JPS6115782B2 - - Google Patents

Info

Publication number
JPS6115782B2
JPS6115782B2 JP8060580A JP8060580A JPS6115782B2 JP S6115782 B2 JPS6115782 B2 JP S6115782B2 JP 8060580 A JP8060580 A JP 8060580A JP 8060580 A JP8060580 A JP 8060580A JP S6115782 B2 JPS6115782 B2 JP S6115782B2
Authority
JP
Japan
Prior art keywords
layer
copper alloy
plating layer
continuous casting
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8060580A
Other languages
Japanese (ja)
Other versions
JPS577360A (en
Inventor
Akira Kubota
Katsuhiro Hori
Masato Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP8060580A priority Critical patent/JPS577360A/en
Publication of JPS577360A publication Critical patent/JPS577360A/en
Publication of JPS6115782B2 publication Critical patent/JPS6115782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 この発明は硬さが大で耐摩耗性に優れ、かつ熱
伝導性が高く高温強度に優れた連続鋳造用鋳型に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting mold that has high hardness, excellent wear resistance, high thermal conductivity, and excellent high-temperature strength.

鉄鋼の連続鋳造用鋳型には一般に銅及び銅合金
が用いられており、寿命向上対策として従来から
NiあるいはCrの表面コーテイングが実用されて
いたがなお耐寿命の面で満足とはいえなかつた。
そこで最近新しい表面コーテイング法としてNi
系あるいはNi−Cr系自溶性合金を溶射する方法
が提案され一部実施されている。即ち銅または銅
合金板上にNiメツキを施し、更にその上に溶射
し熱処理はなさない方法と、析出硬化型銅合金板
上に直接溶射をなした後特性回復あるいは密着力
の向上を目的として溶体化処理、急冷及び析出時
効処理を行なう方法である。しかるに前者は熱処
理をなさないが為に鉄鋼の連続鋳造用鋳型として
要求される密着力が足りないし、また後者にあつ
ては相当の長寿命ではあるが、その寿命に極めて
バラツキが大きく、しかも100ch〜500chで部分
的剥離がありその都度補修溶射をなさなければな
らないという欠点があつた。またこの後者の直接
溶射をする方法での連続鋳造用鋳型の耐熱衝撃性
を調べる為に同様の方法で得た鋳型モデル(析出
硬化型銅合金板上にNi系自溶性合金を直接溶射
→955〜1010℃×1時間の溶体化処理→急冷→析
出時効処理)を作製し、600℃×30分間保持した
後水中投入なる操作を繰返した結果2回〜6回で
20個共全てのものが銅合金板と溶射膜とが部分的
あるいは全面剥離した。但しこの鋳型モデルの溶
体化処理を1100℃以上で行つたものは上述と同じ
操作を10回繰返しても何ら剥離現象はみられなか
つた。
Copper and copper alloys are generally used in molds for continuous casting of steel, and as a measure to improve lifespan,
Surface coatings of Ni or Cr have been put into practice, but they are still unsatisfactory in terms of service life.
Recently, a new surface coating method using Ni
A method of thermal spraying Ni-Cr-based or Ni-Cr-based self-fluxing alloys has been proposed and partially implemented. In other words, Ni plating is applied to a copper or copper alloy plate and then thermally sprayed on top of the plate without heat treatment, and the other is a method in which Ni plating is applied directly to a precipitation-hardened copper alloy plate and then a solution is applied for the purpose of restoring properties or improving adhesion. This method involves chemical treatment, rapid cooling, and precipitation aging treatment. However, since the former does not undergo heat treatment, it lacks the adhesion required for continuous casting molds for steel, and while the latter has a considerably long life, its life varies greatly, and moreover, it has a long lifespan of 100 channels. The disadvantage was that there was partial peeling in ~500 channels, and repair spraying had to be performed each time. In addition, in order to investigate the thermal shock resistance of continuous casting molds using the latter method of direct thermal spraying, a mold model obtained using a similar method (Direct thermal spraying of a Ni-based self-fusing alloy onto a precipitation-hardened copper alloy plate → 955 ~ 1010℃ x 1 hour solution treatment → rapid cooling → precipitation aging treatment) was prepared, held at 600℃ x 30 minutes, and then poured into water. As a result, the process was repeated 2 to 6 times.
In all 20 pieces, the copper alloy plate and the sprayed coating were partially or completely peeled off. However, when this mold model was solution-treated at a temperature of 1100°C or higher, no peeling phenomenon was observed even after the same operation as described above was repeated 10 times.

一方銅合金板への影響についてであるが、本発
明者等の研究によると、かかる960℃を越す様な
高温で溶体化処理を行なうと銅合金の結晶粒の粗
大化がみられ硬さは増すが反対に伸びが低下して
銅合金本来の高温耐力を劣化させるので鋳型材料
の熱処理としては不適当であるという事が判つ
た。また上述の繰返し熱衝撃試験の結果剥離した
該剥離面はCuの酸化皮膜が形成されており、顕
微鏡組織でもエツチング液による腐食が銅合金−
溶射膜界面で激しく、一見すると拡散層(あるい
は合金層)が形成されたかに見えるが、そうでは
なく銅合金表面の酸化皮膜であると考えられる。
また溶体化処理による銅酸化スケールは0.3mm程
度形成され、これは水冷によつて剥落した。なお
顕微鏡観察によれば表面近くの組織は明らかに酸
化皮膜であつた。更に剪断密着力試験の結果4
Kg/mm2〜11Kg/mm2の範囲でバラツキがあつた。従
つて密着力も低く連続鋳造用鋳型の受ける熱応力
は約10Kg/mm2といわれているので、この点からも
実用の際の寿命のバラツキが予見でき好ましいも
のではない。
On the other hand, regarding the effect on copper alloy sheets, according to research by the present inventors, when solution treatment is performed at high temperatures exceeding 960°C, the crystal grains of the copper alloy become coarser and the hardness decreases. However, it was found to be unsuitable for heat treatment of mold materials because the elongation decreases and the high-temperature yield strength inherent in copper alloys deteriorates. Furthermore, as a result of the above-mentioned repeated thermal shock test, a Cu oxide film was formed on the peeled surface, and the microscopic structure also shows that corrosion caused by the etching solution was not observed in copper alloys.
At first glance, it appears that a diffusion layer (or alloy layer) has been formed, but it is thought to be an oxide film on the surface of the copper alloy.
In addition, a copper oxide scale of about 0.3 mm was formed due to the solution treatment, and this was peeled off by water cooling. According to microscopic observation, the structure near the surface was clearly an oxide film. Furthermore, the results of the shear adhesion test 4
There was variation in the range of Kg/ mm2 to 11Kg/ mm2 . Therefore, the adhesion force is low, and the thermal stress that continuous casting molds receive is said to be about 10 kg/mm 2 , which is not preferable as it can be predicted that the service life will vary in practical use.

本願発明は上述の諸欠点を解消する連続鋳造用
鋳型に係り、その要旨は析出硬化型銅合金基材
と、Ni系あるいはNi−Cr系合金溶射層との間
に、Ni,Ni−Fe,Ni−CoあるいはNi−Mnメツキ
層が介在し、しかも該メツキ層は上記銅合金基材
とも上記溶射層ともそれぞれの境界部に於いて加
熱処理による治金的に結合した合金層を形成して
いることを特徴とする連続鋳造用鋳型である。
The present invention relates to a continuous casting mold that eliminates the above-mentioned drawbacks, and its gist is that Ni, Ni-Fe, A Ni-Co or Ni-Mn plating layer is interposed, and the plating layer forms an alloy layer that is metallurgically bonded by heat treatment at the boundary between the copper alloy base material and the sprayed layer. This is a continuous casting mold characterized by:

本願発明の連続鋳造用鋳型をその製造方法をも
併せ乍ら詳述すれば、析出硬化型銅合金基材上に
Ni,Ni−Fe,Ni−CoあるいはNi−Mnのいずれか
を50〜100μ厚にメツキをし、300℃〜400℃で2
時間〜8時間加熱処理をして、該メツキ層を銅合
金基材と治金的に結合する合金層を形成せしめる
と共にメツキ層中に混入しているH2を除去す
る。次いでこの様に下地の銅合金基材との界面で
合金層を形成して強固に接合されたメツキ層の上
からNi系−あるいはNi−Cr系自溶性合金を250μ
〜500μの厚さに溶射した後930℃〜950℃で45分
間〜90分間溶体化加熱後水または油中へ投入する
事で急冷し、過飽和固溶体を得る。得られた過飽
和固溶体を約400℃の温度に3時間〜4時間保持
することによつて第二相が析出し適度の硬さと伸
び性を有する鋳型が得られるものである。
The continuous casting mold of the present invention, together with its manufacturing method, will be described in detail.
Plate either Ni, Ni-Fe, Ni-Co or Ni-Mn to a thickness of 50 to 100μ, and heat the plate at 300℃ to 400℃.
A heat treatment is performed for 8 hours to form an alloy layer that metallurgically connects the plating layer to the copper alloy base material, and also removes H 2 mixed in the plating layer. Next, 250 μm of Ni-based or Ni-Cr-based self-fusing alloy is applied over the plating layer, which forms an alloy layer at the interface with the underlying copper alloy base material and is firmly bonded.
After thermal spraying to a thickness of ~500μ, solution heating is performed at 930°C to 950°C for 45 to 90 minutes, followed by quenching by pouring into water or oil to obtain a supersaturated solid solution. By holding the obtained supersaturated solid solution at a temperature of about 400° C. for 3 to 4 hours, a second phase precipitates out and a mold having appropriate hardness and extensibility is obtained.

図面に本願発明の連続鋳造用鋳型の断面顕微鏡
写真を、また同写真をカラーで撮つたものを参考
写真として示すが、これらの写真で判る様に、析
出硬化型銅合金基材1とその上面のNiメツキ層
2との境界面には明らかに合金層3が見られ、か
つまたNiメツキ層2と溶射層4との境界面にも
明らかに合金層5が見られる。この写真に示すも
のを試料として剪断密着試験を行つたところ銅合
金基材とNiメツキ層間も、Niメツキ層と溶射層
間のいずれも30Kg/mm2という大きな密着力を有し
ていたし、上述と同じ600℃×30分間保持後水中
投入なる熱衝撃試験を10回繰返しても全く剥離現
象は見られなかつた。
The drawing shows a cross-sectional microscopic photograph of the continuous casting mold of the present invention, and a color photograph of the same photograph is shown as a reference photograph.As can be seen from these photographs, the precipitation hardening copper alloy base material 1 and its upper surface are The alloy layer 3 is clearly seen on the interface between the Ni plating layer 2 and the alloy layer 5 is also clearly seen on the interface between the Ni plating layer 2 and the thermal sprayed layer 4. When a shear adhesion test was conducted using the sample shown in this photo, it was found that both the adhesion between the copper alloy base material and the Ni plating layer, and between the Ni plating layer and the thermal sprayed layer had a large adhesion of 30 kg/mm 2 , which was consistent with the above. No peeling phenomenon was observed even after repeating the same thermal shock test 10 times by holding the sample at 600°C for 30 minutes and then placing it in water.

以上述べて来た如く本願発明によれば、析出硬
化型銅合金基材と、耐摩耗性に優れかつ高温強度
が大なるNi系あるいはNi−Cr系合金から成る溶
射層とがその間に介在するNiを主とするメツキ
層と互に治金的に結合しているので両者の結び付
きが強固で寿命が著しく大である。
As described above, according to the present invention, a precipitation-hardened copper alloy base material and a sprayed layer made of a Ni-based or Ni-Cr-based alloy that has excellent wear resistance and high temperature strength are interposed therebetween. Since it is metallurgically bonded to the plating layer, which is mainly composed of Ni, the bond between the two is strong and the lifespan is extremely long.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願鋳型の断面顕微鏡組織写真で倍率は
200倍である。 図中、1:析出硬化型銅合金板、2:Ni層、
3:合金層、4:溶射合金層、5:合金層。
The drawing is a cross-sectional micrograph of the mold of the present application, and the magnification is
200 times more. In the figure, 1: precipitation hardening copper alloy plate, 2: Ni layer,
3: Alloy layer, 4: Sprayed alloy layer, 5: Alloy layer.

Claims (1)

【特許請求の範囲】[Claims] 1 析出硬化型銅合金基材と、Ni系あるいはNi
−Cr系合金溶射層との間に、Ni,Ni−Fe,Ni−
CoあるいはNi−Mnメツキ層が介在し、しかも該
メツキ層は上記銅合金基材とも上記溶射層ともそ
れぞれの境界部に於いて加熱処理による治金的に
結合した合金層を形成していることを特徴とする
連続鋳造用鋳型。
1 Precipitation hardening type copper alloy base material and Ni-based or Ni
-Ni, Ni-Fe, Ni-
A Co or Ni-Mn plating layer is interposed, and the plating layer forms an alloy layer that is metallurgically bonded by heat treatment at the boundary between the copper alloy base material and the sprayed layer. A continuous casting mold featuring:
JP8060580A 1980-06-14 1980-06-14 Mold for continuous casting Granted JPS577360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8060580A JPS577360A (en) 1980-06-14 1980-06-14 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8060580A JPS577360A (en) 1980-06-14 1980-06-14 Mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS577360A JPS577360A (en) 1982-01-14
JPS6115782B2 true JPS6115782B2 (en) 1986-04-25

Family

ID=13722953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8060580A Granted JPS577360A (en) 1980-06-14 1980-06-14 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS577360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183203A (en) * 2014-03-20 2015-10-22 三島光産株式会社 Continuous casting mold and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192661A (en) * 1982-05-06 1983-11-10 Kyushu Tokushu Kinzoku Kogyo Kk Production of casting mold for continuous casting
DE19756164A1 (en) * 1997-12-17 1999-06-24 Km Europa Metal Ag Process for producing a mold body and mold body
FI20021994A (en) * 2002-11-07 2004-05-08 Outokumpu Oy Method for producing a coating on a cooling element of a metallurgical furnace
CN105063699B (en) * 2015-08-04 2017-10-03 湖南永盛新材料股份有限公司 A kind of nickel plating copper material and its preparation method and application
CN105063685B (en) * 2015-08-04 2017-08-29 湖南永盛新材料股份有限公司 A kind of nickel plating copper material of nickel and cobalt containing alloy layer and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183203A (en) * 2014-03-20 2015-10-22 三島光産株式会社 Continuous casting mold and method for manufacturing the same

Also Published As

Publication number Publication date
JPS577360A (en) 1982-01-14

Similar Documents

Publication Publication Date Title
US4059217A (en) Superalloy liquid interface diffusion bonding
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
KR102420968B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
JPS6115782B2 (en)
CN111448611B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
WO2017057453A1 (en) Die for hot forging, method for manufacturing forged product using same, and method for manufacturing die for hot forging
JPH0124223B2 (en)
JPS6039453B2 (en) Manufacturing method of continuous casting mold
RU2317346C2 (en) Two-phase copper-nickel-silicon hardening substrate
JPS61166987A (en) Fin material for radiator
JP2023041248A (en) Laminated structure and manufacturing method thereof
JP2003170262A (en) Method for manufacturing die cast machine member
JPS6219264B2 (en)
CN110356068A (en) Aluminium foil, preparation method and aluminum plastic film and battery using the aluminium foil
JPS60145247A (en) Mold for continuous casting and its production
JP2000064060A (en) Member for nonferrous molten metal
JPS62270249A (en) Production of mold for continuous casting
CN115029581B (en) Silicon bronze forging and integral forging and pressing and heat treatment method without internal stress
JPH01233047A (en) Production of mold for continuous casting
CN115141994A (en) Multilayer films with etch anisotropy comprising novel quaternary MAB phases and methods of making and etching the same
JPS5913563A (en) Production of rocker arm
JP2642661B2 (en) Manufacturing method of high thermal conductive composite mold
JP2593681B2 (en) Method for producing aluminum-plated steel sheet for containers with good workability and corrosion resistance
JPS58174566A (en) Surface treatment of cast metal
JPH0241736A (en) Metallic mold for molding shell mold