JPS61159771A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61159771A
JPS61159771A JP60000508A JP50885A JPS61159771A JP S61159771 A JPS61159771 A JP S61159771A JP 60000508 A JP60000508 A JP 60000508A JP 50885 A JP50885 A JP 50885A JP S61159771 A JPS61159771 A JP S61159771A
Authority
JP
Japan
Prior art keywords
light
receiving surface
oxide layer
layer
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60000508A
Other languages
Japanese (ja)
Inventor
Takeo Fukatsu
深津 猛夫
Kazuyuki Goto
一幸 後藤
Masaru Takeuchi
勝 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60000508A priority Critical patent/JPS61159771A/en
Publication of JPS61159771A publication Critical patent/JPS61159771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve photoelectric conversion efficiency largely by using a light-receiving surface electrode containing an at least indium group light-transmitting conductive oxidizing substance while arranging a titanium group light-transmitting oxide layer thinner than the light-receiving surface electrode between the indium group light-transmitting conductive oxidizing substance and an optical active layer. CONSTITUTION:When a substrate 2, which must support an optical active layer 1, is employed as a light-receiving surface, the substrate 2 consists of a light-transmitting insulating material such as glass, and an indium group light-transmitting conductive oxide layer is disposed onto one main surface of the substrate 2 as a light-receiving surface electrode 3. A titanium group light-transmitting oxide layer 4 is arranged onto the exposed surface of the light- receiving surface electrode 3 consisting of ITO, and the light-transmitting oxide layer 4 is brought into contact with the optical active layer 1 mainly comprising an amorphous silicon group semiconductor operating in a photoelectric conversion manner when it is irradiated by beams. The titanium group light-transmitting oxide layer 4 is composed of an oxide layer mainly comprising titanium and TiO2 is proper to the layer 4, the film thickness of such TiO2 must be thinner than the light-receiving surface electrode 3 because a sheet resistance value thereof is higher than ITO, SnO2, etc., and film thickness of approximately 30-700Angstrom is preferable.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光電変換動作する光活性層としてアモルファス
シリコン系半導体を含む光起電力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photovoltaic device including an amorphous silicon-based semiconductor as a photoactive layer for photoelectric conversion.

(口1 従来の技術 光照射を受けると起電力を発生する光起電力装置に於い
て、光電変換動作する光活性層の受光面側に配fItさ
れる受光面電極には1発電に寄与する光を光活性層に導
くべく透光性が要求される。
(1) Conventional technology In a photovoltaic device that generates an electromotive force when exposed to light irradiation, the light-receiving surface electrode disposed on the light-receiving surface side of the photoactive layer that performs photoelectric conversion contributes to one power generation. Translucency is required to guide light to the photoactive layer.

従来から斯る透光性を呈すべく酸化インジウム(InH
)i)、酸化スズ(8nOx)、酸化インジウムスズ(
ITO)等の透光性導電酸化物(To。
Conventionally, indium oxide (InH) has been used to exhibit such translucency.
)i), tin oxide (8nOx), indium tin oxide (
Transparent conductive oxides (To.

)が用いられている。) is used.

然し乍ら、上記Inff103や斯るmosに5no2
を3〜15wt%ドープしたI’rO等のインジウム系
のTOOにあってはフィルス1クタ(FF)は良いもの
の開放電圧(Voc)が低く〈。
However, 5no2 to the above Inff103 and such mos
Indium-based TOO such as I'rO doped with 3 to 15 wt% of I'rO has a good filter factor (FF) but a low open circuit voltage (Voc).

5n02等のスズ系のTOOの場合は、その逆でVOO
は大きい反面、FFが悪いと云う互いに相反する欠点を
持っている。
In the case of tin-based TOO such as 5n02, vice versa, VOO
Although it is large, it has the contradictory drawbacks of poor FF.

特開昭57−157578号公報及び特開昭5f3−1
4582号公報に開示さnた光起電力装置にあっては受
光UB1を極としてITO及び8nO2の2層構造とす
ることによって1両者の持つ欠点を相殺し特性を改善す
る方法が提案されている。
JP-A-57-157578 and JP-A-5F3-1
In the photovoltaic device disclosed in Japanese Patent No. 4582, a method has been proposed in which the light-receiving device UB1 is used as a pole to have a two-layer structure of ITO and 8nO2, thereby canceling out the drawbacks of both and improving the characteristics. .

(ハ)発明が解決しようとする問題点 熱るに、上記ITO1!:8nOxの両者の屈折率はほ
ぼt9〜2.0と実質的に同一であり、2層構造である
にも拘らず後方の光活性層の屈折率との差を緩和するに
至らない結果反射防止膜として有効に利用されてシらず
、また光活性層としてシリコン化合物雰囲気中でのプラ
ズマOVD法で形成されるアモルファスシリコン、アモ
ルファスシリコンカーバイド、アモルファスシリコンス
ズ。
(c) Problems to be solved by the invention The above-mentioned ITO1! : The refractive index of both 8nOx is substantially the same as t9~2.0, and although it has a two-layer structure, the difference with the refractive index of the rear photoactive layer is not alleviated, resulting in reflection. Amorphous silicon, amorphous silicon carbide, and amorphous silicon tin are not effectively used as a preventive film, and are formed as a photoactive layer by a plasma OVD method in a silicon compound atmosphere.

アモルファスシリコンゲルマニウム、及ヒアモルファス
シリコンナイトライド等のアモルファスシリコン系半導
体を用いた場合、斯る半導体形成工。
When amorphous silicon-based semiconductors such as amorphous silicon germanium and hyamorphous silicon nitride are used, such a semiconductor forming process is required.

程に於けるプラズマ反応時、受光面電極の構成元素であ
るIn、8n、Oが半導体膜中に拡散し光電変換特性の
向上を朋、害する要因となっている。
During the plasma reaction, In, 8n, and O, which are constituent elements of the light-receiving surface electrode, diffuse into the semiconductor film and become a factor that impairs the improvement of photoelectric conversion characteristics.

(ロ)問題点を解決するための手段 本発明光起電力装置は上述の如き問題点を解決するため
に、少なくともインジウム系の透光性導電酸化物層を含
む受光面電極を用いると共に。
(b) Means for Solving the Problems In order to solve the above-mentioned problems, the photovoltaic device of the present invention uses a light-receiving surface electrode that includes at least an indium-based light-transmitting conductive oxide layer.

上記インジウム系の透光性導電酸化物l−と光電変換動
作するアモルファスシリコン系半導体を主体とする光活
性層との間に、上記受光面電極より肉薄なチタン系の透
光性酸化物層を配置した構成にある。
A titanium-based transparent oxide layer thinner than the light-receiving surface electrode is provided between the indium-based transparent conductive oxide l- and the photoactive layer mainly composed of an amorphous silicon-based semiconductor that performs photoelectric conversion. It's in the configured configuration.

(ホ)作 用 上述の如く、インジウム系の透光性導電酸化物層と光活
性層との間に配置される肉薄なチタン系の透光性酸化物
層は屈折率がI’rOや8nO!等のTCOより高く1
元活性層のそれより小さいので、T・aOと光活性層と
の屈折率の差を緩和すべく作用する。
(E) Function As mentioned above, the thin titanium-based transparent oxide layer disposed between the indium-based transparent conductive oxide layer and the photoactive layer has a refractive index of I'rO or 8nO. ! 1 higher than the TCO of
Since it is smaller than that of the original active layer, it acts to alleviate the difference in refractive index between T·aO and the photoactive layer.

(へ)実施例 第1図は本発明光起電力装置を光活性層(1)を支持す
べき基板(2)を受光面とした場合の一実施例を示して
いる。即ち、基板(2)は透光性且つ絶縁性の材料1例
えばガラスから成り、その基板(2)の一方の主面には
インジウム系の透光性導電酸化物層が受光面電極(3)
として配置されている。上記インジウム系の透光性導電
酸化物とはインジウムの酸化物であるIn2O!のみな
らず該In!O!に8nO2やアンチモン(8b)を3
〜15wt%と僅かにドープしたITOやsbドープド
In1i等を含み1本発明にあっては最適なI’rOの
単独構成として以下に説明する。
(F) Embodiment FIG. 1 shows an embodiment of the photovoltaic device of the present invention in which the substrate (2) which supports the photoactive layer (1) is used as the light receiving surface. That is, the substrate (2) is made of a light-transmitting and insulating material 1, such as glass, and on one main surface of the substrate (2), an indium-based light-transmitting conductive oxide layer is provided as a light-receiving surface electrode (3).
It is located as. The above-mentioned indium-based transparent conductive oxide is an oxide of indium, In2O! Not only the In! O! Add 8nO2 or antimony (8b) to
This will be described below as a single structure of I'rO, which is optimal for the present invention and includes ITO slightly doped with ~15 wt%, sb-doped In1i, etc.

上記ITOの受光面電極(3)の露出面、即ち基板(2
)と接触しない方の面にはチタン系の透光性酸化物層(
4)が配v1)され、この透光性酸化物層(4)は光照
射を受けると光電変換動作するアモルファスシリコン系
半導体を主体とする光活性層(1)と接触する。
The exposed surface of the ITO light-receiving surface electrode (3), that is, the substrate (2)
) is coated with a titanium-based transparent oxide layer (
4) is arranged v1), and this transparent oxide layer (4) comes into contact with a photoactive layer (1) mainly composed of an amorphous silicon-based semiconductor that performs photoelectric conversion when irradiated with light.

上記チタン系の透光性酸化物層(4)はチタン(’I’
i)を主体とする酸化物層でT10!が好適であり。
The titanium-based transparent oxide layer (4) is made of titanium ('I'
T10 with an oxide layer mainly composed of i)! is preferable.

斯るT10!はシート抵抗値がI’I’Oや8nO!等
に比して高いので、その膜厚としては受光面電極(3)
のそれより肉薄であることが肝要である。その意味に於
いて通常ITOjili独構成の受光面構成(3)は6
00λ乃至4000に程度の膜厚のものが使用されるの
で、’riozから成る酸化物層(4)にあっては約3
0λ乃至700λの膜厚が好ましい。
Such T10! The sheet resistance value is I'I'O or 8nO! The film thickness is higher than that of the light-receiving surface electrode (3).
It is important that it be thinner than that of . In that sense, the light-receiving surface configuration (3) of the ITOjili-only configuration is usually 6
The thickness of the oxide layer (4) made of 'rioz is approximately 3.
A film thickness of 0λ to 700λ is preferable.

上記アモルファスシリコン系の光活性層(1)は光電変
換動作すべくその膜中にpin、pinpin。
The amorphous silicon photoactive layer (1) has pins in it for photoelectric conversion.

pnn、pn  等の周知の単−或いはタンデム構造の
半導体接合を備えてシリ、BIH4,81zH4,8i
F4等のシリコン(81)化合物雰囲気中でのプラズマ
OVD法や光OVD法により形成される。例えば受光面
側から見てpin 接合を備える場合、先ずTlO2の
透光性酸化物層(4)上に81化合物雰囲気中にp型ド
ーパントであるボロン(Blを含むジボラン(B2H4
)が僅かに添加されることによってp型のアモルファス
シリコンが得られ1次いでBzH6のない状態、即ちノ
ンドープな状態により真性(1型)のアモルファスシリ
コンが形成され、最後にn型ドーパントであるリン(p
)を含むフtスフィン(PHiS)の添加によりn型に
価電子制御されたアモルファスシリコンを積層すること
によって、上記pin 接合を完成させる。
Silicon, BIH4, 81zH4, 8i with well-known single or tandem structure semiconductor junctions such as pnn, pn, etc.
It is formed by a plasma OVD method or a light OVD method in an atmosphere of a silicon (81) compound such as F4. For example, when a pin junction is provided when viewed from the light-receiving surface side, diborane (B2H4
) is added in a small amount to obtain p-type amorphous silicon, then in the absence of BzH6, that is, in a non-doped state, intrinsic (type 1) amorphous silicon is formed, and finally, the n-type dopant phosphorus ( p
) The above pin junction is completed by stacking amorphous silicon whose valence electrons are controlled to be n-type by addition of phthalocyanine (PHiS).

またp型層として上記アモルファスシリコンより窓効果
の大きいアモルファスシリコンカーバイドを使用する場
合、81化合物ガスにOH4,0vHb等のハイドロカ
ーボンを混合することKより達成できる。他のアモルフ
ァスシリコン系の半導体にりいてもそれらの元素化合物
ガスを使用すれば、所望な半導体膜が得られる。
Furthermore, when amorphous silicon carbide, which has a greater window effect than the amorphous silicon described above, is used as the p-type layer, this can be achieved by mixing a hydrocarbon such as OH4,0vHb with the 81 compound gas. For other amorphous silicon-based semiconductors, desired semiconductor films can be obtained by using these elemental compound gases.

このように半導体接合を備えた光活性層(1)の背面に
は、該光活性層(1)とオーiwり接触するアルミニウ
ム(A/)、銀(p、y)、チタン銀合金(TiAf)
等の単独更には上記Tooを含めた積層構造の背面電m
 (5)が設けられ、この背面電極(5)と受光面電極
(3)から光活性層(IIの光電変換出力が導出される
The backside of the photoactive layer (1) with the semiconductor junction is thus coated with aluminum (A/), silver (p,y), titanium-silver alloy (TiAf), which is in direct contact with the photoactive layer (1). )
etc. alone, or a laminated structure including the above-mentioned Too.
(5) is provided, and the photoelectric conversion output of the photoactive layer (II) is derived from the back electrode (5) and the light-receiving surface electrode (3).

次に有効発電面積1−の光起電力装置による比較試験の
結果を用いて本発明の詳細な説明する。
Next, the present invention will be explained in detail using the results of a comparative test using a photovoltaic device with an effective power generation area of 1-.

光活性層(1)を支持すべき基板(2)としてはガラス
を使用しその他の構成は第1表の通りである。
Glass was used as the substrate (2) to support the photoactive layer (1), and the other components were as shown in Table 1.

上記試料1〜3には透光性酸化物層(4)が存在しない
従来構成であり、試料4〜9は本発明の構成である。そ
してこれら受光面電極(3)或いは受光面電極(3)及
び透光性酸化物層(4)を基板(1)の−主直に配置し
た試料1〜9を同時にプラズマOVD装置ニ取込み、p
型のアモルファスシリコンカーバイドと1型及びn型の
アモルファスシリコンをこの順序で堆積することによっ
て試料1〜9に同一構成にあるpin 接合型の光活性
層(1)を形成し、最後に背面電極(5)としてAI!
を蒸着により被着してplD 接合型アモルファスシリ
コン系光起電力装置を完成さ−t!:念。
Samples 1 to 3 have the conventional structure without the transparent oxide layer (4), and Samples 4 to 9 have the structure of the present invention. Then, samples 1 to 9 in which the light-receiving surface electrode (3) or the light-receiving surface electrode (3) and the transparent oxide layer (4) are arranged directly on the substrate (1) are taken into the plasma OVD apparatus at the same time.
By depositing type amorphous silicon carbide and type 1 and n type amorphous silicon in this order, a pin junction type photoactive layer (1) having the same structure is formed on samples 1 to 9, and finally a back electrode ( 5) As AI!
A PLD junction type amorphous silicon based photovoltaic device was completed by depositing it by vapor deposition. : Nen.

尚、上記IT0,8nO!の受光面電極(3)はシート
低抗の小さいものが得られる電子ビーム蒸着法により形
成され、Ti0ffiの透光性酸化物層(4)はTit
−陰極ターゲットとするアルゴン(Ar)5 X 10
− Torr、酸素(0! ) 4 x’ 0−’I’
orr s基板(2)温度100℃の条件による通常の
RFスパッタリングにより形成し九。
In addition, the above IT0.8nO! The light-receiving surface electrode (3) is formed by the electron beam evaporation method, which can obtain a sheet with a small resistance, and the transparent oxide layer (4) of Ti0ffi is formed using TiOffi.
- Argon (Ar) 5 x 10 as cathode target
- Torr, oxygen (0!) 4 x'0-'I'
orrs Substrate (2) Formed by normal RF sputtering at a temperature of 100°C.

第2表は上記試料1〜9のpin 接合型アモルファス
シリコン系光起電力装置の光電変換特性をAM−1,1
00s*W/−のソーラシ、ミレータを用いて測定した
結果である。@21に於いて、Voc、Isc、F’F
及びηは夫々開放電圧、短絡層流。
Table 2 shows the photoelectric conversion characteristics of the pin junction type amorphous silicon photovoltaic devices of Samples 1 to 9 AM-1, 1
These are the results of measurements using a 00s*W/- Sourasi and Mirator. @21, Voc, Isc, F'F
and η are open circuit voltage and short circuit laminar flow, respectively.

フィルフチフタ及び光電変換出力を示している。The filter and photoelectric conversion output are shown.

第2表 上記第2表から明らかな如く1本発明を実施せる試料4
〜9にあっては、従来の受光面を極(3)としてI’I
’O及び8nO!を単独構成とした試料1及び2.更に
はITO及びanO!を積層した試料1及び2の改良に
係る試料3と比較して、りが高くなることが確認でき丸
。特に、Ti0ffiの透光性酸化物層(4)の膜厚に
して試料6〜8の10OA乃至550Aa度の範囲に於
いてりが8%を越える結果が得られた。
Table 2 As is clear from the above Table 2, 1 Sample 4 that can carry out the present invention
~9, I'I with the conventional light receiving surface as the pole (3)
'O and 8nO! Samples 1 and 2 each have a single configuration. Furthermore, ITO and anO! Compared to Sample 3, which is an improved version of Samples 1 and 2, in which layers were laminated, it was confirmed that the resistance was higher. In particular, results were obtained in which the film thickness of the transparent oxide layer (4) of Ti0ffi exceeded 8% in the range of 10OA to 550Aa degrees for Samples 6 to 8.

斯るηの向上の理由としては、上記T10!の透光性酸
化物層(4)の屈折率が約Z4〜Z8であり。
The reason for this improvement in η is the above T10! The refractive index of the transparent oxide layer (4) is about Z4 to Z8.

ITOの受光面電極(3)のそれが上述の如く約t9〜
20.またアモルファスシリコン系の光活性層(1)は
約6.4〜4と受光面電f! (3)と光活性層(1)
の中間値をとるために1両者の屈折率との差を緩和する
ことができ1反射防止膜として有効に利用されたためと
考えられると共に、Tioxの如きチタン系の酸化物層
(4)はSnowやITO等のToOK比して化学的に
安定であり耐プラズマ性に富む結果、光活性層(1)中
への構成元素の拡散が抑圧され九ためと考えられる。
As mentioned above, the ITO light-receiving surface electrode (3) is about t9~
20. Furthermore, the amorphous silicon-based photoactive layer (1) has a light-receiving surface area f! of approximately 6.4 to 4. (3) and photoactive layer (1)
This is thought to be because the difference in refractive index between the two can be alleviated by taking an intermediate value between the two, and the titanium-based oxide layer (4) such as Tiox is used effectively as an anti-reflection film. It is thought that this is because the diffusion of constituent elements into the photoactive layer (1) is suppressed because it is chemically stable and has high plasma resistance compared to ToOK such as ITO and ITO.

第2図は本発明の他の実施列を示し、fa1図の実施例
とは光入射方向の点に於いて相違する。即ち、この実施
例にあっては光は基板(2)1dllからではなく、基
板(2)の反対側から照射せしめられる。従って基板(
2)自身がステンレス−A/等から成り導電性を有する
場合、基板(2)の導電表面にアモルファスシリコン系
の光活性層(1)が形成された後、その表面にチタン系
の透光性酸化物層(4)が形成さfi。
FIG. 2 shows another embodiment of the present invention, which differs from the embodiment shown in FIG. fa1 in the direction of light incidence. That is, in this embodiment, light is emitted not from the substrate (2) 1dll, but from the opposite side of the substrate (2). Therefore, the substrate (
2) When the substrate itself is made of stainless steel A or the like and has conductivity, an amorphous silicon-based photoactive layer (1) is formed on the conductive surface of the substrate (2), and then a titanium-based light-transmitting layer is formed on the surface of the amorphous silicon-based photoactive layer (1). An oxide layer (4) is formed fi.

最後にこの酸化物層(4)より肉厚なインジウム系の透
光性導電酸化物層の受光面成極(2)が積層被着される
。また基板(2)自身が絶縁体であってもその表面に導
電体を被着すiば基本的には上記構成と同一となる。
Finally, a light-receiving surface polarization layer (2) of an indium-based transparent conductive oxide layer, which is thicker than the oxide layer (4), is deposited. Furthermore, even if the substrate (2) itself is an insulator, if a conductor is attached to its surface, the structure is basically the same as that described above.

()I  発明の効果 本発明光起電力装置は以上の説明から明らかな如く、イ
ンジウム系の透光性導電酸化物層とアモルファスシリコ
ン系の光活性層との間に、上記透光性導電酸化物層を含
む受光面電極より肉薄なチタン系の透光性酸化物層を配
置することによって、斯る透光性酸化物層は反射防止膜
として有効に作用し、光電変臭効率を大幅に向上させる
ことができる。
()I Effects of the Invention As is clear from the above description, the photovoltaic device of the present invention has the above-mentioned light-transmitting conductive oxide layer between the indium-based light-transmitting conductive oxide layer and the amorphous silicon-based photoactive layer. By arranging a titanium-based light-transmitting oxide layer that is thinner than the light-receiving surface electrode containing the material layer, the light-transmitting oxide layer effectively acts as an anti-reflection film, greatly increasing the photoelectric odor conversion efficiency. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断頁図、第2図は本発明の
他の実施例の断面図、を夫々示している。 (1)−光活性層、 (3)・・・受光面電極、  (
4)−・透光性酸化物層% (5)−・・背面電極。 第1図 \、 了 ト 印
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is a cross-sectional view of another embodiment of the present invention. (1)-photoactive layer, (3)...light-receiving surface electrode, (
4)--Transparent oxide layer% (5)--Back electrode. Figure 1 \, Completed mark

Claims (4)

【特許請求の範囲】[Claims] (1)光照射を受けると光電変換動作するアモルファス
シリコン系半導体を主体とする光活性層と、該光活性層
を挾んで受光面側と背面側に設けられた受光面電極及び
背面電極と、を備え、上記受光面電極は少なくとも、イ
ンジウム系の透光性導電酸化物層を含むと共に、該イン
ジウム系の透光性導電酸化物層と光活性層との間に上記
受光面電極より肉薄なチタン系の透光性酸化物層を配置
したことを特徴とする光起電力装置。
(1) A photoactive layer mainly made of an amorphous silicon-based semiconductor that performs photoelectric conversion when irradiated with light; a light-receiving surface electrode and a back electrode provided on the light-receiving surface side and the back side with the photoactive layer sandwiched therebetween; The light-receiving surface electrode includes at least an indium-based light-transmitting conductive oxide layer, and a layer thinner than the light-receiving surface electrode between the indium-based light-transmitting conductive oxide layer and the photoactive layer. A photovoltaic device characterized by disposing a titanium-based transparent oxide layer.
(2)上記チタン系の透光性酸化物層は酸化チタンであ
ることを特徴とした特許請求の範囲第1項記載の光起電
力装置。
(2) The photovoltaic device according to claim 1, wherein the titanium-based light-transmitting oxide layer is titanium oxide.
(3)上記酸化チタンの膜厚は約30Å乃至700Åで
あることを特徴とした特許請求の範囲第2項記載の光起
電力装置。
(3) The photovoltaic device according to claim 2, wherein the titanium oxide film has a thickness of about 30 Å to 700 Å.
(4)上記チタン系の透光性酸化物層と接触する部分の
光活性層はアモルファスシリコンカーバイドであること
を特徴とした特許請求の範囲第1項乃至第3項記載の光
起電力装置。
(4) The photovoltaic device according to any one of claims 1 to 3, wherein the photoactive layer in the portion that contacts the titanium-based transparent oxide layer is made of amorphous silicon carbide.
JP60000508A 1985-01-07 1985-01-07 Photovoltaic device Pending JPS61159771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000508A JPS61159771A (en) 1985-01-07 1985-01-07 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000508A JPS61159771A (en) 1985-01-07 1985-01-07 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS61159771A true JPS61159771A (en) 1986-07-19

Family

ID=11475709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000508A Pending JPS61159771A (en) 1985-01-07 1985-01-07 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61159771A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449924A (en) * 1993-01-28 1995-09-12 Goldstar Electron Co., Ltd. Photodiode having a Schottky barrier formed on the lower metallic electrode
JP2004095669A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Photoelectric conversion element
WO2005027229A1 (en) * 2003-08-29 2005-03-24 Asahi Glass Company, Limited Base with transparent conductive film and method for producing same
JP2005244073A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Solar cell and method for manufacturing the same
WO2007027498A1 (en) * 2005-08-30 2007-03-08 Pilkington Group Limited Light transmittance optimizing coated glass article for solar cell and method for making
WO2008024206A1 (en) * 2006-08-24 2008-02-28 Guardian Industries Corp. Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
WO2010023867A1 (en) * 2008-08-25 2010-03-04 株式会社エバテック Thin-film solar cell and manufacturing method therefore and substrate for thin-film solar cell
JP2010225735A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Photosensor and method of manufacturing the same
EP1756871A4 (en) * 2004-05-24 2015-12-16 First Solar Inc Photovoltaic cell including capping layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121685A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS5789265A (en) * 1980-11-26 1982-06-03 Asahi Chem Ind Co Ltd Photo electromotive element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121685A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS5789265A (en) * 1980-11-26 1982-06-03 Asahi Chem Ind Co Ltd Photo electromotive element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449924A (en) * 1993-01-28 1995-09-12 Goldstar Electron Co., Ltd. Photodiode having a Schottky barrier formed on the lower metallic electrode
JP2004095669A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Photoelectric conversion element
WO2005027229A1 (en) * 2003-08-29 2005-03-24 Asahi Glass Company, Limited Base with transparent conductive film and method for producing same
JP2005244073A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Solar cell and method for manufacturing the same
EP1756871A4 (en) * 2004-05-24 2015-12-16 First Solar Inc Photovoltaic cell including capping layer
WO2007027498A1 (en) * 2005-08-30 2007-03-08 Pilkington Group Limited Light transmittance optimizing coated glass article for solar cell and method for making
JP2009505941A (en) * 2005-08-30 2009-02-12 ピルキングトン・グループ・リミテッド Coated glass article for optimizing light transmittance for use in solar cells and method for producing the same
US7968201B2 (en) 2005-08-30 2011-06-28 Pilkington Group Limited Light transmittance optimizing coated glass article for solar cell and method for making
KR101252322B1 (en) * 2005-08-30 2013-04-08 필킹톤 노쓰 아메리카, 인코포레이티드 Light transmittance optimizing coated glass article for solar cell and method for making
WO2008024206A1 (en) * 2006-08-24 2008-02-28 Guardian Industries Corp. Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
WO2010023867A1 (en) * 2008-08-25 2010-03-04 株式会社エバテック Thin-film solar cell and manufacturing method therefore and substrate for thin-film solar cell
JP2010225735A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Photosensor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
JPS6138870B2 (en)
JPS61159771A (en) Photovoltaic device
JP2011009615A (en) Method for manufacturing solar cell
JPH06163955A (en) Solar cell substrate and solar cell
JPS61141185A (en) Manufacture of photovoltaic element
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPS6085578A (en) Manufacture of thin film photoelectric conversion element
JP3510443B2 (en) Method for manufacturing photovoltaic device
JP3249619B2 (en) Solar cell
JPH0733301Y2 (en) Photoelectric conversion device
JPH02177374A (en) Photoelectric conversion device
JPH02111080A (en) Amorphous thin-film solar cell
JPH022183A (en) Photocell applicable at low light level
JP2648698B2 (en) Heat-resistant solar cell
JP2975751B2 (en) Photovoltaic device
JPS611062A (en) Photovoltaic device
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JPH10284743A (en) Optoelectric traducer
JP3687236B2 (en) Thin film photoelectric conversion element
JP2866475B2 (en) Solar cell and method of manufacturing the same
JP3469061B2 (en) Solar cell
JP2815688B2 (en) Manufacturing method of thin film solar cell
JPS616873A (en) Photovoltaic element
JPH03185877A (en) Manufacture of photovoltaic element