供給面の孔の直径がこの
ように形成されるRFプラズマCVD装置において、被
成膜基板とRF端電極シャワー供給面との間隔を20m
m以下とすればさらに好適である。 [0007]また、シャワー供給面に形成される孔は、
該シャワー供給面上で、共通点を通る。方向が60°ず
つずれた3本の直線をそれぞれ含む3組の等間隔平行線
群が形成する多数の最小正三角形のそれぞれ頂点位置に
形成すれば好適である。 [0008]そして、被成膜基板への薄膜形成に際し、
RF端電極シャワー供給面の孔の直径と、シャワー供給
面と被成膜基板との対向間隔および孔相互の中心間隔と
の関係が上述のように設定された装置において、成膜用
ガスの圧力を、RF電極に供給されるRF電圧のもとて
放電可能な圧力として基板上に薄膜を形成する薄膜形成
方法をとるものとする。 [0009]
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a substrate stand which has a built-in heater in a vacuum container and on which a substrate to be film-formed is placed on its flat upper surface;
The RF plasma CVD apparatus includes an RF end electrode whose opposing surface facing the substrate table is formed as a shower supply surface having a large number of holes for supplying film-forming gas to the opposing space as a shower. The diameter of the hole in the shower supply surface is set to be 0.4 times or less of the facing distance between the deposition target substrate placed on the substrate stand and the shower supply surface, and 0.75 times or less of the center distance between the holes. The device shall be formed in the following manner. [0006] In the RF plasma CVD apparatus in which the diameter of the hole in the shower supply surface is formed as described above, the distance between the film-forming substrate and the RF end electrode shower supply surface is set to 20 m.
It is more preferable to set it to less than m. [0007] Additionally, the hole formed in the shower supply surface is
A common point is passed on the shower supply surface. It is preferable to form them at the respective vertices of a large number of minimum equilateral triangles formed by three groups of equally spaced parallel lines each including three straight lines whose directions are shifted by 60°. [0008] Then, when forming a thin film on a substrate to be film-formed,
In an apparatus in which the relationship between the diameter of the hole in the shower supply surface of the RF end electrode, the facing distance between the shower supply surface and the substrate to be film-formed, and the center distance between the holes is set as described above, the pressure of the film-forming gas is Assume that a thin film forming method is used in which a thin film is formed on a substrate at a pressure that can be discharged under the RF voltage supplied to the RF electrode. [0009]

【作用】同一のRF電源を用いて高密度のプラズマを得
るためには、成膜用ガスの圧力をあげ、電極間隔を小さ
くして均一で安定したグロー放電を発生させる必要があ
る。発明者の実験によれば、高ガス圧すなわち低真空度
、類ギャップにて均一で安定したグロー放電を発生させ
るためには、電極、とくに陰極面の凹凸を無くして平坦
化し、放電集中の誘発を避けることが非常に重要である
ことが分かった。すなわち、シャワー供給面の孔は電極
面の凹凸に相当することから、その大きさと電極間隔お
よび孔相互の中心間隔との間に一定の関係が成り立つと
きにのみ安定なグロー放電が得られる。すなわち、孔の
大きさ(直径)が電極間隔りと対比して大きくなると、
孔の周縁部の電界強度Eが平均電界強&E  =V/D
(V:被成膜基板とRF電極との間に印加されている電
圧)に対して異常に大きくなり、均一なグロー放電が得
られなくなる。また、孔相互の中心間隔すなわちピッチ
pが孔の直径dに近づくと、孔と孔との間の部分が突起
電極として作用するようになるため、この部分に電界が
集中し、フィラメント状アークの形成に到り、均一なグ
ロー放電が得られない。均一なグロー放電が得られるの
は、孔の直径d、被成膜基板とシャワー供給面との間隔
り、孔のピッチpとの間に、 d(0,4XD d<0.75Xp の関係が成り立つときのみであることが実験により確認
された。従って、この関係が保たれるように電極系を構
成することにより、電極間に均一で安定したグロー放電
を発生させることができ、同一のRF電源のもとてガス
圧をあげ電極間隔を小さくして高密度の均一なプラズマ
を安定に得ることができる。 [00101この場合、実施例の項で詳細を説明するよ
うに、電極間隔りを、従来の20〜40mmから20m
m以下とすることにより、同一ガス圧力でもプラズマ密
度が顕著に大きくなる。そして、このようにして得られ
た高密度プラズマ中の中性活性種は、電極間隔が小さい
ためにその分布を形成する機会が与えられず、すべての
活性種が均一に分布し、大面積基板に対しても膜厚、膜
質ともに均一な薄膜形成が可能になる。 [0011]また、シャワー供給面に形成される孔を、
該シャワー供給面上で共通点を通る。方向が60°ずつ
ずれた3本の直線をそれぞれ含む3組の等間隔平行線群
が形成する多数の最小正三角形のそれぞれ頂点位置に形
成すれば、面積が一定のシャワー供給面上に、孔の最小
ピッチが一定の場合、最も多くの孔を形成することがで
き、かつガス流が均一化される。また、これにより、所
定のガス流を得るのに孔径を小さくすることができるか
ら、均一なグロー放電が得られる電極間隔を小さくする
ことができ、これによりプラズマ密度をさらに上げるこ
とができる。 [0012]以上のことから、被成膜基板への成膜時に
、電極間隔を上述の孔径の条件が保たれる範囲内の可及
的小さい値に保ち、かつ成膜用ガスの圧力を、RF電極
に供給されるRF電圧のもとて放電可能な圧力として基
板上に薄膜を形成する薄膜形成方法をとることにより、
プラズマ形成空間(電極の対向空間)のプラズマ密度を
高めることができ、成膜速度が高められる。しかも、こ
のようにして得られた高密度プラズマ中の中性活性種は
、電極間隔が小さいためにその分布を形成する機会が与
えられず、すべての活性種が均一に分布し、大面積基板
への成膜時にも膜厚、膜質の均一性が得られる。 [0013]
[Operation] In order to obtain high-density plasma using the same RF power source, it is necessary to increase the pressure of the film-forming gas and reduce the electrode spacing to generate a uniform and stable glow discharge. According to the inventor's experiments, in order to generate a uniform and stable glow discharge at high gas pressure, low vacuum, and a similar gap, it is necessary to eliminate unevenness on the electrode, especially the cathode surface, to make it flat, and to induce discharge concentration. I found it very important to avoid. That is, since the holes on the shower supply surface correspond to the irregularities on the electrode surface, a stable glow discharge can be obtained only when a certain relationship is established between the size, the electrode spacing, and the center spacing between the holes. In other words, when the hole size (diameter) becomes larger compared to the electrode spacing,
The electric field strength E at the periphery of the hole is the average electric field strength &E = V/D
(V: the voltage applied between the film-forming substrate and the RF electrode) becomes abnormally large, making it impossible to obtain a uniform glow discharge. Furthermore, when the distance between the centers of the holes, that is, the pitch p, approaches the diameter d of the holes, the part between the holes acts as a protruding electrode, and the electric field is concentrated in this part, causing a filamentary arc. As a result, a uniform glow discharge cannot be obtained. A uniform glow discharge can be obtained if the relationship d(0,4XD d<0.75Xp) is established between the hole diameter d, the distance between the deposition substrate and the shower supply surface, and the hole pitch p It has been confirmed through experiments that the relationship is true only when High-density, uniform plasma can be stably obtained by increasing the gas pressure using the power supply and reducing the electrode spacing. [00101 In this case, as detailed in the Examples section, the electrode spacing can be reduced , 20m from the conventional 20-40mm
By making it less than m, the plasma density becomes significantly higher even at the same gas pressure. The neutral active species in the high-density plasma obtained in this way are not given the opportunity to form a distribution due to the small electrode spacing, and all active species are uniformly distributed and It is also possible to form a thin film with uniform thickness and quality. [0011] Also, the hole formed in the shower supply surface,
passing through a common point on the shower supply surface. If holes are formed at the vertices of a large number of minimum equilateral triangles formed by three groups of equally spaced parallel lines each including three straight lines whose directions are shifted by 60 degrees, holes can be formed on a shower supply surface with a constant area. If the minimum pitch of the holes is constant, the largest number of holes can be formed and the gas flow will be uniform. Furthermore, since the pore diameter can be made smaller to obtain a predetermined gas flow, the electrode spacing for obtaining a uniform glow discharge can be made smaller, thereby further increasing the plasma density. [0012] From the above, when forming a film on a film-forming substrate, the electrode spacing is kept as small as possible within the range that maintains the above-mentioned pore diameter conditions, and the pressure of the film-forming gas is By adopting a thin film formation method that forms a thin film on a substrate as a pressure that can be discharged under the RF voltage supplied to the RF electrode,
The plasma density in the plasma formation space (the space facing the electrodes) can be increased, and the film formation rate can be increased. Moreover, the neutral active species in the high-density plasma obtained in this way are not given an opportunity to form a distribution due to the small electrode spacing, and all active species are uniformly distributed and Uniformity in film thickness and film quality can also be obtained during film formation. [0013]

【実施例】図1に本発明によるRF電極のシャワー供給
面構造の一実施例を、図2にこの実施例によるシャワー
供給面を有するRF電極を用いたRFプラズマCVD装
置構成の一実施例を示す。 [0014]真空容器1の両壁には、被成膜基板2の搬
入、搬出を行うための仕切り弁3a、3bが真空容器1
に真空シール可能に取り付けられている。被成膜基板2
は、真空容器1内に該真空容器の外部から図示されない
駆動装置により上下動可能に設置された。ヒータを内蔵
する基板台4の上面に接触して設置される。この基板台
4と対向する対向面51をシャワー供給面とするRF電
極5が、絶縁ブツシュ9を介して真空容器1に取り付け
られ、かつRF電源6に接続されている。RF電極5に
は、さらに、シャワー供給面51の背面側に成膜用ガス
を送り込むための絶縁材からなるガス供給管8が接続さ
れている。なお、図中の符号7は、ガス供給管8を介し
てシャワー供給面51と基板2との対向空間に成膜用ガ
スが継続して供給されている状態で真空容器1内を0゜
5〜10torr範囲内の一定のガス圧に保つために、
真空容器内のガスを所定の流量で排気する真空排気系で
ある。 [00151基板2への成膜時には、基板2が基板台4
からの加熱により一定の温度になった後、成膜用ガスを
RF電極5内へ送り込み、RF電極5のシャワー供給面
51の孔を通してシャワー供給面51と基板2との対向
空間に供給するとともにRF電極5にRF電源6から高
周波電力を供給して成膜を行う。 [0016]ところで、RF電極5のシャワー供給面5
1の孔は、これを限られた面積内でできるだけ多く形成
し、これにより放電形成空間(シャワー供給面51と基
板2との対向空間)に所定のガス量を供給する際の孔の
直径を小さくして、 〔課題を解決するための手段〕の
項で与えられた関係:d<0.4D、d<0.75pを
より満足しやすくするために、図1に示すように、孔は
正三角形の頂点位置に配されている。ここで、dが孔の
直径、Dがシャワー供給面と基板との対向間隔、pが孔
相互の中心間隔である。 [0017]シヤワ一供給面と基板との対向空間におけ
る放電状態が、孔の直径dと、シャワー供給面と基板と
の対向間隔りとの組合わせにより、どのように変わるか
を調べた実験結果を図3に示す。図中の○印は均一なグ
ロー放電が形成されたことを示し、X印はフィラメント
状アークが形成され、均一なグロー放電が得られなかっ
たことを示す。この実験結果から、均一なグロー放電は
、d=o、4Dの直線より右側の領域において、すなわ
ちd<0.4Dのときに得られることが分かる。 [0018]また、図4に孔の直径dと孔相互の中心間
隔pとの組合わせにより、放電状態がどのように変わる
かを調べた実験結果を示す。この実験結果から、均一な
グロー放電は、d=0.75pより右側の領域において
、すなわちd(0,75pのときに得られることがわか
る。 [0019]図5に孔の直径dが、上述の条件:d〈0
.4D、d<0.75pを満たしている状態で、シャワ
ー供給面と被成膜基板との間に形成されるプラズマの密
度neがシャワー供給面と被成膜基板との対向間隔りと
ともにどのように変わるかを、ガス圧をパラメータとし
て調べた実験結果を示す。この実験結果から、プラズマ
密度は、対向間隔りが等しい場合には、ガス圧にほぼ比
例して変わることがわかる。また、間隔りが小さくなる
につれ、プラズマ密度は、ガス圧が一定の場合、対向間
隔りにほぼ反比例して大きくなることがわかる。従って
、対向間隔りを、従来の20〜40mm範囲から、例え
ば20mm以下の範囲とし、均一なグロー放電が得られ
るように孔を形成した上でガス圧をあげることにより、
従来と比べ、密度が顕著に高いプラズマを得ることがで
き、かつ中性活性種を含む活性種の分布を均一化するこ
とができる。ガス圧を、RF電極に供給されたRF電圧
のもとて放電可能な最高圧力とすることにより、プラズ
マ密度は可能な極限値に達し、成膜速度が極限まで高め
られる。 [0020]
[Example] Fig. 1 shows an example of the structure of an RF electrode shower supply surface according to the present invention, and Fig. 2 shows an example of the configuration of an RF plasma CVD apparatus using an RF electrode having a shower supply surface according to this embodiment. show. [0014] Gate valves 3a and 3b for loading and unloading the substrate 2 to be film-formed are provided on both walls of the vacuum chamber 1.
Vacuum sealable. Film-forming substrate 2
was installed in the vacuum container 1 so as to be movable up and down from the outside of the vacuum container by a drive device (not shown). It is installed in contact with the upper surface of the substrate stand 4 that has a built-in heater. An RF electrode 5 whose shower supply surface is a facing surface 51 facing the substrate table 4 is attached to the vacuum container 1 via an insulating bushing 9 and connected to an RF power source 6 . A gas supply pipe 8 made of an insulating material is further connected to the RF electrode 5 for supplying film-forming gas to the back side of the shower supply surface 51. Note that the reference numeral 7 in the figure indicates that the inside of the vacuum vessel 1 is heated at 0°5 while the film-forming gas is continuously supplied to the space facing the shower supply surface 51 and the substrate 2 via the gas supply pipe 8. To maintain a constant gas pressure within the range of ~10 torr,
This is a vacuum exhaust system that exhausts the gas inside the vacuum container at a predetermined flow rate. [00151 When forming a film on the substrate 2, the substrate 2 is placed on the substrate stand 4.
After reaching a certain temperature by heating from Film formation is performed by supplying high frequency power to the RF electrode 5 from the RF power supply 6. [0016] By the way, the shower supply surface 5 of the RF electrode 5
The number of holes No. 1 is formed as many as possible within a limited area, so that the diameter of the hole when supplying a predetermined amount of gas to the discharge formation space (the space facing the shower supply surface 51 and the substrate 2) can be adjusted. In order to make it smaller and more easily satisfy the relationships given in the section ``Means for Solving the Problems'': d<0.4D, d<0.75p, the hole is made smaller as shown in Figure 1. It is placed at the apex of an equilateral triangle. Here, d is the diameter of the hole, D is the facing distance between the shower supply surface and the substrate, and p is the center distance between the holes. [0017] Experimental results of investigating how the discharge state in the space where the shower supply surface faces the substrate changes depending on the combination of the hole diameter d and the spacing between the shower supply surface and the substrate. is shown in Figure 3. The ◯ marks in the figure indicate that a uniform glow discharge was formed, and the X marks indicate that a filamentary arc was formed and a uniform glow discharge was not obtained. From this experimental result, it can be seen that a uniform glow discharge is obtained in the region to the right of the straight line d=o, 4D, that is, when d<0.4D. [0018] Further, FIG. 4 shows the results of an experiment in which it was investigated how the discharge state changes depending on the combination of the diameter d of the holes and the center distance p between the holes. From this experimental result, it can be seen that a uniform glow discharge is obtained in the region to the right of d=0.75p, that is, when d(0.75p). Condition: d〈0
.. 4D, in a state where d<0.75p is satisfied, how does the density ne of the plasma formed between the shower supply surface and the deposition target substrate change with the facing distance between the shower supply surface and the deposition target substrate? The results of an experiment using gas pressure as a parameter are shown to determine whether the This experimental result shows that the plasma density changes approximately in proportion to the gas pressure when the opposing spacing is equal. It can also be seen that as the spacing becomes smaller, the plasma density increases in approximately inverse proportion to the opposing spacing when the gas pressure is constant. Therefore, by changing the facing distance from the conventional range of 20 to 40 mm to, for example, a range of 20 mm or less, forming holes to obtain a uniform glow discharge, and increasing the gas pressure,
Compared to the conventional method, it is possible to obtain plasma with a significantly higher density, and to make the distribution of active species including neutral active species uniform. By setting the gas pressure to the maximum pressure that can be discharged under the RF voltage supplied to the RF electrode, the plasma density reaches the maximum possible value and the deposition rate is increased to the maximum. [0020]

【発明の効果】本発明においては、RFプラズマCVD
装置を上述のように構成したので、以下に記載するよう
な効果が得られる。 [00211請求項1の装置では、両電極間に常に均一
で安定したグロー放電を形成することができる。このた
め、同一のRF電源のもとで成膜用ガスの圧力をあげ、
電極間隔を小さくして均一で安定したグロー放電を発生
させることにより、高密度のプラズマ、従って高密度の
活性種を得ることができ、装置の成膜速度をあげること
ができるとともに、その小さい電極間隔から、中性活性
種の分布が形成されることなくすべての活性種が基板前
面に均一に分布し、大面積基板に対しても膜厚、膜質が
均一な成膜が可能になる。また、電極間隔を小さくして
安定な成膜が可能とすることから、気相での反応が少な
くなり、この反応によって生成されたパーティクルが基
板表面に粒の状態で乗ることによる。いわゆるパーティ
クル汚損が少なくなるという副次的効果も得ることかで
きる。 [0022]請求項2の装置では、図5の実施例に示し
たように、ガス圧が同じ場合、同一のRF電源のもとて
プラズマ密度は電極間隔に反比例し、また、電極間隔が
等しい場合にはガス圧にほぼ比例するから、電極間隔を
従来の20〜40mm範囲から20mm以下の範囲内で
、所要精度が維持できる孔径を考慮の上、できるだけ小
さく、例えば5〜15mm範囲内に設定してガス圧をあ
げることにより、従来と比べ、密度が顕著に高いプラズ
マを得ることができ、また、活性種が均一に分布して、
成膜速度が向上し、膜厚および膜質が均一化される。 [0023]請求項3の装置では、孔の最小ピッチが一
定の場合には、シャワー供給面に最も多くの孔を形成す
ることができ、かつガス流が均一化される。また、これ
により、所定のガス流量を得るのに孔径を小さくすると
とができ、均一なグロー放電が得られる電極間隔を小さ
くすることができるから、均一なプラズマの密度をさら
にあげることができる。 [0024]そして、本発明の装置では、電極系が常に
均一で安定したグロー放電が形成されるように構成され
ていることから、基板表面に薄膜を形成する際の薄膜形
成方法として、請求項4に記載したように、電極間隔を
可及的小さい値に保ち、かつ成膜用ガスの圧力を、RF
電極に供給されるRF電圧のもとて放電可能な圧力とし
て基板上に薄膜を形成する薄膜形成方法をとることによ
り、プラズマ形成空間(電極の対向空間)のプラズマ密
度を高めることができ、成膜速度が高められる。しかも
、このようにして得られた高密度プラズマ中の中性活性
種は、電極間隔が小さいためにその分布を形成する機会
が与えられず、すべての活性種が均一に分布し、大面積
基板への成膜時にも膜厚、膜質の均一性が得られる。
[Effect of the invention] In the present invention, RF plasma CVD
Since the apparatus is configured as described above, the following effects can be obtained. [00211 In the device of claim 1, a uniform and stable glow discharge can always be formed between both electrodes. For this reason, the pressure of the film-forming gas is increased under the same RF power source.
By reducing the electrode spacing and generating a uniform and stable glow discharge, it is possible to obtain a high-density plasma and therefore a high-density active species, increasing the deposition rate of the device, and using small electrodes. Due to the spacing, all the active species are uniformly distributed on the front surface of the substrate without forming a distribution of neutral active species, making it possible to form a film with uniform thickness and quality even on a large-area substrate. Furthermore, since stable film formation is possible by reducing the electrode spacing, reactions in the gas phase are reduced, and particles generated by this reaction ride on the substrate surface in the form of grains. A secondary effect of reducing so-called particle contamination can also be obtained. [0022] In the apparatus of claim 2, as shown in the embodiment of FIG. 5, when the gas pressure is the same, the plasma density is inversely proportional to the electrode spacing under the same RF power source, and the electrode spacing is equal. In this case, it is almost proportional to the gas pressure, so the electrode spacing is set to be as small as possible, for example, within the range of 5 to 15 mm, taking into account the hole diameter that can maintain the required accuracy, from the conventional 20 to 40 mm range to 20 mm or less. By increasing the gas pressure, it is possible to obtain a plasma with a significantly higher density compared to conventional methods, and the active species are evenly distributed.
The film formation speed is improved and the film thickness and quality are made uniform. [0023] In the apparatus of claim 3, when the minimum pitch of the holes is constant, the maximum number of holes can be formed on the shower supply surface, and the gas flow can be made uniform. Moreover, this allows the hole diameter to be made smaller to obtain a predetermined gas flow rate, and the electrode spacing for obtaining a uniform glow discharge can be made smaller, so that the density of uniform plasma can be further increased. [0024] In the apparatus of the present invention, the electrode system is configured so that a uniform and stable glow discharge is always formed. 4, the electrode spacing is kept as small as possible, and the pressure of the film-forming gas is adjusted to RF
By using a thin film formation method in which a thin film is formed on a substrate under pressure that allows discharge under the RF voltage supplied to the electrodes, it is possible to increase the plasma density in the plasma formation space (the space facing the electrodes) and increase the plasma density in the plasma formation space (space facing the electrodes). Membrane speed is increased. Moreover, the neutral active species in the high-density plasma obtained in this way are not given an opportunity to form a distribution due to the small electrode spacing, and all active species are uniformly distributed and Uniformity in film thickness and film quality can also be obtained during film formation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例によるRF電極のシャワー供
給面の構造を示す図であって同図(a)は平面図、同図
(b)は同図(a)のA−A線に沿う断面図
FIG. 1 is a diagram showing the structure of a shower supply surface of an RF electrode according to an embodiment of the present invention, in which FIG. 1(a) is a plan view and FIG. 1(b) is a line AA in FIG. Cross-sectional view along

【図2】図
2に示す構造のシャワー供給面を有するRF電極を備え
たRFプラズマCVD装置構成の一実施例を示す縦断面
FIG. 2 is a vertical cross-sectional view showing an example of the configuration of an RF plasma CVD apparatus equipped with an RF electrode having a shower supply surface having the structure shown in FIG.

【図3] RF電極のシャワー供給面の孔の直径と、該
シャワー供給面と被成膜基板との間隔との組合わせによ
る放電状態の変化を示す線図 【図4] RF電極のシャワー供給面の孔の直径と孔相
互の中心間隔との組合わせによる放電状態の変化を示す
線図 【図51 RF電極のシャワー供給面と被成膜基板との
間隔とプラズマ密度との関係をガス圧をパラメータとし
て示す線図 【符号の説明】 1  真空容器 2  基板(被成膜基板) 4  基板台 5   RF電極 6   RF電源 51  シャワー供給面 52孔
[Figure 3] A diagram showing changes in the discharge state depending on the combination of the diameter of the hole in the shower supply surface of the RF electrode and the distance between the shower supply surface and the substrate to be film-formed. [Figure 4] Shower supply of the RF electrode A diagram showing the change in the discharge state depending on the combination of the diameter of the holes on the surface and the distance between the centers of the holes Diagram showing parameters as parameters [Explanation of symbols] 1 Vacuum vessel 2 Substrate (substrate to be film-formed) 4 Substrate stand 5 RF electrode 6 RF power source 51 Shower supply surface 52 holes

【図1】[Figure 1]

【図2】[Figure 2]

【図3】[Figure 3]

【図4】[Figure 4]

【図5】[Figure 5]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空容器内に、ヒータを内蔵しその平坦な
上面に被成膜基板が載置される基板台と、該基板台に対
向する対向面が成膜用ガスを対向空間にシャワーとして
供給するための多数の孔を備えたシャワー供給面として
形成されたRF端電極を備えてなるRFプラズマCVD
装置において、前記シャワー供給面の孔の直径が基板台
に載置された被成膜基板とシャワー供給面との対向間隔
の0.4倍以下に、かつ孔相互の中心間隔の0.75倍
以下となるように形成されていることを特徴とするRF
プラズマCVD装置。
1. A substrate table having a built-in heater and on which a substrate to be film-formed is placed on the flat upper surface of the substrate table in a vacuum container, and an opposing surface facing the substrate table showering a film-forming gas into an opposing space. RF plasma CVD comprising an RF end electrode formed as a shower supply surface with a number of holes for supplying
In the apparatus, the diameter of the hole in the shower supply surface is 0.4 times or less the facing distance between the deposition target substrate placed on the substrate stand and the shower supply surface, and 0.75 times the center distance between the holes. RF characterized by being formed as follows:
Plasma CVD equipment.
【請求項2】請求項第1項に記載のRFプラズマCVD
装置において、被成膜基板とRF端電極シャワー供給面
との対向間隔を20mm以下としたことを特徴とするR
FプラズマCVD装置。
Claim 2: RF plasma CVD according to claim 1.
In the apparatus, the opposing distance between the substrate to be film-formed and the RF end electrode shower supply surface is set to 20 mm or less.
F plasma CVD equipment.
【請求項3】請求項第1項に記載のRFプラズマCVD
装置において、RF端電極シャワー供給面に形成される
孔が、該シャワー供給面上で、共通点を通る。方向が6
0°ずつずれた3本の直線をそれぞれ含む3組の等間隔
平行線群が形成する多数の最小正三角形のそれぞれ頂点
位置に形成されることを特徴とするRFプラズマCVD
装置。
Claim 3: RF plasma CVD according to claim 1.
In the apparatus, holes formed in the RF end electrode shower supply surface pass through a common point on the shower supply surface. direction is 6
RF plasma CVD characterized by being formed at each vertex position of a large number of minimum equilateral triangles formed by three groups of equally spaced parallel lines each including three straight lines shifted by 0°
Device.
【請求項4】請求項第1項ないし第3項いずれかに記載
の装置を用い、成膜用ガスの圧力を、RF端電極供給さ
れるRF電圧のもとて放電可能な圧力として基板上に薄
膜を形成することを特徴とする薄膜形成方法。
4. Using the apparatus according to any one of claims 1 to 3, the pressure of the film-forming gas is set to a pressure that can be discharged under the RF voltage supplied to the RF end electrode on the substrate. A thin film forming method characterized by forming a thin film on.
JP3002908A 1990-01-26 1991-01-16 Rf plasma cvd apparatus and thin film forming method Pending JPH04211115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3002908A JPH04211115A (en) 1990-01-26 1991-01-16 Rf plasma cvd apparatus and thin film forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1706890 1990-01-26
JP2-17068 1990-01-26
JP3002908A JPH04211115A (en) 1990-01-26 1991-01-16 Rf plasma cvd apparatus and thin film forming method

Publications (1)

Publication Number Publication Date
JPH04211115A true JPH04211115A (en) 1992-08-03

Family

ID=26336392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002908A Pending JPH04211115A (en) 1990-01-26 1991-01-16 Rf plasma cvd apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JPH04211115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
US6599367B1 (en) 1998-03-06 2003-07-29 Tokyo Electron Limited Vacuum processing apparatus
KR100435119B1 (en) * 1995-07-27 2004-08-06 동경 엘렉트론 주식회사 Apparatus for processing individual wafers
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
KR100435119B1 (en) * 1995-07-27 2004-08-06 동경 엘렉트론 주식회사 Apparatus for processing individual wafers
US6599367B1 (en) 1998-03-06 2003-07-29 Tokyo Electron Limited Vacuum processing apparatus

Similar Documents

Publication Publication Date Title
JP7176860B6 (en) Semiconductor processing chamber to improve precursor flow
JPH0969400A (en) Plasma processing device
KR20000062949A (en) Plasma CVD Film-Forming Device
JPH057861B2 (en)
US6001432A (en) Apparatus for forming films on a substrate
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JPH05320891A (en) Sputtering device
JP3583294B2 (en) Plasma emission device and plasma processing device
KR102224586B1 (en) Coating material for processing chambers
KR940000909B1 (en) Thin film forming method using radio frequency plasma and apparatus thereof
JPH06291064A (en) Plasma treatment device
JP2634339B2 (en) Sputtering equipment
JP3480254B2 (en) Dry etching method, dry etching apparatus, liquid crystal display manufacturing method, and semiconductor manufacturing method
JPS60123033A (en) Plasma treating device
JPH0565590B2 (en)
JP4251713B2 (en) Sputtering equipment
JP2001220668A (en) Substrate treating apparatus, substrate treating method and thin film device produced by using the same
JPH02200784A (en) Cvd electrode
JPH06247791A (en) Method for forming hard carbon thin film and device therefor
JPH04173966A (en) Target cell unit and vacuum film forming device
JPH0560648B2 (en)
JPS6013074A (en) Plasma cvd device
JPH0250958A (en) Film-forming equipment by sputtering method
JPH01208458A (en) Sputtering device
JPS6115973A (en) Plasma cvd device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980817