JPS61159766A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61159766A
JPS61159766A JP28144684A JP28144684A JPS61159766A JP S61159766 A JPS61159766 A JP S61159766A JP 28144684 A JP28144684 A JP 28144684A JP 28144684 A JP28144684 A JP 28144684A JP S61159766 A JPS61159766 A JP S61159766A
Authority
JP
Japan
Prior art keywords
region
ion implantation
field
semiconductor device
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28144684A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28144684A priority Critical patent/JPS61159766A/en
Publication of JPS61159766A publication Critical patent/JPS61159766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To simplify the manufacturing process of a semiconductor device by simultaneously executing a process, in which ions are implanted to an inter- element isolation region in a semiconductor device, and a process in which ions are implanted to an element forming region and a short-channel effect is prevented. CONSTITUTION:When the conditions of ion implantation are determined, energy, a dosage and the range of implantation depth are decided so as to form an impurity profile in a region in which a short channel effect is inhibited sufficiently in an element forming region. Energy, a dosage and the thickness of a LOCOS film are determined so as to simultaneously shape a sufficient impurity profile under a LOCOS8 in a field region. Consequently, even an effect increasing the concentration of a field substrate is displayed in the ion implantation. As a result, the energy of ions, the dosage, the pressure of a field film, implantation depth, etc. are optimized and the method is executed so that an impurity is introduced to the region sufficiently inhibiting the short-channel effect in the element forming region and under the LOCOS8 in the field region. Accordingly, ion implantation has been divided into independent two processes, but the impurity may be treated through one-time ion implantation, thus simplify processes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置の製造方法に関する。この方法は
MOS  ICプロセスなどに適用して。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device. This method can be applied to MOS IC processes, etc.

製造工程の簡略化を図るために用いることができる。It can be used to simplify the manufacturing process.

[従来の技術] 従来、MOS  ICプロセスにおいては、次のような
製造方法が採用されていた。即ち、第2図(a)に示す
如く基板1′上にSiO*膜2′と5isNall13
’とを順次形成し、その後その不必要部分を除去して第
2図(b)の如き5iO22及び5i3N43とする。
[Prior Art] Conventionally, the following manufacturing method has been adopted in the MOS IC process. That is, as shown in FIG. 2(a), a SiO* film 2' and 5isNall13 are formed on a substrate 1'
' and then remove unnecessary parts to obtain 5iO22 and 5i3N43 as shown in FIG. 2(b).

この部分が素子形成領域4に対応するものとなる。かつ
この後の段階でフィールド領域5にチャネルストップの
ためのイオン注入を行い、第2図(C)に破線で示すよ
うな高濃度部を形成する。このイオン注入は、フィール
ド領域を、基板lのその他の部分よりも濃度の高い領域
として、フィールドMO5のVスレッシュホールド(v
th、電流が流れるための臨界電圧)を高めるたちのも
のである。その後第2図(d)の如くソース領域6及び
ドレイン領域7を形成する。なお図中8はLOGO3,
9はポリシリコン電極である。
This portion corresponds to the element formation region 4. At a later stage, ions are implanted into the field region 5 for channel stop to form a high concentration region as shown by the broken line in FIG. 2(C). This ion implantation sets the field region as a region of higher concentration than the rest of the substrate l to the V threshold (v
th, the critical voltage for current to flow). Thereafter, a source region 6 and a drain region 7 are formed as shown in FIG. 2(d). In addition, 8 in the figure is LOGO3,
9 is a polysilicon electrode.

従来技術では、通例、ショートチャネル効果を低減させ
るため、素子形成領域4(活性領域)の下の深い部分(
但し、その深さは場合により異なる)に基板lの他の部
分より高い濃度のイオン注入を行う、即ち、第2図(e
)のゲートシリコン41の下の部分に高濃度部を形成し
、これにより表面以外でソース領域6とドレイン領域7
との間のチャージの移動が生ずること、つまりショート
チャネル効果を防止する。
In the conventional technology, in order to reduce the short channel effect, a deep part (
However, ion implantation is performed at a higher concentration than in other parts of the substrate l (the depth differs depending on the case), that is, as shown in FIG.
), a high concentration region is formed under the gate silicon 41, thereby forming a source region 6 and a drain region 7 other than the surface.
This prevents the charge from moving between the two, that is, the short channel effect.

上述のように、深い部分へのイオン注入は、ショートチ
ャネル効果を低減するための手段として素子形成領域4
の下に基板1より高い濃度のイオン注入を行う技術とし
て採用されるものである。従ってこの場合のイオン注入
は素子形成領域4の下にだけ施せばよい、全面にイオン
注入することもあるが、それも素子形成領域4に注入す
るために行っているのである。
As mentioned above, deep ion implantation is used to reduce the short channel effect in the device formation region 4.
This technique is adopted as a technique for implanting ions at a higher concentration than that of the substrate 1 under the substrate. Therefore, the ion implantation in this case only needs to be carried out under the element formation region 4.Although ion implantation may be carried out over the entire surface, it is also performed for the purpose of implanting into the element formation region 4.

上記の如く、従来は、活性MO5のショートチャネル効
果を抑えるためのイオン注入をフィールドMO5のvt
hを高めるためのイオン注入とは、全く独立に行われて
いた。このため、イオン注入を2度行うことになり、工
程数が多くなっていた。
As mentioned above, in the past, ion implantation to suppress the short channel effect of active MO5 was carried out to reduce the vt of field MO5.
Ion implantation for increasing h was performed completely independently. For this reason, ion implantation has to be performed twice, increasing the number of steps.

[発明の目的] 本発明は、工程を簡略化した半導体装置の製造方法を提
供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a method for manufacturing a semiconductor device with simplified steps.

[発明の構成及び作用] 本発明の半導体装置の製造方法においては、半導体装置
の素子間分離領域にイオン注入する工程を、素子形成領
域にイオン注入することによりショートチャネル効果防
止を行う工程と同時に行う。
[Structure and operation of the invention] In the method for manufacturing a semiconductor device of the present invention, the step of implanting ions into the element isolation region of the semiconductor device is performed at the same time as the step of preventing the short channel effect by implanting ions into the element formation region. conduct.

この構成により、ショートチャネル効果防止のためのイ
オン注入に、チャネルストップのためのイオン注入の効
果をもたせ、これにより、一工程のイオン注入で両者の
機能を果たさせることができる。この結果、工程を簡略
化できる。
With this configuration, the ion implantation for preventing the short channel effect can have the effect of the ion implantation for stopping the channel, so that both functions can be achieved by one step of ion implantation. As a result, the process can be simplified.

なお上記素子形成領域とは、この領域の適宜の位置に素
子を形成すべき領域のことで、必ずしも素子が形成され
る位置そのもののみを示すものではない、ショートチャ
ネル効果抑制のためのイオン注入を施す領域に相当する
領域である。
Note that the above-mentioned element formation region refers to a region where an element is to be formed at an appropriate position in this region, and does not necessarily indicate only the position itself where the element is formed. This area corresponds to the area where the image is applied.

従来は前記の如く、ショートチャネル効果防止のために
イオン注入は素子形成領域(活性領域)下に行えばよい
ものと考えられ、結局フィールド領域へのイオン注入と
は全く別の手段と考えられて、この考えが前提されてい
た。従って、シ、−トチャネル効果防止のためのイオン
注入を施す場合でも、一般にその前にフィールド領域へ
のイオン注入を行い、vthを高めていたものである。
Conventionally, as mentioned above, it was thought that ion implantation should be performed under the element formation region (active region) in order to prevent the short channel effect, and in the end it was considered to be a completely different means from ion implantation into the field region. , this idea was assumed. Therefore, even when ion implantation is performed to prevent the field channel effect, ions are generally implanted into the field region beforehand to increase vth.

むしろ両イオン注入工程のエネルギや、注入するイオン
の中位面11i出りのa(ドースm)等を独立に設定す
るためにも、両者は別工程とするという観念が固定的で
あった。
Rather, in order to independently set the energy of both ion implantation steps and the a (dose m) of the implanted ion exiting from the middle surface 11i, it has been a fixed idea that the two ion implantation steps should be performed as separate steps.

しかし通常1両イオン注入のイオンは同じ種類であり、
エネルギやドース量も大きく異なってはいない、従って
、ショートチャネル効果防止のためのイオン注入の条件
を最適化することにより、従来必ず行われていたフィー
ルド領域のイオン注入を省くことが可能であるという知
見により1本発明が想到されたものである0条件の最適
化としては、例えば素子形成領域と素子間分離領域(活
性領域とフィールド領域)における不純物の深さ、濃度
を最適化すればよい。
However, normally the ions in both ion implantations are of the same type,
The energy and dose are not significantly different. Therefore, by optimizing the ion implantation conditions to prevent the short channel effect, it is possible to omit ion implantation in the field region, which was traditionally performed. Optimization of the 0 condition, which has led to the present invention based on knowledge, may be achieved by optimizing the depth and concentration of impurities in the element formation region and the isolation region (active region and field region), for example.

[発明の実施例] 以下、本発明の一実施例について、第1図(A)乃至(
C)に示す略示図を用いて説明する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
This will be explained using the schematic diagram shown in C).

この例は本発明をNch  MOSに適用した場合であ
り、第2図で説明した従来方法と途中迄同じである。即
ち第2図(b)に示したフィールド領域にイオン注入を
行う段階に至る前までは同じであるが、本実施例では、
このイオン注入は行わない、従って、第1図(A)に示
す状態は、対応する従来の第2図(C)の状態と異なり
、イオンが注入されず、イオン濃度の高い部分というも
のはない。
This example is a case where the present invention is applied to an Nch MOS, and is the same up to the middle as the conventional method explained in FIG. That is, the process is the same up to the stage of ion implantation into the field region shown in FIG. 2(b), but in this example,
This ion implantation is not performed. Therefore, the state shown in FIG. 1(A) is different from the corresponding conventional state shown in FIG. 2(C) in which no ions are implanted and there is no high ion concentration area. .

次に本実施例では、第1図(b)に示すように、イオン
注入を行う0例えばこのイオン注入は、150−250
KeVの範囲で行うことができ1本例では200KeV
で行った。これは5iOz41の下にまで注入できるよ
う、高エネルギで設定するが、個々の対象に応じて制御
することができる。このイオン注入によって、第1図(
C)に示すように、素子形成領域4下の深い部分へのイ
オン注入(図の4aで示す部分へのイオン注入)と、フ
ィールド領域5下へのイオン注入(図の5aで示す部分
へのイオン注入)とが一工程で同時に達成される。
Next, in this embodiment, as shown in FIG. 1(b), ion implantation is performed.
It can be carried out in the KeV range, and in one example it is 200KeV.
I went there. This is set at a high energy so that it can be injected down to 5 iOz41, but it can be controlled depending on the individual target. Through this ion implantation, as shown in Figure 1 (
As shown in C), ion implantation into a deep part under the element formation region 4 (ion implantation into the part shown by 4a in the figure) and ion implantation into the part under the field region 5 (into the part shown by 5a in the figure) is performed. (ion implantation) is achieved simultaneously in one step.

このイオン注入の条件を決める際には、まず、素子形成
領域において十分ショートチャネル効果を抑える領域に
不純物プロフィルができるように、エネルギ、ドース量
、注入深さの範囲を決める。また同時に、フィールド領
域において、LOCO38下に十分な不純物プロフィル
ができるよう、エネルギ、ドース量、LOCO5Jf!
厚を決定する。これによって、フィールド基板濃度を高
める効果をも、このイオン注入に持たせる。
When determining the conditions for this ion implantation, first, the energy, dose amount, and implantation depth range are determined so that an impurity profile is created in a region where the short channel effect is sufficiently suppressed in the element formation region. At the same time, in the field region, the energy, dose, LOCO5Jf!
Determine the thickness. This allows the ion implantation to also have the effect of increasing the field substrate concentration.

このように素子形成領域ではショートチャネル効果を十
分に抑える領域に、またフィールド領域ではLOCO5
a下に不純物が十分に入るようイオンのエネルギ、ドー
ス量、フィールド膜圧、注入深さ等を最適化して実施す
ることにより、従来イオン注入を独立の二工程に分けて
いたのを、1回のイオン注入で処理できるようになり、
工程が簡略化された。
In this way, in the element formation region, the short channel effect is sufficiently suppressed, and in the field region, the LOCO5
By optimizing the ion energy, dose, field film pressure, implantation depth, etc. so that the impurity enters sufficiently under a, the conventional ion implantation process, which was divided into two independent steps, can now be performed in one step. can now be treated with ion implantation,
The process has been simplified.

なおこの例では、LOCOS後にイオン注入を行ったが
、LOCO3前でもよい、イオン注入により二つの効果
が同時に達成できる時期にイオン注入を施せばよいもの
である。
In this example, ion implantation was performed after LOCOS, but ion implantation may be performed before LOCO3, as long as the ion implantation can be performed at a time when two effects can be achieved simultaneously.

当然のことであるが、本発明は上記説明した実施例にの
み限定されるものではない。
Naturally, the present invention is not limited to the embodiments described above.

[発明の効果] 上述の如く、本発明によれば、半導体装置の製造方法に
おいてその工程を簡略化することができるという効果が
ある。
[Effects of the Invention] As described above, according to the present invention, there is an effect that the steps in the method of manufacturing a semiconductor device can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)乃至(C)は本発明の一実施例を工程順に
示す図である。第2図(a)乃至(f)は5従来技術を
工程順に示す図である。 1・・・基板、4・・・素子形成領域、5・・・フィー
ルド領域、8・・・素子間分離領域(LOGO3)。
FIGS. 1A to 1C are diagrams showing an embodiment of the present invention in the order of steps. FIGS. 2(a) to 2(f) are diagrams showing five conventional techniques in order of process. DESCRIPTION OF SYMBOLS 1... Substrate, 4... Element formation region, 5... Field region, 8... Element isolation region (LOGO3).

Claims (1)

【特許請求の範囲】[Claims] 1、半導体装置の素子間分離領域にイオン注入する工程
を、素子形成領域にイオン注入することによりショート
チャネル効果防止を行う工程と同時に行うことを特徴と
する半導体装置の製造方法。
1. A method for manufacturing a semiconductor device, characterized in that the step of implanting ions into the element isolation region of the semiconductor device is carried out simultaneously with the step of preventing short channel effects by implanting ions into the element formation region.
JP28144684A 1984-12-31 1984-12-31 Manufacture of semiconductor device Pending JPS61159766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28144684A JPS61159766A (en) 1984-12-31 1984-12-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28144684A JPS61159766A (en) 1984-12-31 1984-12-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61159766A true JPS61159766A (en) 1986-07-19

Family

ID=17639283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28144684A Pending JPS61159766A (en) 1984-12-31 1984-12-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61159766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112273A (en) * 1988-08-30 1990-04-24 American Teleph & Telegr Co <Att> Cmos integrated circuit and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118376A (en) * 1977-03-25 1978-10-16 Nec Corp Manufacture of semiconductor device
JPS5925242A (en) * 1983-07-11 1984-02-09 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118376A (en) * 1977-03-25 1978-10-16 Nec Corp Manufacture of semiconductor device
JPS5925242A (en) * 1983-07-11 1984-02-09 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112273A (en) * 1988-08-30 1990-04-24 American Teleph & Telegr Co <Att> Cmos integrated circuit and its manufacture

Similar Documents

Publication Publication Date Title
JP2697392B2 (en) Method of manufacturing complementary semiconductor device
US5786252A (en) Method of manufacturing a semiconductor device, and semiconductor device manufactured by such a method
JPH0730107A (en) High voltage withstand transistor and its manufacture
JPS61159766A (en) Manufacture of semiconductor device
JPH04251939A (en) Semiconductor device and manufacture thereof
JPH05235346A (en) Semiconductor device and manufacture thereof
JPH07161825A (en) Semiconductor device and its manufacture
KR950012035B1 (en) Cmos transistor manufacturing process
JPH01214169A (en) Semiconductor device
JPH02105467A (en) Mos type semiconductor device
JPH04263468A (en) Manufacture of semiconductor device
KR960014451B1 (en) Method of forming the device isolation film in a semiconductor device
JP2732845B2 (en) Method for manufacturing MIS type field effect transistor
JPH08204022A (en) Production of semiconductor device
KR100260042B1 (en) Manufacturing method of transistor
JPH06216379A (en) Semiconductor device and its manufacture
KR100379534B1 (en) Method for Fabrication Semiconductor Device
JPH0479336A (en) Production of semiconductor device
KR100263454B1 (en) Semiconductor device manufacture method
KR100537272B1 (en) Method for fabricating of semiconductor device
KR0152936B1 (en) Method of fabricating semiconductor device
JPS6211277A (en) Manufacture of semiconductor integrated circuit
JPH1074941A (en) Semiconductor device and its manufacturing method
KR19990015385A (en) Triple well formation method of semiconductor device
KR20010038451A (en) Method of forming BILLI well of semiconductor device